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Abstract: Path loss propagation is a vital concern when designing and planning networks in mobile communication systems. 

Propagation models such as the empirical, deterministic and theoretical models, which possess complex, inconsistent, time-

consuming and non-adaptable features, have proven to be inefficient in designing of wireless systems, thereby resulting in the 

need for a more reliable model. Artificial Intelligence methods seem to overcome the drawbacks of the propagation models 

for predicting path loss. In this paper, the ANFIS approach to path loss prediction in the GSM and WCDMA bands is presented 

for selected urban areas in Nigeria. Furthermore, the effects of the number of Membership Functions (MFs) are investigated. 

The prediction results indicated that the ANFIS model outperformed the Hata, Cost-231, Egli and ECC-33 models in both 

Kano and Abuja urban areas. In addition, an increase in the number of MFs conceded an improved RMSE result for the 

generalized bell-shaped MF. The general performance and outcome of this research work show the efficiency and usefulness 

of the ANFIS model in improving prediction accuracy over propagation models. 
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1. INTRODUCTION 

Path loss is the degradation in the signal strength as radio 

wave propagates from the source to destination. 

Electromagnetic wave propagation prediction is of high 

significance in the planning and designing process of 

wireless communication systems. The prominence of 

propagation models is significant since it can be used as 

the standard for the performance of the system as well as 

for precise reception of radio signals in a wireless network. 

Electromagnetic waves propagation is distinct in nature 

and exhibits certain mechanisms such as reflection, 

refraction, and diffraction. They incite signal fading, 

scattering, and shadowing in the line of the path of the 

radio signal [1].  

The path loss propagation models in existence have 

been broadly grouped into empirical or statistical, site-

specific or deterministic, and the theoretical models [2] ; 

empirical models are dependent on measurement 

campaign carried out in an area, the prediction of 

theoretical models’ is of great value since it is capable of 

determining the optimal base station locations so as to 

obtain data rates that are suitable. The deterministic 

models, on the other hand utilize the physical 

environmental phenomenon to explain the propagation of 

radio wave signals in the area of interest [3]- [4].  

Empirical path loss models have been found to be the most 

broadly used models due to their simplicity and ease of use, 

as the implementation of the models do not require much 

computational efforts, and, are not too responsive to the 

geometrical and physical composition of the environments  

[5]- [6]. These make them attractive, although, a major 

drawback of utilizing the model is the inaccuracies, 

specifically when used in another environment other than 

the one where the measurements were taken. For example, 

[7]; [8]; [9]; [10]  tested several of these models in a typical 

urban and rural Nigeria terrain and found them to be 

inconsistent in prediction, aside having high prediction 

errors. [11]; [12]; [13] tuned some of the most performing 

models to minimize errors and improve the prediction 

accuracy and yet, the tuned models were found to be site-

specific. On the other hand, the deterministic models seem 

to have better prediction accuracy because of the 

availability of detailed information about the propagation 

environment. However, they are computationally intensive 

and time-consuming [14] . Moreover, despite the inclusion 

of site-specific information, the deterministic models’ 

efficiency in prediction is not always better than the 

empirical models [14]- [15]. This, therefore raises more 

questions as to which model can provide optimum 

prediction with minimal complexity, as such, the need to 

incorporate Artificial Intelligence (AI) and heuristic 

algorithms to improve path loss prediction.  

Different Artificial Intelligence (AI) techniques for path 

loss prediction have been adopted, as evident in the 

literature. Although, application of heuristic algorithms for 

predicting path losses in urban macrocellular environment 

is gaining momentum [16]; [17]; [18]; [11]; [19]; [20]; [21] 

; [22]; [23]; [24], however, most of the works that focus on 

the investigation of the suitability of the Adaptive Network 
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based Fuzzy Inference System (ANFIS) technique for path 

loss prediction in the Ultra High Frequency (UHF) bands 

are very limited. Moreover, due to the peculiar nature of 

our terrain environment and the wide deployment of 

cellular mobile systems operating on the GSM and 

WCDMA bands, there is a need to test the efficacy and 

applicability of the ANFIS method for path loss prediction 

using our own terrain.  

