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Abstract: Various load prediction techniques have been proposed to predict consumer load which represents the activities of 

the consumer on the distribution network. Usually, these techniques use cumulative energy consumption data of the consumers 

connected to the power network to predict consumer load. However, these data fail to reveal and monitor the activities of 

individual consumer represented by the consumer load consumption pattern. A new approach of predicting individual 

consumer load based on autoregressive moving average model (ARMA) is proposed in this study. Sub- optimal technique of 

parameter estimation based on Prony method was used to determine the model order of the ARMA models ARMA (10, 8), 

ARMA (8, 6) and ARMA (6, 4).  ARMA (6, 4) was found to be appropriate for consumer load prediction with an average 

mean square error of 0.00006986 and 0.0000685 for weekday and weekend loads respectively. The energy consumption data 

acquired from consumer load prototype for one week, with 288 data points per day used in our previous work, was used and 

5-minute step ahead load prediction is achieved. Furthermore, a comparison between autoregressive AR (20) and ARMA (6, 

4) was carried out and ARMA (6, 4) was found to be appropriate for consumer load prediction. This facilitates the monitoring 

of individual consumer activities connected on the power network.  
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method. 
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1. INTRODUCTION 

Electric load prediction has largely been used for energy 

management at generation and transmission levels, aside 

that it facilitates the estimation of future electricity demand 

based on the past records and helps the utilities in decision 

making and operational planning [1]. It also influences the 

consumers’ decision in the management of energy such as 

load shedding and control of peak loads. However, the data 

used for the predictions are aggregate energy consumption 

data of the consumers connected to the power network. 

This is not unconnected to the fact that the load 

consumption of individual consumers are stochastic and 

volatile, thus, making individual consumer load prediction 

to be difficult [2].  Moreover, aggregate data are short of 

revealing individual consumer energy pattern which is 

essential to monitoring individual consumers’ activities on 

the distribution network.  

Numerous techniques of predicting electricity load 

consumption by the consumer have been recently reported 

[3][4][5]. Statistical methods which include multiple linear 

regression, exponential smoothing, time series, state space, 

and Kalman filter have been proposed [1][6][7].  Taylor 

[8] evaluated methods of very short term load prediction 

using British electricity demand load data. Singh, et al. [9] 

proposed seasonal autoregressive moving average 

(SARMA) for home peak load and the study noted that 

ability to predict the stochastic activities of the consumer 

and routines are more significant for home load prediction. 

Electricity load forecasting proposed by Koprinska, et al. 

[10] using autocorrelation feature selection and machine 

learning algorithm are considered as global model that 

predicts the load for all days of the week and local model 

that predict load for each day of the week. The models 

were used to analyze electricity data obtained within two 

years from the State of New South Wales in Australia. 

Trudnowski, et al. [11] proposed a strategy for developing 

a very short-term load prediction using slow and fast 

Kalman estimators and an hourly forecaster load 

prediction for power system automatic generation control. 

The Kalman model parameters were determined by 

matching the frequency response of the estimator to load 

residuals.  

Application of artificial intelligent paradigm such as 

artificial neural network (ANN), fuzzy logic (FL) and 

knowledge based expert systems have been proposed for 

load prediction [12][13][14][6]. A method of very short-

term loads forecasting using wavelet neural networks with 

data pre-filtering 1-h into the future in 5-min steps 

proposed by Guan, et al. [15] used spike filtering technique 

to detect spikes in load data. The method removes spikes 

in real-time from the data before the load is decomposed 

into multiple components at different frequencies, where 
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separate neural networks are applied to capture the features 

of individual components. Yang, et al. [16] proposed fuzzy 

neural system (FNS) for very-short-term electric load 

prediction based on chaotic dynamics reconstruction 

technique. Hybrid model of similar day and neural network 

for load forecast ranging from 15 minutes to few hours was 

proposed by Fok and Vai [17].  

Autoregressive (AR) model has been used for consumer 

load prediction and electricity theft identification in our 

earlier work [18], however, one of the setback of the AR 

model is in the selection of appropriate model parameters 

which is essential to using the model as a predictor. 

