
VOL. 19, NO. 1, 2020, 33-40 
www.elektrika.utm.my 
ISSN 0128-4428 

 

    

33 

Induction Motor Stator Fault Classification Using 
PCA-ANFIS Technique 

Ayodele Isqeel Abdullateef*, Mohammed Faiz Sanusi, Olabanji, Sunday Fagbolagun  

Department of Electrical and Electronics Engineering, University of Ilorin, Nigeria 
*Corresponding author: abd_lateef.aii@unilorin.edu.ng, Tel: +2348086215103 

Abstract: Induction motors are used commonly for industrial operations due to their ease of operation coupled with ruggedness 
and reliability. However, they are subjected to stator faults which result in damage and consequently revenue losses. The 
classification of stator fault in a three-phase induction motor based on Adaptive neuro-fuzzy inference system (ANFIS) in 
combination with Principal Component Analysis (PCA) is proposed in this study. A burnt motor was redesigned and rewound 
while data acquisition was developed to acquire the current and vibration data needed for the fault classification. The data 
feature extraction for the fault classification was carried out by PCA while backpropagation and the least-squares algorithms 
were used for the training of the data. Three principal components, which severs as input for the ANFIS, were used to represent 
the entire data. The ANFIS was tested under four different paradigms, while the membership function type and epoch number 
were changed at each instant. The ANFIS model based on the triangular membership function and 10 epoch number was found 
appropriate and used, bringing the accuracy of the model to over 99% with the lowest ANFIS training RMSE error of      
1.1795e-6. The ANFIS validation results of the fault classification show that the results are accurate, indicating that the PCA-
ANFIS technique is applicable in fault diagnosis and classification of stator faults in induction motors. 
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1. INTRODUCTION 
Induction motors are one of the most widely used electrical 
machines in the industries because of their low cost, 
ruggedness, low maintenance and reliability. However, 
despite their reliability, they are still very susceptible to 
failures such as stator faults which accounts for 30-40% of 
failures in induction motors and from which stator winding 
failure is the most common [1]. When these faults occur 
and are undetected early enough, they lead to severe 
damage of the machine and a high loss especially in the 
industries where an abrupt stop in operation and machine 
downtime constitutes a huge loss of revenue. Therefore, 
early detection of this fault is of importance in order to 
reduce the extent of damage incurred.  

Usually, fault detection in induction motors is carried 
out manually whenever the circuit breaker or fuse which 
protects the motor is cut off or during maintenance. Thus, 
to reduce the cost of repair and replacement, condition 
monitoring or real-time monitoring of the motor is 
necessary. Condition monitoring is the process of 
observing a parameter or parameters in machinery for the 
purpose of identifying changes that could indicate a 
developing fault. The advantages of condition monitoring 
in machines including but not limited to an increase in 
machine availability, operating efficiency, reduction in 
overall maintenance cost and safety. In addition, it reduces 
consequential damages, spare parts inventories, 
replacements and increases lifespan. An effective 

condition monitoring scheme provides warning and 
predicts the faults at the early stages before the machine is 
damaged. It also obtains information on the machine in the 
form of data, which is processed through various 
techniques for necessary actions from the operators before 
it catastrophically fails. However, condition monitoring 
needs constant human interpretation.  