Therefore, this paper introduces the ANFIS method 

approach to path loss prediction in the UHF bands (GSM 

and WCDMA frequencies) within the Nigerian 

propagation terrain, which uses expert learning for its 

training so as to mimic a given data set. The predictions of 

the ANFIS were used to compare with those of the 

commonly employed empirical models. The models used 

are:  Hata [25], COST 231 [26], Egli  [27],  and ECC-33 

[28] models. These models were chosen as they are the 

most widely applicable empirical models. The 

performances of the models were examined employing the 

Root Mean Square Error (RMSE), Mean Error (ME), 

Spread Corrected RMSE (SC-RMSE), and Standard 

Deviation Error (SDE), relative to the measured data. 

Furthermore, the paper investigates the impact of system 

parameters such as the membership functions (MF) and 

epoch size on the performance of the method.  

2. MATERIALS AND METHOD 

This section provides the architecture of the ANFIS 

method used and the description of the measurement 

procedure used during the path loss propagation 

measurements.  

2.1 Structure of Adaptive Network Based Fuzzy 

Inference System (ANFIS) 

ANFIS was proposed by J. S. R. Jang in the early 1990s 

[29]. It is an Artificial Neural Networks (ANN) that uses 

the Fuzzy Inference System (FIS) for its prediction. It is 

also referred to as an adaptive network [30]. ANFIS being 

a multilayer feed forward network with different nodes is 

able to perform specified functions on input signals as well 

as the parameters attributed to these nodes. There is 

variation in the formulas from one node to another and the 

decision of each function of the nodes is dependent on the 

entire input-output function that is required by the adaptive 

network to be executed. Commonly, the popular feed-

forward structure is employed in conjunction with the back 

propagation training method [31]. A disadvantage of 

multilayered feed-forward networks which contains many 

neurons per layer is the training period required. In 

addition, an excessively complex ANFIS can lead to data 

over fitting and, as a result, problems generalization [32]. 

The general structure and functions of each layer of the 

ANFIS method is shown in Figure 1. 

 
 

Figure 1. Two Inputs and Two Rules ANFIS Structure 

 

Rules 

 If x is A1 and y is B1 then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1     (1)   

 If x is A2 and y is B2 then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2    (2) 

 

where x and y are the inputs, which are also referred to as 

premise part, f is the output, A1, A2 , B1, B2 are the 

membership functions of each input. The variables p1, q1, 

r1 ,  p2, q2, r2  are linear parameters for the if-Then rule of 

the Takagi–Sugeno model. These are also called 

consequent parts. 

 

The structure in Fig 1 consists of five layers. The first and 

fourth layers of the structure consists of adaptive nodes, 

while, second, third and fifth layers contain fixed nodes. 

The description of the structure is done with a first order 

sugeno because the output is a crisp value. A sugeno based 

ANFIS has a rule of the form [33]. Each layer is briefly 

described as follows: 

 

Layer 1: A node in this layer is adaptable and the output 

of this layer (𝐿𝑖
1) is given as;  

 

𝐿𝑖
1 = µ𝐴𝑖(𝑥)      𝑖 = 1,2          (3) 

 

μAi(x) is the membership function (MF), in this work we 

used generalized bell MF which is taken normally as;   

 

µ𝐴𝑖(𝑥) =
1

1+|
𝑥−𝑐𝑖
𝑎𝑖

|
2𝑏    (4) 

 

{ai, bi, ci} is the antecedent variables set that change the 

shape of the MF and 𝐴𝑖(𝑥)   is the degree of membership. 

 

Layer 2: This layer is made up of the stable nodes which 

solve the firing power wi also known as the synaptic weight 

of a rule. The output of each node is the multiplication of 

the incoming signals given by; 
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 𝐿𝑖
2 = 𝑤𝑖 = µ𝐴𝑖(𝑥) × µ𝐵𝑖(𝑦),   𝑖 = 1,2             (5) 

 

Layer 3: The output of each node in this layer is constant 

which is given by; 

 𝐿𝑖
3 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖

∑𝑤𝑖
,   𝑖 = 1,2      (6) 

 

Layer 4: The changeable output of this layer is given by; 

 

𝐿𝑖
4 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1, 2         (7) 

 

{pi, qi and ri} is the consequent variables set and they are 

computed using the least squares estimates method. 

