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Abstract: Electricity supply in Nigeria has been far below the estimated demand and the installed capacity of the plants. 

Hence, there has been continuous research on improving the performance of the existing plants, but the government mainly 

focuses on increasing the installed capacity. This paper presents the determination of the optimal release of water to maximize 

the energy generation potential of the cascaded Kainji-Jebba hydroelectric power station in Nigeria. The problem was 

formulated as an optimal control problem with an objective of minimizing the deviation of the head of the Jebba reservoir 

within a set limit. A conjugate gradient algorithm was then used as a direct solution to the optimal control problem. The 

computed control law and the resulting state trajectories of 2% error affirms the solution to be genuine and reliable. The 

algorithm is recommended for use in the design of a real time optimal controller for the system and a decision guide for the 

operators.  
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1. INTRODUCTION 

The Cascaded Kainji Hydroelectric Power station 

(KHEPS) and Jebba Hydroelectric Power Station (JHEPS) 

are pivot to the Nigeria energy generation [1, 2]. The two 

stations contribute approximately 17.5% to the installed 

capacity and the generation capacity has been around 18% 

on the average. Both take their sources of energy from the 

River Niger with 103 km separating their dams. Since their 

prime mover is renewable, the energy generation is 

relatively cheaper than those of the thermal plants [3]. 

KHEPS is designed with variable blade Kaplan turbo-

alternators with the operating head varying between 24 𝑚 

to42 𝑚. JHEPS has fixed blade propeller turbine operating 

at relatively constant head and all units operate at base 

load. Based on this system design, the operating head of 

JHEPS is highly sensitive to water release from KHEPS 

and the number of operating units. The amount of water 

that must be released from KHEPS and the duration of the 

release such as to maintain JHEPS reservoir at relatively 

constant head is the problem yet unsolved  [4 – 6]. 

The two power stations operate in cascade but lack a 

control system regulating their operation. They are being 

managed by experience and intuition of the operators [7]. 

From the operational report, there are occasions where 

some units at JHEPS are shutdown if the release from 

KHEPS is low. Sometimes the release from KHEPS is so 

large that they are spilt at JHEPS reservoir due to unit’s 

failure. There are also occasions where JHEPS can only 

operate few units and instead of KHEPS to run all its 

available units, they allow the reservoir head to rise while 

the water is also evaporated. It is obvious that the 

operational procedure based on intuition and experience 

can leads to in poor utilization of available energy 

resources and lower power generation  [1]. 

Based on the available information gathered, the 

problem of real-time optimal management of resources 

between KHEPS and JHEPS has not been solved. Despite 

all the research efforts made so far, operators still rely on 

intuitive water release rules to maximise power generation 

regularly. There are no proper scientifically motivated 

techniques for the management of resources between the 

two stations. Most methods being proposed are mere 

parameter optimization technique which are only meant 

for optimizing the static and not dynamic system. The 

system dynamics is also nonlinear, hence most linear 

techniques may not be applicable [3 – 6].   

Therefore, the problem is purely an optimal control 

problem where by a control signal is desired that will force 

the reservoir head at JHEPS to move from an initial point 

to the desired point in finite time and subject to constraints 

imposed by the system dynamics. Unfortunately, many 

problems that are rooted in nonlinear optimal control 

theory do not have computable solutions or they have 

solutions that may be obtained only with a great deal of 

computing effort [8]. Hence this research work considered 

the proper formulation of the optimal control problem and 

provision of a suitable technique for determining the 
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optimal control law.  

2. DIRECT OPTIMAL CONTROL USING A 

CONJUGATE GRADIENT ALGORITHM  

The methods of solving optimal control problem can be 

broadly classified into two: the indirect and the direct 

method. The indirect method applies calculus of variation 

to set up necessary conditions that must be satisfied by the 

optimal control. These conditions produce optimal control 

canonical equations such that their solution ensures that an 

optimum point has been reached.  While using this 

approach, it is usually necessary to calculate the 

Hamiltonian, co-state equations, the optimality and 

transversely conditions [9 – 11].  