Besides, the estimated model order is always high. To 

overcome this problem autoregressive moving average 

(ARMA) model based on Prony’s technique is proposed in 

this study. This will overcome higher model order 

selection on one hand and predict both the valley and peaks 

of the consumer data on the other hand.   This study 

proposes a new approach of forecasting individual 

consumer load which could be employ in the monitoring 

of the activities of such consumer on power system 

network using ARMA model.   

2. METHODOLOGY   

One week data acquired from the Consumer Load 

Monitoring Prototype (CLMP) constructed at the 

Mechatronics Laboratory, International Islamic University 

Malaysia, for the purpose of studying the activities of 

consumers on power network was used in this study. The 

construction details and data acquisition procedure have 

been well-explained and presented [19]. Typical consumer 

loads representing a real life situation of house hold 

electricity consumption was connected to the CLMP and 

the data acquisition was carried out via LABVIEW 

hardware (National Instrument, USA) device linked to the 

PCI 6420E channel in the computer. The data acquired was 

logged directly into the computer and stored for further 

analysis 

2.1 Autoregressive Moving Average 

Time series data acquired from the CLMP is assumed to be 

generated from a linear filter excited by a white noise 

which can be expressed as  
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where y(n) and x(n) are the output and input signals 

respectively, while ak bk, p, and q are the system 

parameters. Analysis of Equation (1) leads to three 

different models: autoregressive model (AR), moving 

average (MA) model and autoregressive moving average 

model (ARMA).  

The transfer function of the liner system Equation (1) 

can be expressed as  
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where )(zB and )(zA are linear and inverse filter 

respectively. Depending on the characteristic of the filter, 

three types of linear prediction models exist, namely 

autoregressive moving average (ARMA) model, 

autoregressive (AR) model where )(zB =1and moving 

average (MA) model where )(zA =1.  

Estimation of the ARMA model parameter is fundamental 

to its usage as a predictor. Optima techniques such as  

maximum likelihood method (MLM) have been used to 

estimate the ARMA parameters [20]. However, this 

method involves nonlinear equations that are difficult to 

solve and moreover the computational complexity of the 

MLM algorithms limit their practical application.  

Suboptimal methods are developed in order to improve the 

computational difficulties that are associated with MLM 

parameter estimation. The reduction in computational 

complexity is linked to the relationship between the 

autocorrelation function of and the coefficients of the 

ARMA process. One of the most popular suboptimal 

techniques is Prony technique. This is based on estimation 

of the AR parameters first by solving the modified Yule 

Walker equations and then uses these estimates in deriving 

the MA parameters.   

 

2.2 Prony Technique 

The error generated form linear system illustrated in Figure 

1 is expressed as  

)()()( nhnyne      (3) 

 

Figure 1 Linear shift-invariant system 

if Equation (3) is expressed in frequency domain 
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Multiplying both sides of (4) by  )(zAp
 then a new error is 

expressed as  
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The objective is to minimize the error, Equation (6) given 

as 
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to zero, then, 
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Substituting (6) into (8), leads to  
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or equivalently, 
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3. RESULT AND DISCUSSION  

3.1 Consumer Load Consumption Pattern  

The average load for a typical week using daily data of 288 

data points for one week is discussed. The average load 

consumption per day, at 5 minutes interval, is based on a 

typical weekday, public holiday and weekend loads 

consumption patterns. The public holiday loads and the 

weekend load pattern are similar, since these represent 

situations where the consumer is expected to be at home. 

Thus, the loads are categorized into two classes viz: the 

weekdays and weekends load, respectively.  The load 

consumption for the weekdays: Monday to Friday is shown 

in Figure 2 to Figure 6 while the load for the weekend; 

Sunday and Saturday is illustrated in Figure 7 and Figure 

8. 

Generally, the pattern of the weekday load consumption 

implies that the consumer load demands during the early 

morning and late evening are high. For instance, Figure 2 

shows higher load consumption values between 6 hour and 

7 hour with peak at 0.2336kWh. Furthermore, peak value 

of 0.2529 kWh was obtained between 20 hour and 21 hour. 