 

Layer 5: The addition of all the input signals from layer 4 

is the output of this layer and is given by; 

 𝐿𝑖
5 = 𝑓 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖 = 

∑𝑤𝑖𝑓𝑖

∑𝑤𝑖

2
𝑖=1           (8)

  

The ANFIS optimization combines both the least square 

errors estimate and back propagation algorithms which 

establish the output and input parameters respectively until 

the training is completed. 

 

2.2 Least Square Errors Estimate (LSE) 

 

It is a statistical approach employed in determining a line 

of best fit through the minimization of the sum of squares 

of a mathematical function. Eqn. (8) can be rewritten as; 

 

𝑓 = 𝑧𝑝
𝑘 =

𝑤1

𝑤1 + 𝑤2

𝑓1 +
𝑤2

𝑤1 + 𝑤2

𝑓2 

 𝑧𝑝
𝑘 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖

2
𝑖=1 = 𝑤1̅̅̅̅ (𝑝1𝑥) + 𝑤1̅̅̅̅ (𝑞1𝑦) + 𝑤1̅̅̅̅ (𝑟1) +

𝑤2̅̅̅̅ (𝑝2𝑥) + 𝑤2̅̅̅̅ (𝑞2𝑦) + 𝑤2̅̅̅̅ (𝑟2)                               (9)

  

Eqn. (9) in matrix form can be expressed as    [34]

[
 
 
 
𝑤1̅̅̅̅ (1)𝑥(1) 𝑤1̅̅̅̅ (1)𝑦(1) 𝑤1̅̅̅̅ (1)

𝑤1̅̅̅̅ (2)𝑥(2) 𝑤1̅̅̅̅ (2)𝑦(2) 𝑤1̅̅̅̅ (2)

⋮ ⋮ ⋮
𝑤1̅̅̅̅ (𝑛)𝑥(𝑛) 𝑤1̅̅̅̅ (𝑛)𝑦(𝑛) 𝑤1̅̅̅̅ (𝑛)

𝑤2̅̅̅̅ (1)𝑥(1) 𝑤2̅̅̅̅ (1)𝑦(1) 𝑤2̅̅̅̅ (1)

𝑤2̅̅̅̅ (2)𝑥(2) 𝑤2̅̅̅̅ (2)𝑦(2) 𝑤2̅̅̅̅ (2)

⋮ ⋮ ⋮
𝑤2̅̅̅̅ (𝑛)𝑥(𝑛) 𝑤2̅̅̅̅ (𝑛)𝑦(𝑛) 𝑤2̅̅̅̅ (𝑛)]

 
 
 

 
 
 
 
 
 
𝑝1

𝑞1

𝑟1
𝑝2

𝑞2

𝑟2  
 
 
 
 
 

=

[
 
 
 
 
𝑧𝑝

(1)

𝑧𝑝
(2)

⋮
𝑧𝑝

(𝑛)
]
 
 
 
 

           (10) 

  

where [𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2]
𝑇 are calculated using eqn. (11) 

and 𝑧𝑑
𝑘 are the desired outputs. [𝑥(𝑘), 𝑦(𝑘), 𝑧𝑑

(𝑘)] are the kth  

 

training pairs, k=1,2,…..,n, and 𝑤1̅̅̅̅ (𝑘) and 𝑤2̅̅̅̅ (𝑘) are the 

normalized synaptic weights of layer 3 in relation with 

inputs 𝑥(𝑘) and 𝑦(𝑘). 

[
 
 
 
𝑤1̅̅̅̅ (1)𝑥(1) 𝑤1̅̅̅̅ (1)𝑦(1) �̅�(1)

𝑤1̅̅̅̅ (2)𝑥(2) 𝑤1̅̅̅̅ (2)𝑦(2) 𝑤1̅̅̅̅ (2)

⋮ ⋮ ⋮
𝑤1̅̅̅̅ (𝑛)𝑥(𝑛) 𝑤1̅̅̅̅ (𝑛)𝑦(𝑛) 𝑤1̅̅̅̅ (𝑛)

𝑤2̅̅̅̅ (1)𝑥(1) 𝑤2̅̅̅̅ (1)𝑦(1) 𝑤2̅̅̅̅ (1)

𝑤2̅̅̅̅ (2)𝑥(2) 𝑤2̅̅̅̅ (2)𝑦(2) 𝑤2̅̅̅̅ (2)