The direct methods involve the discretization of the 

state and the control in such a way that the problem is 

converted to a nonlinear optimization problem or nonlinear 

programming problem [12, 13]. It starts by subdividing the 

time interval into 𝑁 > 1 control state:  𝑡0 < 𝑡1 < 𝑡2 <
⋯ < 𝑡𝑁 = 𝑡𝑓. In each of the sub-interval, (𝑡𝑖−1, 𝑡𝑖) 

approximate 𝑢(𝑡) = 𝑢𝑖(𝑡), such that   𝑈(𝑡) =
[𝑢1, 𝑢2, 𝑢3, … . . 𝑢𝑁].  The problem can then be solved using 

an appropriate nonlinear optimization method. 

The optimization technique depends on the problem 

being solved. Popular techniques can be classified into 

two: the gradient based, and the heuristic based. There has 

been no perfect method as each has its own advantages and 

disadvantages. A designer must study these methods to 

know the appropriate one for a given control problem. The 

heuristic based are not widely applicable by engineers as 

the gradient based [14]. Among the popular gradient based 

are the steepest descent and the conjugate gradient 

methods, these two are presented and compared in this 

work. 

In this work, the use of conjugate gradient algorithm to 

solving the direct optimal control was considered. Since 

the algorithm is based on the steepest descent, it is believed 

that it will always yield an optimal control with reduced 

convergence time. It should be noted that there are slight 

modifications to the basic algorithm, among is the 

formulation of the problem such that the performance 

index is differentiable and the method of computing the 

optimal step size at each iteration. 

Conjugate gradient algorithm is a minimization 

technique for function of several variable and for finding 

solution to a simultaneous nonlinear algebraic equation. 

The method was first applied to solve an unconstrained 

optimal control problem by [15]. Later, the method was 

adapted to solve constraint optimal control problem where 

a penalty function is imposed on the constraints on state 

and control [16]. It incorporates the fast characteristics of 

steepest descent method in moving to the optimum but 

with additional modification in ensuring quick 

convergence around the optimum. 

The procedure starts by guessing and initial control 

vector  𝑈(𝑘) and determine the performance index 𝐽(𝑈(𝑘)) 

with the iteration number 𝑘 = 0. Calculate the gradient 

vector 𝑔(𝑘) = 𝛻𝐽(𝑈(𝑘)) and determine the conjugate 

gradient parameter 𝛽(𝑘), where 

𝛽(𝑘) =  
∫ (𝑔(𝑘))2 𝑑𝑡

𝑡𝑓
𝑡0

∫ (𝑔(𝑘−1))2 𝑑𝑡
𝑡𝑓

𝑡0

    (1) 

 

𝑔(𝑘−1) = 1 when k = 0  
 

Calculate the direction of search vector 𝑠𝑘.  

 

𝑠𝑘 = −𝑔𝑘 +  𝛽𝑘𝑠𝑘−1   (2) 

 

𝑠(𝑘−1) = 0 𝑤ℎ𝑒𝑛 𝑘 = 0 
 

Determine the next control vector 𝑈(𝑘+1)(𝑡), where  

 

 𝑈(𝑘+1)(𝑡) =  𝑈(𝑘)(𝑡) + 𝜓𝑚𝑖𝑛 𝑠𝑘  (3) 

 

The optimum step size 𝜓𝑚𝑖𝑛   was computed by performing 

a minimization search on 𝐽( 𝑈(𝑘) +  𝜓 𝑠𝑘). 

Check whether |𝐽(𝑈𝑘+1) − 𝐽(𝑈𝑘)| ≤ 10−𝑛 to stop the 

iteration, where n is a constant. If the stopping criterion is 

not met, increment k by one and repeat the procedure using 

 𝑈(𝑘+1) as the new guess 

2.1 Numerical Solution of the Optimal Control using 

a Conjugate Gradient Algorithm 

Optimal control problem requires the system model 

equation, the performance index and the associated 

constraints. The system dynamical model is the JHEPS 

nonlinear operating head dynamics described by Eq. 4 to 

7. [1] 

 
𝑑ℎ(𝑡)

𝑑𝑡
= − 𝑛

𝐴2

𝐴1
(√2𝑔 )ℎ

1
2⁄  +  

1

𝐴1
(𝑄𝐽 − 𝑄𝐿 − 𝑄𝑠)  (4) 

 