Recently, a number of soft computing diagnostic 
techniques such as Neural network, expert system, 
adaptive neuro-fuzzy inference system, genetic algorithm 
and fuzzy logic have been proposed to identify and 
automate the diagnostic process. These techniques have 
become popular and widely used among other 
conventional techniques because they are tolerant of 
imprecision, uncertainty, partial truth and approximations. 
Moreover, they are easy to modify, extend and thus 
improve their performance [2]. For instance, Artificial 
Intelligence-based stator winding fault estimation in a 
three-phase induction motor using the fuzzy logic system 
has been proposed [3]. The study detects the short-circuit 
fault in a three-phase induction motor based on the 
magnitude of the stator current. The system makes use of 
knowledge-based rules, thus, eliminating the need for 
detailed modelling. Rodríguez and Arkkio [4] proposed the 
fuzzy logic for the detection of stator winding fault in an 
induction motor. The RMS values of the stator three-phase 
current and the variance were applied as the input of the 
developed fuzzy logic model under different load profiles.  
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The developed fuzzy model recorded high accuracy in the 
detection of the motor condition in the presence of noise. 
Martins, et al. [5] proposed an unsupervised neural-
network-based algorithm for on-line diagnosis of three-
phase induction motor stator fault using the stator three-
phase current components as the input parameters. The 
principal components of the stator current were extracted 
using a Hebbian based unsupervised neural network. This 
approach was used to make decisions on the location of the 
fault.  

A neural network approach for the automatic detection 
and location of an inter-turn short circuit fault in the stator 
windings of an induction motor has been proposed [6]. The 
backpropagation technique was used to train the input data 
to the neural network which was acquired from the phase 
shift between the line current and the phase voltage. The 
output of the network is set to either a ‘one’ or a ‘zero’ 
whenever a short circuit fault is detected on any of the three 
phases.  

Adaptive Neuro-Fuzzy Inference System (ANFIS) is 
another soft computing technique that has been widely 
used in motor faults classification. This is not unconnected 
with the fact that it integrates both the neural network and 
fuzzy logic [7]. Besides, it does not involve mathematical 
modelling and primary knowledge of the motor and its 
performance and accuracy can be improved when 
combined with other methods [8]. Dash and Subudhi [9] 
proposed the use of the ANFIS system to detect stator 
inter-turn fault. The study compared the ANFIS 
performance with a multi-layer perceptron neural network 
(MLPNN). The fault detection and location are based on 
monitoring the three-phase shifts between the line currents 
and the phase voltage of the machine.  

Furthermore, Jose and Jose [10] made use of Park's 
Vector approach employing Fuzzy logic and Adaptive 
Neuro-Fuzzy Inference System (ANFIS) to diagnose 
induction motor faults. The study carried out different 
simulations corresponding to some faults like stator open 
phase and short-circuit faults. Yilmaz and Ayaz [7] 
proposed an ANFIS system to detect a bearing fault in 
induction motors. The study used three ANFIS systems 
that take current, temperature and vibration data as inputs 
and also the condition of the motor as the output. The three 
ANFIS systems gave good performances but the best 
performance was achieved when the three signatures are 
used simultaneously. Other proposed studies on the 
detection of induction motor faults using the soft 
computing technique are [11]–[14].  Generally, the data 
used in these techniques require feature extraction in order 
to avoid dimensionality during the process of learning.  

One of the methods used in feature extraction is 
Principal Component Analysis (PCA). It has been applied 
in combination with ANFIS in the measurement system for 
monitoring product quality in a coating industry, a high 
training accuracy and lower training time was achieved 
compared to ordinary ANFIS [15]. The hybrid PCA-
ANFIS was also employed in Modelling the relationship 
between ground surface settlements induced by shield 
tunnelling and the operational and geological parameters 
[16]. However, the application of PCA in the field of 
machine fault analysis is still very few. In this paper, the 

integration of PCA and ANFIS is proposed for the 
classification of stator faults of an induction motor. The 
PCA is selected for the feature extraction process due to its 
reliability in the extraction of pertinent features and also 
due to its non-complex form. The ANFIS is then used as a 
classifier due to its high learning accuracy and scalability. 
[17].  