Similarly, Figure 3 shows higher load consumption values 

between 5 hour and 6 hour; 20 hour and 21 hour; with 

peaks 0.2159 kWh and 0.2732 kWh respectively. Higher 

load on Wednesday 13th occurred between 6 hour and 8 

hour with peak 0.2200kWh while 0.2754kWh was the peak 

load observed between 19 hour 30 minutes and 22 hour in 

the evening as shown in Figure 4.  

In addition, peak load recorded between 6 hour and 8 

hour as well as between 19 hour and 21 hour 40 minutes 

on Thursday, 14th are 0.2878kWh and 0.2503kWh 

respectively as shown in Figure 5. While that of Friday, 

15th occurred between 6 hour and 7 hour at 0.2434kWh; 

and between 19 hour and 22 hour stands at 0.2502kWh as 

illustrated by Figure 6. The high load demands at these 

peak periods of the day occurred due to the early morning 

and late evening preparations which include cooking of 

food, switching ON of appliances such as television, 

computers and iron.   

 

However, load consumption between 8 hour and 19 hour 

was relatively low and stable below 0.017kWh for all 

weekdays reported. This can be attributed to the absence 

of the consumer within this period, moreover, most 

appliances are switched OFF except the refrigerator. The 

weekday load consumption between 1 hour and 5 hour; 21 

hour and 24 hour, fluctuated between 0.1kWh and 

0.017kWh respectively. The fluctuation is as a result of 

'ON' and 'OFF' cycle of the air conditioner and the 

refrigerator from late night till the early morning.   

 

Figure 2. Consumer Load Consumption on Monday 

 

Figure 3. Consumer Load Consumption on Tuesday 

 

Figure 4. Consumer Load Consumption on Wednesday 

 

Figure 5. Consumer Load Consumption on Thursday 
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Figure 6.Consumer Load Consumption on Friday 

Furthermore, Figure 7 and Figure 8 illustrate the 

weekend load consumption for Sunday and Saturday 

respectively. Unlike the weekday loads, where higher 

values occurred between the 6 hour to 8 hour in the 

morning and the 19 hour to 22 hour in the evening. The 

load consumption during weekend is higher between the 8 

hour 20 minutes and 9 hour 55 minutes. This trend is also 

observed at 20 hour 10 minute and 21 hour 55 minute for 

Sunday while that of Saturday is between the 8 hour 10 

minute and 10 hour in the morning and between 19 hour 

55 minute and 22 hour 40 minute in the evening. The load 

consumptions for weekends are lower within these periods 

when compared with the load consumption on weekdays. 

This is probably due to the fact that the consumer is not in 

anticipation of going to work early and moreover, early 

morning preparation are delayed to convenient time during 

the day.  

In addition, load consumption between the 8 hour and 

19 hour that was stable below 0.017kWh for weekdays 

differs from the weekends load consumption within the 

same period. Whereas the weekdays load consumption is 

lower and relatively constant, the weekends load fluctuates 

between 0.01458kWh and 0.2976kWh within these 

periods. The peak of 0.2976kWh and 0.1629kWh between 

8 hour 20 minutes and 9 hour 55 minutes; and between 15 

hour and 16 hours was recorded respectively on Sunday as 

shown in Figure 7.  On the other hand, 0.2353kWh peak 

value occurred between 8 hour and 10 hour, while peak 

value of 0.2113kWh between 15 hour and 16 hour was 

recorded for Saturday as shown in Figure 8. These times 

correspond to the cooking periods which require more load 

demands. Furthermore, late nig]ht and early morning 

consumptions are similar to weekdays in terms of pattern 

and load consumption.   