 𝑄𝐽 = 𝑞𝑘 + 𝑄𝑠𝑘 + 𝑄𝐶𝐽     (5) 

 

 𝑢(𝑡) = 𝑄𝐽(𝑡) − 𝑄𝐿(𝑡) − 𝑄𝑠(𝑡)   (6) 

 

where  𝑡 represents time (s), ℎ is the operating head (m) 

and the state variable, 𝑢 is the control signal, 𝑛 represents 

the number of operating units (integer number 1 to 6), 𝐴1 

is the effective surface area of the reservoir, 𝐴2 is the 

effective area of the scroll casing, 𝑔 represents the 

acceleration due to gravity,  𝑄𝐽 is the inflow into JHEPS, 

𝑄𝐿  is the evaporation loss on JHEPS, 𝑄𝑠 is the spillway 

discharge from JHEPS, 𝑞𝑘 represents the total discharge 

from KHEPS tailrace, 𝑄𝑠𝑘 represents the spillway 

discharge from KHEPS, 𝑄𝐶𝐽 is the inflow from catchment 

area between KHEPS and JHEPS and 𝑓 represents a 

nonlinear function. 

Eq. 1 can be written in the standard form as Eq. 7; 

 

ℎ̇(𝑡) = 𝒇(ℎ(𝑡), 𝑢(𝑡),  𝑡)  ;  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (7) 

 

The optimal control problem is the determination of the 

control signal 𝑢(𝑡) to be released from KHEPS (actuator) 

that will force the operating head ℎ(𝑡) of JHEPS to move 

from an initial point ℎ(𝑡0) to a final point ℎ(𝑡𝑓) within a 

given time (𝑡0 → 𝑡𝑓).  

 

Performance Indices (𝑱) 

The Performance Index (𝐽) was selected to accommodate 

and appropriately penalizes deviation from a specified 

head and ensures that the control is bounded. This consist 

of the integral of the square error from the desired 
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operational head as can be seen in Eq. 8. The performance 

index is subject to the system model of Eq. 7 and the 

boundary conditions of Eq. 9 to 11. 

Hence, 

 

       𝐽(ℎ, 𝑢, 𝑡) = 𝑚𝑖𝑛 ∫ {𝐾ℎ(ℎ(𝑡) − ℎ(𝑇))
2

}
𝑡𝑓

𝑡0
𝑑𝑡       (8) 

 

Subject to the system constraints: 

 

ℎ̇(𝑡) = 𝒇(ℎ(𝑡), 𝑢(𝑡),  𝑡)  ;  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓   

     

ℎ(𝑡0) =  ℎ0      (9) 

 

ℎ(𝑡𝑓) = ℎ(𝑇)    (10) 

 

Nonlinear penalties on 𝑈: [𝑈𝑚𝑖𝑛(𝑡), 𝑈𝑚𝑎𝑥(𝑡)]  (11) 

 

where ℎ(𝑇) represents the desired final value for the state 

and  𝐾ℎ is a positive weighing scalar constant.  

The realization optimal control for cascaded Kainji-

Jebba hydroelectric power station was carried out in 

Microsoft EXCEL VBA® programming environment and 

the procedure are presented below. 

Set Up: Let the control vector 𝑈(𝑘)(𝑡) be partitioned within 

the time interval [𝑡0, 𝑡𝑓], where; 

 

  𝜋[𝑡0, 𝑡𝑓] = 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 < 𝑡𝑓 = 𝑡4 ; and 

 

 𝑈(𝑘)(𝑡) = [𝑢1
(𝑘)(𝑡), 𝑢2

(𝑘)(𝑡), 𝑢3
(𝑘)(𝑡), 𝑢4

(𝑘)(𝑡)]𝑇 

 

Step 1: Let 𝑘 = 0.  

Set the initial condition ℎ(𝑘=0)(𝑡) = ℎ0  

Guess values for 𝑈(𝑘=0)(𝑡) from 𝑡0 →  𝑡𝑓. 

Step 2: Numerically solve the nonlinear differential 

equation 𝒇(ℎ(𝑡), 𝑢(𝑡), 𝑡) from  𝑡0 →  𝑡𝑓 to 

obtain ℎ(𝑘)(𝑡). The Adams – Moulton technique 

with Adams–Bashforth as predictor and Runge-

Kutta for starting was used. 