2. METHODOLOGY  

2.1 Data Acquisition  
The data used in this study was acquired from 
experimental set up in the laboratory at the Department of 
Electrical and Electronics Engineering, University of 
Ilorin. The major components of the experiment include a 
three-phase induction motor with extended stator windings 
terminals for fault simulation, hall effect sensors 
(ACS712) for stator current data acquisition, a 
piezoelectric sensor for vibration data and Arduino Uno 
board. The setup is as shown in Figure 1. The types of fault 
considered are the stator inter-turn faults on each phase and 
phase to phase short circuit faults. A program was written 
in the Arduino IDE using the C++ programming language 
for the microcontroller to read data from the sensors. The 
system acquires both the motor stator currents and 
vibration data at a sampling rate of 300Hz. Data acquired 
under each fault condition and normal condition were then 
stored and used for the fault classification in this study. The 
development of data acquisition details can be found in 
[18].  

 

Figure 1. Experimental Setup 

2.2 Feature Extraction 
The large quantity of data acquired from the current and 
vibration sensors are ordinarily of high dimensionality and 
consists of noise and redundant features. The application 
of these raw data to the classification model will greatly 
reduce the accuracy of the classifier. Therefore, feature 
extraction of the data was carried out in order to eliminate 
the noise and select the significant and pertinent features 
for effective fault classification performance. This was 
achieved using PCA.  The central idea is to reduce the 
dimensionality of a data set such that it contains a lot of 
correlated variables while retaining as much as the 
variations present in the original data set. This is achieved 
by transforming the original data to a new set of variables, 
the Principal Components (PCs) which are uncorrelated 
and ordered in such a way that the initial few retain most 
of the variation present in the original data [19]. PCA is 
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able to obtain the main directions of the original data 
sample on the space-vector [5][20]. The PCA process flow 
chart is depicted in Figure 2. 

 
Figure 2. PCA Flowchart 

The data are represented in matrix form as expressed in 
equation 1 with the first three columns representing the 
stator currents and the last column representing the 
acquired vibration data. 
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The number of rows of matrix A is the number of 
significant samples under study which in this case, consists 
of the three-phase stator currents and the vibration signal. 
The first sample of matrix A will be 

0 0 0 0[ ( )  ( )  ( )  ( )]a b ci t i t i t v t  

where 0t  represents the initial time and tΔ   represents the 

time interval. Linearly transforming the matrix A  into a 
new matrix B  of equal dimension m n× , as shown in 
equation (2). 

*B Z A=    (2) 

where, Z is a matrix of dimension m m× . 
 
Normalisation is a step of the PCA technique where the 

mean of the original data matrix is calculated and 
subtracted from the mean for calculating the PCs as shown 
in equation 3 [21]. 
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the covariance matrix of Awith dimension m m× is 
expressed as  
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Each element of the covariance matrix AC  represents all 
the possible pair of covariance and all diagonal elements 
represents the variance and the non-diagonal elements of 
the matrix are the covariance [21]. 

The value of Z has to be such that the covariance matrix 

BC  becomes a diagonal matrix as expressed in equations 
5. 
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where Y is of dimension m x m. 
 
The first Principal Component retains the greatest amount 
of variation in the sample. 

 

2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)  
Adaptive neuro-fuzzy inference system is a hybrid 
algorithm that combines the fuzzy logic inference system 
and the neural network architecture. It comprises a five-
layer feed-forward structure which makes the ANFIS 
system have a good learning and inference capability [22].  
Figure 3 shows the architecture of an ANFIS system 
having two inputs and one output and m-rule. 
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Figure 3. ANFIS Architecture 

x  and y  are the inputs while f  is the output consisting 
of fixed nodes and adaptive nodes, represented by the 
circle and squares respectively. The Sugeno type fuzzy 
system is used where the fuzzy rules are of the form: 

Rule 1:If x  is 1A and y  is 1B ,then 
1 1 1 1f p x q y r= + +      (6) 

 Rule 2: If x  is 2A  and y  is 2B , then 
2 2 2 2f p x q y r= + +   (7) 

Layer 1: Every node i  in this layer is an adaptive node 
with a node function  
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where  
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x  = input to node i  

iA = linguistic label associated with this node function. 

iO  = Membership function of iA  and it specifies the 

degree to which the given x    satisfies the quantifier iA  

Using the bell-shaped membership function ( )Ai xµ  with 
a maximum equal to 1 and a minimum equal to 0 for the 
ANFIS architecture. 