⋮ ⋮ ⋮
𝑤2̅̅̅̅ (𝑛)𝑥(𝑛) 𝑤2̅̅̅̅ (𝑛)𝑦(𝑛) 𝑤2̅̅̅̅ (𝑛)]

 
 
 

 
 
 
 
 
 
𝑝1

𝑞1

𝑟1
𝑝2

𝑞2

𝑟2  
 
 
 
 
 

=

[
 
 
 
𝑧𝑑

(1)

𝑧𝑑
(2)

⋮
𝑧𝑑

(𝑛)]
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𝑝1

𝑞1

𝑟1
𝑝2

𝑞2

𝑟2  
 
 
 
 
 

=

[
 
 
 
𝑤1̅̅̅̅ (1)𝑥(1) 𝑤1̅̅̅̅ (1)𝑦(1) 𝑤1̅̅̅̅ (1)

𝑤1̅̅̅̅ (2)𝑥(2) 𝑤1̅̅̅̅ (2)𝑦(2) 𝑤1̅̅̅̅ (2)

⋮ ⋮ ⋮
𝑤1̅̅̅̅ (𝑛)𝑥(𝑛) 𝑤1̅̅̅̅ (𝑛)𝑦(𝑛) 𝑤1̅̅̅̅ (𝑛)

𝑤2̅̅̅̅ (1)𝑥(1) 𝑤2̅̅̅̅ (1)𝑦(1) 𝑤2̅̅̅̅ (1)

𝑤2̅̅̅̅ (2)𝑥(2) 𝑤2̅̅̅̅ (2)𝑦(2) 𝑤2̅̅̅̅ (2)

⋮ ⋮ ⋮
𝑤2̅̅̅̅ (𝑛)𝑥(𝑛) 𝑤2̅̅̅̅ (𝑛)𝑦(𝑛) 𝑤2̅̅̅̅ (𝑛)]

 
 
 
−1

[
 
 
 
 𝑧𝑑

(1)

𝑧𝑑
(2)

⋮

𝑧𝑑
(𝑛)

]
 
 
 
 

               (12) 

2.3 Back Propagation Algorithm  

The errors to be reduced between the measured and ANFIS 

predicted output is given by [35]; 

  𝐸𝑘 = 1

2
∑ (𝑧𝑑

𝑘−𝑧𝑝
𝑘)2𝑛

𝑘=1     (13) 

The errors for the ith node are back propagated in order for 

the synaptic weights, 𝑤𝑖̅̅ ̅(𝑘) to be updated using the gradient 

descent equation given by [35]; 

  𝑤𝑖̅̅ ̅(𝑘)(𝑀 + 1) = 𝑤𝑖̅̅ ̅(𝑘)(𝑀) −
𝜕𝐸𝑘

𝜕𝑤𝑖̅̅̅̅ (𝑘)   (14) 

 where  ∆𝑤𝑖 = −
𝜕𝐸𝑘

𝜕𝑤𝑖̅̅̅̅ (𝑘) is the weight increment, and 

𝑤𝑖̅̅ ̅(𝑘)(𝑀) is the previous value of 𝑤𝑖̅̅ ̅(𝑘) and 𝑤𝑖̅̅ ̅(𝑘)(𝑀 + 1) 

is the updated value. 

The weight update for the next backward layer through to 

the input is generally given as; 

𝑤𝑖
(𝑘)(𝑀 + 1) = {

𝑤𝑖
(𝑘)(𝑀)𝑥 + 𝑤𝑖̅̅ ̅(𝑘)(𝑀 + 1)

𝑤𝑖
(𝑘)(𝑀)𝑦 + 𝑤𝑖̅̅ ̅(𝑘)(𝑀 + 1)

  (15) 

Fig 2 provides a flow chat of the step by step taken during 

the model development. 

2.4 Empirical Path Loss Propagation Models 

In order to gauge the performance of the developed ANFIS 

model, the results of the ANFIS prediction is compared 

with the standard and popular empirical path loss 

propagation models. The models considered are: Hata 

Model, COST 231 model, Egli Model and ECC-33 model. 