Step 3: Compute the performance index  𝑱(𝑘) =

𝑱(𝑢1
(𝑘)

, 𝑢2
(𝑘)

, 𝑢3
(𝑘)

, 𝑢4
(𝑘)

). The Trapezoidal rule was 

used at this stage. 

Step 4: Choose a perturbation value ∆𝑢 and 

compute  𝑱𝑚
(𝑘)

, 𝑚=1, 2, 3, 4. 

 

 𝐽1
(𝑘)

= 𝐽(𝑢1
(𝑘)

+ ∆𝑢, 𝑢2
(𝑘)

, 𝑢3
(𝑘)

, 𝑢4
(𝑘)

) 

 

 𝐽2
(𝑘)

= 𝐽(𝑢1
(𝑘)

, 𝑢2
(𝑘)

+ ∆𝑢, 𝑢3
(𝑘)

, 𝑢4
(𝑘)

) 

 

 𝐽3
(𝑘)

= 𝐽(𝑢1
(𝑘)

, 𝑢2
(𝑘)

, 𝑢3
(𝑘)

+ ∆𝑢, 𝑢4
(𝑘)

) 

 

 𝐽4
(𝑘)

= 𝐽(𝑢1
(𝑘)

, 𝑢2
(𝑘)

, 𝑢3
(𝑘)

, 𝑢4
(𝑘)

+ ∆𝑢) 

 

Step 4: Compute the gradient vector 𝒈𝑚
(𝑘)

= ∇𝑱𝑚
(𝑘)

, 

 

where 𝒈(𝑘) = [𝑔1
(𝑘)

, 𝑔2
(𝑘)

, 𝑔3
(𝑘)

, 𝑔4
(𝑘)

 ]𝑇   and  

 

 𝑔𝑚
(𝑘)

=
𝐽(𝑘)−𝐽𝑚

(𝑘)

∆𝑢
;  𝑚 = 1, 2, 3, 4 

 

Step 5: Compute the conjugate gradient parameter; 

𝛽(𝑘) =
∫ (𝑔(𝑘))2 𝑑𝑡

𝑡𝑓
𝑡0

∫ (𝑔(𝑘−1))2 𝑑𝑡
𝑡𝑓

𝑡0

,  

 

where  ∫ (𝑔(0))2 𝑑𝑡
𝑡𝑓

𝑡0
= 1 

 

Step 6: Compute the direction of search 𝑠(𝑘) = −𝑔(𝑘) +

𝛽(𝑘)𝑠(𝑘−1);  𝑤ℎ𝑒𝑟𝑒  𝑠(−1) = 0 
 

Step 7: Determine 𝜓𝑚𝑖𝑛
(𝑘)

 by selecting a set of three 

Fibonacci numbers  𝜓1, 𝜓2 and  ψ3, such that 

 

 𝑈𝜓1

(𝑘+1)
= 𝑈(𝑘) +  𝜓1

(𝑘)
𝑠(𝑘) 𝑎𝑛𝑑   𝐽𝜓1

(𝑘)
 

 

 𝑈𝜓2

(𝑘+1)
= 𝑈(𝑘) +  𝜓2

(𝑘)
𝑠(𝑘) 𝑎𝑛𝑑   𝐽𝜓2

(𝑘)
 

 

 𝑈𝜓3

(𝑘+1)
= 𝑈(𝑘) +  𝜓3

(𝑘)
𝑠(𝑘) 𝑎𝑛𝑑   𝐽𝜓3

(𝑘)
 

 

Step 8: Solve for the constants 𝒃 and 𝒄 

   𝒄 =
1

(𝜓1−𝜓3)
 [

(𝐽(𝜓1)−𝐽(𝜓2))

(𝜓1−𝜓2)
−

(𝐽(𝜓2)−𝐽(𝜓3))

(𝜓2−𝜓3)
 ] 

 

    𝒃 =
(𝐽(𝜓1)−𝐽(𝜓2))

(𝜓1−𝜓3)
−

(𝜓1+𝜓2)

(𝜓1−𝜓3)
 [

(𝐽(𝜓1)−𝐽(𝜓2))

(𝜓1−𝜓2)
−

(𝐽(𝜓2)−𝐽(𝜓3))

(𝜓2−𝜓3)
 ] 

 

Step 9: Compute  𝜓(𝑘)
(𝑚𝑖𝑛)

= 𝜓(𝑘) =  −
𝒃

𝟐𝒄
 

 

Step 10: Compute the control vector. 