 2
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where { }, ,i i ia b c  are the parameter set.  
 
The bell-shaped functions vary as the values of these 
parameters change, thus exhibiting various forms of 
membership functions on the linguistic label iA . In fact, 
any continuous and piecewise differentiable functions, 
such as commonly used Gaussian, trapezoidal or triangular 
shaped membership functions are also qualified candidates 
for node functions in this layer. 
 
Layer 2: Every node in this layer is a fixed node labelled 
Π . The output of this layer is the product of all the 
incoming signals as shown in equation;  

 2, ( ). ( ),    
i ii i A BO w x yµ µ= =               (10) 

where 1, 2i =   
Each node represents the firing strength of the rule.  
 
Layer 3: Every node in this layer is a fixed node labelled 
N . The ith node calculates the ratio of the ith rule’s firing 

strength to the sum of all rule’s firing strengths as 
expressed in equation 11. 

 3,
1 2

,  i
i i

w
O w

w w
= =

+
               (11) 

where 1, 2i =   
The outputs are called the normalised firing strengths. 
 
Layer 4: Every node i  in this layer is an adaptive node 
with a node function: 

 4,1 ( ) i i i x i iO w f w p q y r= = + +           (12) 

where  

iw  is the normalised firing strength from the third layer.

{ }, ,i i ip q r  is the parameter set of this node. 
These are referred to as the consequent parameters. 
 
Layer 5: The single node in this layer is also a fixed node 
labelled∈, which compute the overall output as the 
summation of all incoming signals. 

5,1
i i i

i i i
i i

w f
O w f

w
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             (13) 

 
The acquired data were transformed using the PCA 

technique and then normalised. The normalised principal 
components were used as the input of the ANFIS model 
while the output is the machine stator fault type. The fault 
conditions are classified into Normal operation, Yellow 
phase Inter-turn fault, Blue phase Inter-turn fault, Red 
phase inter-turn fault, Blue-red phase short, Yellow-red 
phase short and Blue-Yellow phase short circuit. The 
Adaptive Neuro-fuzzy inference system model generates 
the fault crisp rules that are used for further decision 
making. The ANFIS model was developed in MATLAB 
2018 environment using the normalised principal 
components designated as PC1, PC2 and PC3. These 
inputs are transformed into triangular membership 
functions. 

3. RESULTS AND DISCUSSION 

3.1 Feature Extraction of the Acquired Data 
The complete data set of the 482 acquired samples are 
compressed and de-noised using the PCA technique. The 
cumulative sum of the singular values is plotted on a stair 
plot to determine the extent of data represented by each 
principal component as shown in Figure 4. 

 
Figure 4. Plot of the cumulative sum 

It is observed in Figure 4 that at PC 3, about 98% of the 
data are well-represented of the four generated principal 
components. therefore, only the first three PCs were used 
in this analysis.  The fourth PC was regarded as the noise 
component of the data set because it contains the least 
representation of the original data with about 3%.  The new 
data set, which is a 482 by 3 matrix, is stored in the 
MATLAB variable “a”. It is observed that the new 
compressed data matrix still has a set of 482 samples but 
this time with just three columns as against the original 
four columns of data. A sample of the new data set after 
PCA analysis under different conditions is shown in Table 
1. 
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Table 1. Data sample 

 

 

3.2 Feature Classification  
The training of the ANIFS was done using the grid 
partition method. The training data is divided into three 
sets, a set was used to train the ANFIS model, while 
another is used as the checking data and the final set is used 
as the testing data which were not part of the training data 
set.  Different membership functions such as triangular, 
generalised bell, Gaussian curve and Gaussian curve 2 as 
shown in Tables 2 to 5 were used for the training of the 
ANFIS model. 