These models were selected because aside they are widely 

used, the operation propagation parameters for the models, 

fall within the operating regions of the transmitters used.
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Figure 2. ANFIS Algorithm 

 

3.0 METHOD OF DATA COLLECTION 

3.1 Measurement Locations 

Propagation measurements used by the models were taken 

in two urban cities of Nigeria; Kano (11°30′N 8°30′E 

11.5°N 8.5°E), and Abuja (9°4′0″N 7°29′0″E). The 

measurement campaign covered the cellular frequencies, 

which are within the UHF bands. A tota of 10 cellular base 

stations (i.e., 5 in the GSM, and 5 in the WCDMA bands).  

3.2 Measurement Set-up 

The GSM band measurements were carried out in Kano, while 

those for the WCDMA band were conducted in Abuja. The 

measurements were done on a dual-band handset with special 

configuration, a GPS, and a Probe Dongle which was attached 

to a laptop equipped with a Huawei Genex Probe v 6.0 drive 

test software. All the drive tests were conducted within the 

metropolis. During the drive test, an automatic configuration 

was done on the handset making calls to a constant destination 

number. Each of the calls took 30 seconds of hold time and 

then dropped. The phone was kept inactive for 5 seconds and 

afterwards, subsequent calls were made. At the end of each 

drive test, log files containing signaling data including 

received signal strength, frequencies, scrambling codes (for 

3G Node Bs), longitude, latitude, elevation, etc were obtained. 

For the GSM tests, the operating frequency for the individual 

Base Transceiver Stations (BTS) was in the 1800 MHz band, 

with centre frequencies ranging from 1835.2 MHz to 1838.6 

MHz. The Absolute Radio Frequency Channel Numbers 

(ARFCN) for the GSM is 679, 668, 662, 672, and 677. The 

operating frequency for all the WCDMA was 2112.4 MHz 

with primary scrambling codes (PSC) of 132, 188, 484, 485, 

and 486. For all the measurement routes, 1.5 m was assumed 

as the average receiver antenna height. Fig 3 shows the 

screenshot the software used during data collection. Table 1 

provides a detailed description of the cellular transmitters used 

during the drive test. 
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Figure 3. Screenshot showing the software used during data collection 

Table 1. Description of the Cellular Transmitters 

Transmitter Band 
BTS/ 

ARFCN 

Frequency 

(MHz) 

Antenna 

height (m) 

Peak 

power (W) 

GSM, Kano 

UHF 1/679 1838.6 30 20 

UHF 2/668 1836.4 30 20 

UHF 3/662 1835.2 30 20 

UHF 4/672 1837.2 30 20 

UHF 5/677 1838.2 30 20 

WCDMA, 

Abuja 

UHF 1/484 2112.4 30 20 

UHF 2/486 2112.4 30 20 

UHF 3/132 2112.4 30 20 

UHF 4/485 2112.4 30 20 

UHF 5/188 2112.4 30 20 

4. RESULTS AND DISCUSSION 

4.1. GSM, Kano BTS 

Figures 4 to 6 show the prediction of ANFIS against the 

empirical models. The ANFIS method mimicked the 

measured path loss across the five BTS while the 

prediction patterns exhibited by the Hata, COST 231, and 

ECC-33 models were quite similar across the routes as 

they are generally over predicted. The prediction of the 

Egli model in Figure 4 for BTS 1 was quite better than the 

other empirical models as it undulated between over and 

under estimation with respect to the measured path losses; 

however, it entirely under predicted across BTSs 1, 2, 4, 

and 5. 

 

Table 2 shows how each of the models performed with 

respect to their statistical analysis for these BTS. It is 

evident that the ANFIS gave the best average RMSE and 

ME of 0.96 dB and -0.0000426 dB respectively in 

comparison to the empirical models which is quite an 

excellent fit for modeling the coverage area of the five 

BTS. The average RMSE for the empirical models are not 

fit for modeling this coverage area as they overshot the 

acceptable limit for an urban area since this environment 

is urban. Interestingly, the RMSE for BTS 3 for the Egli 

model gave a good fitness with a value of 6.80 dB as well 

as the SC-RMSE for BTS 2 of the Hata model with a value 

of 4.99 dB.  
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Figure 4. Comparison of Predicted and Measured Path Losses for BTS 1 

 

Figure 5. Comparison of Predicted and Measured Path Losses for BTS 2 

 