 

 [𝑈(𝑘+1)]
𝑇

= [𝑈(𝑘)]
𝑇

+ ψ(𝑚𝑖𝑛)
(𝑘)

[𝑠(𝐾)]
𝑇
 

 

Step 11: Check if ‖𝐽(𝑢(𝑘+1)‖ − ‖𝐽(𝑢(𝑘)‖ ≤ 10−𝑛  and   
𝜕𝐽∗

𝜕𝑈∗ ≈ 0, n is a positive constant 

 

If this is true, then  𝑈∗(𝑡) = 𝑈(𝑘+1)(𝑡) and output  ℎ∗(𝑡), 

else,  
let 𝑘 = 𝑘 + 1, 

𝑈(𝑘)(𝑡) = 𝑈(𝑘+1)(𝑡)  and return to step 2 

 End 

3. RESULTS AND DISCUSSION 

The results obtained from computation of optimal control 

by a conjugate gradient method are presented in this 

section. The cases show the realization performed to study 

the potential of conjugate gradient algorithm in solving a 

direct optimal control problem and the performance of the 

technique to ascertain that the solution is optimal. A 

notation is defined for specifying the operating conditions 

under a case being considered, the format is as follows: 

(Number of Machines, Starting head (m), desired final 

head, Number of Days, penalty,). In all computations, a 

stopping criterial of 10−5 was used.  

Computation 1: (5, 25.8, 26.1, 1, NOT PENALIZED) 

Computation 1 described a situation where five (5) 

numbers of Turbo-alternator units are running with an 

operating head at 25.8. It is desired that the operating head 

moves to 26.1 in 24h, the optimal control is the amount of 

inflow required to achieve this. The maximum inflow is 
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Not Penalized. Figure 1 presents the changes in the control 

after each iteration until the last iterations. The algorithm 

suggests a control with high inflow for the first 6 hours and 

decreases the inflow to the minimum in the next six hours. 

The inflow in the third and last six hours can then be 

relatively constant and moderate. This is a scientifically 

motivated policy which is contrary to starting with a low 

inflow and ending with a moderate one. Hence, Fig. 1 

justifies the superiority of scientifically motivated control 

law as to intuition or experience. The optimization is a 

minimization problem; hence the performance index is 

expected to decrease after each iteration. Fig. 2 confirm 

this postulate, if the performance index does not decrease 

with iterations, the computation may be wrong, and the 

final control cannot be optimal. 

Two parameters that are peculiar to the control 

algorithm is the norm of the gradient after each iteration 

and the optimum step size (𝜆).  The conjugate gradient 

algorithm necessitate that these two parameters must 

decrease after each iteration. Fig. 3 and Fig. 4 confirm 

these two necessities to show that the optimal solution is 

acceptable. 

 

 
 

Figure 1.  Control vs Iteration for (5, 25.8, 26.1, 1, NOT 

PENALIZED) 

 

 

 
 

Figure 2. Performance Index vs Iteration for (5, 25.8, 

26.1, 1, NOT PENALIZED) 

 

 

 
 

Figure 3.  Gradient vs Iteration for (5, 25.8, 26.1, 1, NOT 

PENALIZED) 

 

 

 
 

Figure 4.  Optimum Stem Size vs Iteration for (5, 25.8, 

26.1, 1, NOT PENALIZED) 

Finally, the much desire optimal control is shown in Fig. 

5 with      𝑢1 = 6287.1306 𝑚3 𝑠⁄ ,  𝑢2 = 368.7722 m3/s, 

𝑢3 = 1692.9600 𝑚3 𝑠⁄  and finally 𝑢4 =
1725.8464 𝑚3 𝑠⁄ . This was passed into the system model 

equation and Fig. 6 shows that the control can move the 

head from an initial value of 25.8 to the desired value of 

26.1 after 10 iterations. The error between the desired 

(ℎ(𝑇) and computed head t ℎ(𝑡𝑓) is within 2%. 