 

 

Figure 7. Consumer Load Consumption on Sunday 

 

Figure 8. Consumer Load Consumption on Saturday 

3.2 Appropriate Model Order Selection of for 

Consumer Load 

Having acquired the daily consumer data consumption and 

plotted as indicated in Figure 1 to Figure 8, the prediction 

of the load consumption was then carried out in order to 

monitor the consumer activities which could be used to 

prevent the stealing of electricity. AR model was used to 

predict the consumer load using the acquired data and the 

results has been presented [18]. However, the selection of 

appropriate model order which is essential to using AR 

model as a predictor is difficult and led to higher model 

order selection. Nevertheless, to select ARMA model 

parameters for load prediction, the parameters estimated 

for AR model in [18] was used as a basis for obtaining the 

correct model order for ARMA model. Once the AR model 

order is obtained, the MA is estimated by fine tuning the 

model order using trial and error approach. In the process, 

different model orders such as ARMA (10, 8), ARMA (8, 

6) and ARMA (6, 4) were investigated after appropriate 

fine tuning. Furthermore, the mean square error of these 

models was carried out to see which order is preferred. 

Naturally, it is impossible to obtain zero error in the 

predicted values however, a good predictor would require 

minimum model order and accurate coefficients in order to 

obtain very small error. The result of the MSE for a typical 

week is illustrated in Table 1. 

Generally, the MSE for ARMA (8, 6) and ARMA (6, 4) 

are lower than ARMA (10, 8) meaning they are better for 

consumer load prediction. In addition, the MSE of ARMA 

(8, 6) is observed to be lower in some days such as day 13 

and day 16 when compared to ARMA (6, 4). However, 

since the MSE of both ARMA (8, 6) and ARMA (6, 4) are 

very close and to prevent overrepresentation of data due to 

parsimony, ARMA (6, 4) with the lower model order was 

preferred and used in this study for the consumer load 

prediction. The consumer load prediction results for a 

typical weekday and weekend for ARMA (10, 8) and 

ARMA (8, 6) are shown in Figure 9 (a-b) and Figure 10 (a-

b) while a one-week prediction based on ARMA (6, 4) are 

illustrated in Figure 11(a-g) respectively. 
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Table 1. Mean Square Error for ARMA Model Prediction. 

 

 
Mean 

Square Error 

Maximum 

Error 

Minimum 

Error 

Sunday    

ARMA 

(10,8) 
0.0000656 0.0285 -0.0327 

ARMA 

(8, 6) 
0.0000611 0.0284 -0.0362 

ARMA 

(6, 4) 
0.0000520 0.0261 -0.0275 

Monday    

ARMA 

(10,8) 
0.0000544 0.0121 -0.0275 

ARMA 

(8,6) 
0.0000566 0.0131 -0.0268 

ARMA 

(6, 4) 
0.0000484 0.0139 -0.0233 

Tuesday    

ARMA 

(10,8) 
0.0000778 0.0205 -0.0437 

ARMA 

(8, 6) 
0.0000745 0.0203 -0.0435 

ARMA 

(6, 4) 
0.0001482 0.0173 -0.0471 

Wednesday    

ARMA 

(10,8) 
0.0000270 0.0065 -0.0222 

ARMA 

(8, 6) 
0.0000259 0.0052 -0.0227 

ARMA 

(6, 4) 
0.0000278 0.0033 -0.0230 

Thursday    

ARMA 

(10, 8) 
0.0002116 0.0086 -0.0492 

ARMA 

(8, 6) 
0.0001986 0.0035 -0.0462 

ARMA 

(6, 4) 
0.0000954 0.0202 -0.0447 

Friday    

ARMA 

(10, 8) 
0.0001477 0.0055 -0.0393 

ARMA 

(8, 6) 
0.0001340 0.0055 -0.0384 

ARMA 

(6, 4) 
0.0000295 0.0056 -0.0189 

Saturday    

ARMA 

(10, 8) 
0.0001174 0.0315 -0.0503 

ARMA 

(8, 6) 
0.0000720 0.0324 -0.0480 

ARMA 

(6,4) 
0.0000850 0.0323 -0.0488 

 

(a) ARMA (10, 8) Model Prediction for Sunday 

 

(b) ARMA (10, 8) Model Prediction based for Thursday 

Figure 9. 