 

Figure 6. Comparison of Predicted and Measured Path Losses for BTS 3 
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Table 2. Performance Metrics for the Models of the GSM Band, Kano 

              MODEL BTS 1 BTS 2 BTS 3 BTS 4 BTS 5 AVERAGE 

ANFIS 

RMSE (dB) 0.9752 1.5355 1.8482 0.0087 0.4276 0.9590 

SC-RMSE (dB) 5.4429 7.5735 4.9469 4.7948 6.0194 5.7555 

ME (dB) -4.34E-05 -3.88E-05 -9.92E-06 -4.61E-05 -7.50E-05 -4.26E-05 

SDE (dB) 5.8538 8.2235 5.8578 4.801 6.2343 6.1941 

COST 

231 

RMSE (dB) 12.9353 13.5229 30.3927 15.3682 12.9113 17.0261 

SC-RMSE (dB) 10.1265 7.6687 27.5364 12.4072 8.5107 13.2499 

ME (dB) 11.4031 12.4156 29.6806 14.7893 9.4639 15.5505 

SDE (dB) 3.1891 6.9304 2.9323 3.1068 4.9072 4.2132 

HATA 

RMSE (dB) 8.8359 9.1389 25.522 10.6303 9.8446 12.7943 

SC-RMSE (dB) 6.07 4.9903 22.7001 7.7145 5.9998 9.4949 

ME (dB) 6.386 7.4025 24.6697 9.7747 4.4475 10.5361 

SDE (dB) 3.1891 6.9304 2.9323 3.1068 4.9072 4.2132 

EGLI 

RMSE (dB) 19.6891 19.018 6.804 16.4187 23.4857 17.0831 

SC-RMSE (dB) 16.296 11.7124 4.3033 13.044 18.497 13.3705 

ME (dB) -18.6689 -18.1983 1.2606 -15.8553 -21.5786 -14.6081 

SDE (dB) 3.6214 7.8699 3.3298 3.528 5.5724 4.7843 

ECC-

33 

RMSE (dB) 24.9016 26.7843 41.1128 28.7737 25.1872 29.3519 

SC-RMSE (dB) 22.4446 21.6015 38.5451 26.4314 21.7693 26.1584 

ME (dB) 24.1801 26.2047 40.6044 28.4793 23.9178 28.6773 

SDE (dB) 2.5388 5.3263 2.602 2.3687 3.6307 3.2933 

4.2. WCDMA, Abuja NodeBs 

The pictorial representations of the path loss for the 

WCDMA band, Abuja are shown in Figures 7 to 8. For the 

Nodes B3 and B5, the ECC-33 and COST 231 models 

majorly overestimated the path losses, the Egli model 

under estimated while the Hata model fluctuated between 

over and under prediction. For the Node B5 in Figure 4.46, 

the Egli, Hata, and COST 231 models largely under 

estimated the losses, while the ECC-33 model wavered 

between over and under estimation of the losses. The 

ANFIS generally followed an imitative pattern of the 

measured data across all the nodes which suggest a better 

prediction in comparison to the empirical models. Table 3 

shows how the ANFIS and each of the empirical models 

performed with relevance to the selected performance 

metrics. The average RMSE of 1.03 dB for the ANFIS 

method showed that it is a good fit for the coverage area of 

the nodes. Even though the average SC-RMSE increased 

the RMSE to 5.8850 dB, it is insignificant because it is still 

within the acceptable RMSE for an urban environment. 

The empirical models generally performed badly in terms 

of their average RMSE, but the RMSE for Node B1 of the 

Hata fell within the acceptable range for an urban 

settlement with a value 5.72 dB and therefore provided a 

good fit for this node as well as the SC-RMSE of Node B4 

with 6.29 dB. The ECC-33 model for Node B5 also gave a 

good fitness of 6.60 dB after the deviation errors were 

negated from the RMSE. 

  

 

Figure 7. Comparison of Predicted and Measured Path Losses for Node B3 
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Figure 8. Comparison of Predicted and Measured Path Losses for Node B5 

Table 3. Performance Metrics for the Models of the WCDMA Band, Abuja. 