Computation 2: (5, 25.8, 1, umax=3000 m3/s) 

The optimal control of Fig. 6 required over 6000 𝑚3 𝑠⁄  

in the first six hour, this may not be available form KHEPS. 

Hence a penalty can be imposed on the algorithm such that 

the maximum control cannot be greater than3000 𝑚3 𝑠⁄ . 

This is the case considered in Computation 2 and against 

the Not Penalized Computation 1. In Fig. 7, the optimal 

control decreases gradually after the second partition of 

time. The trajectories of head presented in Fig. 8 presents 

a better rise in the head as compared to the overshoot in 

Figure 6. Hence, it is better to place a penalty on the 

maximum control when computing direct optimal control 

with conjugate gradient method. 
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Figure 5. Optimal Control for (5, 25.8, 26.1, 1, NOT 

PENALIZED) 

 

 
 

Figure 6. Operating Head Trajectories for (5, 25.8, 26.1, 

1, NOT PENALIZED) 

 

Computation 3: (5, 25.5, 2, umax=3000 m3/s) 

Computation 3 presents a situation when the operating 

head is as low as 25.5𝑚, because of the size of the 

reservoir was not feasible to raise the operating head to 

26.1 𝑚 in 24 hours with a maximum inflow of 

3000 𝑚3 𝑠⁄ . In such situation, the time can be changes to 

48 hours with a partitioning of 12 hours. Fig. 9 shows a 

gradual decrease in the optimal control such as to achieve 

the desired trajectory of Figure 10. Control algorithm is 

robust enough to obtain the optimal control for any desired 

head from any operating head. The operator will only need 

to trade the maximum control for duration of time to reach 

the desired head. 

 

 
 

Figure 7. Optimal Control for (5, 25.8, 1, umax = 3000 

m3/s) 

 

 
 

Figure 8. Operating Head Trajectories for (5, 25.8, 1, umax 

= 3000 m3/s) 

 

 
 

Figure 9. Optimal Control for (5, 25.5, 2, umax=3000 m3/s) 
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Figure 10. Operating Head Trajectories for (5, 25.5, 2, 

umax=3000 m3/s) 

Computation 4: (3, 25.8, 1, umax=3000 m3/s) 

The potential of the algorithm was also checked for a 

condition where the number of operating machines reduces 

to three. Fig. 11 and 12 presents the optimal control and 

head trajectory under such condition. A gradual decrease 

was observed in the optimal control from the first-time 

interval to the last interval. 

 

 

Figure 11. Optimal Control for (3, 25.8, 1, umax=3000 

m3/s) 

 

 

 

Figure 12. Operating Head Trajectories for (3, 25.8, 1, 

umax=3000 m3/s) 

Computation 5: (3, 25.8, 1, umax=2500 m3/s) 

From Fig. 7, 9 and 11, it can be observed that the first 

optimal control equals the penalized value. If the operating 

machines reduces from 5 units to 3 units, it is also possible 

to reduce the penalized value to 2500m/s. This is the case 

presented in Computation 5 and the results are shown in 

Fig. 13 and 14. The head rises smoothly within 24 hours 

without unnecessary overshoot and with a smaller number 

of iterations. 

 

Figure 13. Optimal Control for (3, 25.8, 1, umax=2500 

m3/s) 
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Figure 14:  Operating Head Trajectories for (3, 25.8, 1, 

umax=2500 m3/s) 

3. CONCLUSION 

The optimal control of the cascaded Kainji-Jebba 

hydroelectric power station based on conjugate gradient 

was successfully carried out. The results show that a direct 

optimal control of the operating head of JHEPS is possible 

using conjugate gradient approach. The algorithm is 

flexible to handle several operating units from 1 to 6 and 

available control release from KHEPS. Hence, whenever a 

release is required to raise the head of JHEPS to nominal 

level, the amount required form KHEPS can be computed 

for a stipulated number of times. It is also possible for this 

control algorithm to be running in a real time digital 

controller such that the head remain constant. The work is 

recommended for use by operators of the station and 

support for the development of the physical controller is 

encouraged. 
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