 

(a) ARMA (8, 6) Model Prediction for Sunday 

 

(b) ARMA (8, 6) Model Prediction for Thursday 

Figure 10 

 

(a) ARMA (6, 4) Model Prediction for Sunday 
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(c) ARMA (6, 4) Model Prediction for Tuesday 

 

(d) ARMA (6, 4) Model Prediction for Wednesday 

 

(e) ARMA (6, 4) Model Prediction for Thursday 

 

(f) ARMA (6, 4) Model Prediction for Friday 

 

(g) ARMA (6, 4) Model Prediction for Saturday 

Figure 11. ARMA (6, 4) Model Prediction for a Week 

As expected, the ARMA (6, 4) followed the consumer load 

both at the peak and the valley. One of the advantages of 

the ARMA (6, 4) model is that the model order as well as 

the model coefficients required to predict the consumer 

load are smaller when compared with ARMA (10, 8) and 

ARMA (8, 6). Since it is expected to be implemented on 

line, the computational time and the volume of data will be 

minimal. 

3.3 Comparison between ARMA Model Orders  

Figure 12 and Figure 13 depict the compared results 

obtained when a typical weekend and weekday data of 

consumer load were predicted based on ARMA (10, 8), 

ARMA (8, 6), ARMA (6, 4) and the actual data. 

Furthermore, Figure 14 (a -c) and Figure 15 (a-b) show the 

zoomed version of different hours of Figure12 and 13 

respectively, for clarity.  Though the three ARMA models 

were able to predict the power consumed, however, 

ARMA (6, 4) was able to follow the load pattern better 

than other models as illustrated in Figure 14 (a-c) for 

weekend and Figure 15 (a-b).  

 

Figure 12. Comparison of weekend consumer load 

prediction based on ARMA (10, 8), ARMA (8, 6) and 

ARMA (6, 4). 

 

Figure 13. Comparison of weekday consumer load 

prediction based on ARMA (10, 8), ARMA (8, 6) and 

ARMA (6, 4). 
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(a) Zoom version of 2 hour and 5 hour 

 

(b) Zoom version of 14 hour and 17 hour 

 

(c) Zoom version between 19 hour and 23 hour 

Figure 14. 

 

(a) Weekday zoom version between 4 hour and 9 

hour 

 

(b) Weekday Zoom version of 19 hour and 24 hour 

Figure 15. Comparison between ARMA (6, 4) and AR 

(20) Models load predictions. 

3.4 Comparison between AR (20) and ARMA (6, 4) 

Models Prediction. 

The load prediction using AR (20) and ARMA (6 4) for a 

typical weekday and weekend is illustrated in Figure 16 (a-

b) and Figure 17 respectively. Though the AR model is 

able to predict the power consumed, however, the ARMA 

(6, 4) was able to predict both the peaks and the valley as 

show between interval 0 and 500th minute as well as 

between 1125 minute and 1440 minute.  

 

(a) AR (20) Model 

 

(b) ARMA (6, 4) Model 

Figure 16. Weekday Model Comparison 

 

(a) AR (20) Model 

 

(b) ARMA (6, 4) Model 

Figure 17. Weekend Model Comparison 
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4. CONCLUSION 

ARMA (6, 4) model has been used to predict consumer 

load in this study.  This facilitates the monitoring of 

individual consumer activities connected on power 

distribution network. Average energy consumption data 

acquired from consumer load prototype within 24 hours 

and having 288 data points was modeled. Consequently, 5-

minute step ahead load prediction was achieved.  

Furthermore, comparison between three different ARMA 

models; ARMA (10, 8), ARMA (8, 6) and ARMA (6, 4) 

show that ARMA (6, 4) prediction is preferable in that it 

was able to follow the load pattern better than other 

models.  In addition, ARMA (6, 4) model as a predictor is 

accurate when compared with AR (20) used in our earlier 

work. It has lower model coefficients on one hand and 

predict the valley and peaks consistently than AR model. 
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