 
Table 2. ANFIS 1, Experiment Result 

 
 

Table 3. ANFIS 2, Experiment Result 

 

Table 4. ANFIS 3, Experiment Result 

 
 

Table 5. ANFIS 4, Experiment Result 

 
 
The developed models have exhibited substantial 

variation in their performances with respect to the 
evaluation criteria in terms of the number of membership 
functions (MFs), type of MFs and number of epochs. The 
RMSE values in ANFIS 1, Table 2, based on Triangular-
shaped were the lowest of the four ANFIS models and the 
lowest one in ANFIS 1 is the model with two membership 
functions.  The training and checking error RMSE values 
are 1.1795x10-6 and 1.6273x10-5 respectively. The highest 
RMSE value recorded is in ANFIS 4, Table 5, based on 
Gaussian curve 2 membership function under the model 
with three membership functions. The training RMSE 
achieved is 0.00841 while the checking RMSE value is 
0.001575  

It is evident that the ANFIS model is highly sensitive to 
the number and type of MF used. The model performance 
does not necessarily improve with increasing the number 
of MFs but can cause model overfitting as evident in the 
experiments shown in Figure 5. Thus, the ANFIS model 
with a Triangular-shaped membership function with two 
membership and epoch numbers of 10, 30 and 50 was used. 
The generated structure of ANFIS which consists of 34 
nodes, 26 parameters, and 8 fuzzy rules as shown in Figure 
6 while the surface diagram is shown in Figure 7. 
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Figure 5. ANFIS training 

 
Figure 6. ANFIS Structure 

 
Figure 7. ANFIS surface plot 

3.3 Testing of ANFIS model for fault classification 
To further test the classification capability of the 
developed model, a group of testing data, consisting of 96 
samples, which is not part of the training data and the 
checking data was used. The range of normalized values of 
each data under different conditions is shown in Table 6. 

Table 6. Range of values for normalise data 

 

    Using the MATLAB rule viewer block, different input 
combinations can be inserted and the corresponding output 
of the trained system can be studied. The rule viewer block 
is used to revalidate our trained ANFIS model using 
different data from the train and checking data used 
initially. Table 7 shows the typical test data set used and 
the corresponding output. 
 

Table 7. Validation of the ANFIS model with the test 
data set 

 

Figure 8 shows the rule viewer of the model showing the 
output value from a sample input set from the test data set. 

The rule viewer plot in Figure 8 was used to access the 
classification capability of the developed model. The 
figure shows the three input sets which are the three 
normalised PCs and as well as the output which is 
designated as the motor condition. The ranges of values for 
the three inputs and the expected output for each fault class 
are shown in Table 7. Taking a random input set from out 
data, for example, when PC1 is -1.246, PC2 is -0.3661 and 
PC3 is 0.7197 which represents the Yellow-Red phase 
short circuit fault. When this input set is applied to the rule 
viewer as shown in Figure 8, the output, which is the motor 
condition gotten is 0.892. This accurately falls within the 
range of the output of the intended fault which is the 
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Yellow-Red phase short circuit fault. Similar tests for other 
fault types were also carried out as shown in Table 7 and a 
plot of the derived output and the original output from the 
data set is shown in Figure 9 for comparison. 

 

Figure 8. MATLAB rule viewer plot 

 

 

Figure 9. Model output plot 

It is evident from the plot of the test data output and the 
original output of the classification model is of high 
accuracy which validates the result of the selected ANFIS 
model with a training error value of 1.1795e-6.   

4. CONCLUSION 
An intelligent induction motors stator fault classification is 
presented in this paper using the stator currents and 
vibration data. The model is a hybrid combination of PCA 
and ANFIS which classifies stator faults. The ANFIS 
model developed is based on triangular membership 
function with two membership functions. The accuracy of 
the model is over 99% as validated by MATLAB/Simulink 
simulation. 
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