 

Table 4. Effects of the Number of Membership Functions 

on the RMSE for the Generalized Bell-shaped 

Membership Function 

Number of 

Membership 

Functions 

RMSE of Transmitters (dB) 

GSM  

(BTS 4) 

WCDMA 

(Node B4) 

2 2.2154 3.3670 

4 0.9058 2.1063 

6 0.2266 0.9849 

8 0.1922 0.8893 

10 0.0087 0.6663 

 

Table 4 gives an insight into how the number of MFs 

affects the RMSE. It is evident for the randomly selected 

BTS, and NodeBs that an increase in the number of MFs 

yielded a better result of the RMSE; however, care must 

generally be taken in the selection of the numbers so as to 

avoid over fitting of the results.  

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

This research experiment the use of AI in path loss 

prediction. The ANFIS method was used to predict path 

losses in the UHF bands and the RMSE, ME, SC-RMSE, 

as well as the SDEs of the used method were compared to 

that of four widely used empirical models (Hata, COST 

231, Egli, and ECC-33 models). In general, the following 

conclusions are drawn from this research: 

 

i. The ANFIS method generally performed better 

with least RMSE and ME across all the transmitters 

in comparison with the empirical models 

considered. 

              MODEL Node B1 Node B2 Node B3 Node B4 Node B5 AVERAGE 

 

 

ANFIS 

RMSE (dB) 0.0214 0.419 2.5023 0.6663 1.5378 1.0294 

SC-RMSE (dB) 5.7097 6.5257 4.4881 5.7406 6.9608 5.8850 

ME (dB) -4.70E-05 1.49E-05 9.83E-06 -4.26E-05 4.98E-05 -3.01E-06 

SDE (dB) 5.7231 6.8117 6.0535 5.9596 7.885 6.4866 

 

 

COST 

231 

RMSE (dB) 10.1754 17.1655 19.2429 11.9745 11.4189 13.9954 

SC-RMSE (dB) 7.4025 14.1739 12.7105 9.7079 8.8783 10.5746 

ME (dB) 9.1997 15.1685 18.1463 9.4265 -8.3274 8.7227 

SDE (dB) 3.1789 3.4925 7.1665 2.6436 3.2418 3.9447 

 

 

HATA 

RMSE (dB) 5.7194 12.5843 14.1895 8.3711 15.868 11.3465 

SC-RMSE (dB) 3.4453 9.9659 8.2223 6.2872 13.0621 8.1966 

ME (dB) 3.716 9.6848 12.6625 3.9427 -13.8112 3.2390 

SDE (dB) 3.1789 3.4925 7.1665 2.6436 3.2418 3.9447 

 

 

EGLI 

RMSE (dB) 22.8239 17.1266 14.9676 22.0654 39.1608 23.2289 

SC-RMSE (dB) 19.2911 13.4993 8.6419 19.2763 35.5626 19.2542 

ME (dB) -22.4133 -14.9848 -13.2447 -20.7063 -38.3588 -21.9416 

SDE (dB) 3.6098 3.9659 8.138 3.002 3.6813 4.4794 

 

 

ECC-

33 

RMSE (dB) 23.8567 28.3609 32.6382 22.6382 8.5976 23.2183 

SC-RMSE (dB) 21.4866 25.5535 27.2611 20.5389 6.597 20.2874 

ME (dB) 23.4267 27.2782 32.1514 21.4926 3.6387 21.5975 

SDE (dB) 2.4185 2.9319 5.4751 2.2237 2.7553 3.1609 
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ii. The SDEs and the SC-RMSE for the empirical path 

loss models were dependent on the terrain 

composition and clutter cover of the measurement 

routes and system parameters of the transmitters 

while those of the ANFIS method were dependent 

on the measurement data because of the fact that 

ANFIS mimics a given set of data. 

iii. The work also showed how the number and 

different types of membership functions, as well as 

the increment in epochs size, affected the RMSE; 

the higher the number of epochs, the lower the 

RMSE and vice versa.  

iv. The data density had a significant impact on the 

ANFIS method as well; the lower the data density, 

the lower the RMSE and vice versa. 

v. In terms of SDEs, the empirical models generally 

performed better than the ANFIS method as they 

provided least SDEs. 

vi. Within the UHF bands considered, the ANFIS 

method generally seems to be more efficient than 

the empirical path loss prediction models 

considering RMSE as the performance criterion. 
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