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Abstract: These Electroencephalography (EEG) signals is an effective tool for identification, monitoring, and treatment of 
epilepsy, but EEG signals need highly experienced personnel to interpret it correctly due to its complexity, even for an expert 
it is monotonous and usually consume much time. Therefore, the automatic computer-aided device (CAD) needs to be 
developed to overcome those challenges associated with epilepsy interpretation and diagnosis. The system efficiency relies 
largely on the quality of features supply as input to classifiers. This paper presents an efficient feature extraction technique to 
develop a CAD system that can detect and classify normal, interictal and ictal epilepsy signals correctly with high accuracy. 
Our approach employs time-frequency features, statistical features and nonlinear features combined as hybrid features to train 
and test the classifier. Machine learning classifiers of multi-class support vector machine (mSVM) and feed-forward neural 
network (FFNN) with fivefold cross-validation are used to classifies normal, interictal and ictal with our proposed features. 
Our system was tested using a publicly available database with three classes each of 100 single channels EEG signals of 4096 
samples point each. Based on sensitivity, specificity, and accuracy, our proposed approach of multiclass classification shows 
a good performance with 96.7%, 98.3% and 100% of sensitivity, specificity, and accuracy respectively. 
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1. INTRODUCTION 
In recent years, EEG signal processing receives much 
attention by researchers, one of the fields that have been 
growing fast is EEG epilepsy detection and classification. 
Epilepsy is one of the chronic neurological diseases which 
happen due to unprovoked seizures because of outrageous 
and uncontrolled brain cell activities. It is very difficult to 
predict its occurrence and as such, it may almost occur at 
any time. Some noticeable signs and symptoms of epilepsy 
include loss of consciousness, jerking, loss of memory and 
uncontrollable motions that results in serious injury and 
even death. To monitor and alert a patient and doctors of 
its occurrence is a serious concern by health care 
practitioners, therefore proper monitoring system is quite 
desirable to ease the doctor’s work and improve the patient 
life [1-4]. 

With the recent technological revolution in smart 
devices and low power portable devices, the need for easy 
and low-cost devices to be used in developing countries is 
paramount as a large number of epilepsy patients are from 
these countries [5]. The accuracy and efficiency of these 
devices depend highly on the type and quality of features 
extracted from epilepsy signals as well as on the 
classifier’s efficiency. EEG is believed to be a prime signal 

that contains information about the electrical activity of the 
brain and is widely used to evaluate and asses different 
parts of brain functions and activities including 
epileptogenic zones [6,7]. Usually, EEG recording is 
traditionally recorded on a chart and computer monitors 
[8], these recordings contain a time-domain representation 
which does not manifest some useful information about the 
signal. This may result in misinterpretation of EEG signals 
which may lead to missing epilepsy signs [7,9,10]. Several 
studies/systems have been carried out and developed to 
detect, understand, and classify seizures nature and types. 

To overcome those challenges, some of the earlier 
studies show that EEG signals are nonstationary and 
exhibit nonlinearity [11] which cannot be well detected by 
time and frequency domain analysis like Fourier transform 
[12,13] and short-time Fourier transform [14] to extract 
features from EEG epilepsy signals. As such, this work 
addressed some challenges associated with traditional 
feature extraction techniques by combining time-
frequency features with statistical and nonlinear features to 
provide efficient feature extraction that is suitable for 
mobile applications and integrated smart facilities in our 
health care centers. 
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The remaining of this paper is as follows: related work 
on EEG epilepsy detection and classification was 
discussed in section 2. Section 3 addressed background 
studies related to our proposed approach. Section 4 
highlights our system design and architecture while section 
5 presents our experimental results and discussion of the 
results. Finally, conclusion and feature direction and 
improvement were provided in section 6. 

2. RELATED WORK 
Although Last decade has witnessed a lot of attention by 
researchers on the epilepsy detection and classification 
with various feature extraction developed as well as 
improvement and development of numerous types of 
classifiers to achieve high accuracy in discriminating 
between different types of epilepsy signals rhythms such 
as normal pattern, abnormal spikes during the seizures 
(ictal) and before the seizures (interictal). Gotman and 
Gloor [15] present one of the pioneering work in automatic 
detection of seizures in which the EEG signal segments are 
compared based on the continuous temporal analysis. The 
time-domain approach has been presented by [16-18] as a 
means of extracting EEG characteristics as features for 
detection and classification, but the nonstationary of EEG 
cannot be well captured by time-domain approaches. 
Frequency domain approach was reported by 
[12,13,19,20], time-frequency domain features were 
reported by [21-24] which they used wavelet transform 
with approximate entropy for feature extraction and 
employ artificial neural network for classification [25-30]. 
Other researchers that used time domain, time-frequency 
approach for feature extraction includes [30-37].  

Recently, some researches focus on nonlinear 
techniques to capture the nonlinearity nature of the EEG 
epilepsy signal. Different types of entropy have been 
investigated such as approximate entropy [38-40], sample 
entropy [41]. Empirical mode decomposition is used to 
extract statistical features [42]. [43] used the Empirical 
Mode Decomposition (EMD) method to extract features of 
epilepsy EEG signals and used a modified fuzzy clustering 
algorithm as a classifier to detect epilepsy signals. 

There are some drawbacks with some reported work in 
literature such as either utilized a single domain such as 
time domain or frequency domain that cannot extract some 
hidden EEG signals dynamics, others used only binary 
classification to classify normal and seizure states while 
some works reported low accuracy. This work aims to 
address some of the mentioned drawbacks by utilizing the 
efficacy of time-frequency features combined with 
statistical and nonlinear features to extract significant and 
hidden information such as nonlinearity and 
nonstationarity of the EEG epilepsy signal. Also, we used 
multi-class SVM and feed-forward neural network to 
classify normal, interictal and ictal states. Discrete wavelet 
transform was used to decompose the signal into 
decomposition levels, statistical features and nonlinear 
features were extracted from DWT coefficients, the hybrid 
features are then fed to SVM and FFNN for classification.  

3. MATERIALS AND METHODS 

 

3.1 Discrete Wavelet Transform 
Discrete wavelet transform is a quite popular and 
convenient approach for analyzing biomedical signals 
including EEG due to its ability to represent a signal in a 
time-frequency representation. DWT analyzed signals that 
are nonstationary like EEG signals conveniently. The 
approach in DWT is to decomposes the Epilepsy EEG 
signal into signal sub-bands or decomposition levels, 
thereafter, significant features are calculated and extracted 
from the decomposition levels selected. Selection of 
appropriate decomposition levels, type of mother wavelet 
to be used and identifying type of features from selected 
sub-bands are some of the challenging issues in using 
wavelet for classification of normal from seizure periods 
[44]. Wavelet function can be described as follows: 
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       (1) 

Where 𝜏 is called shift parameter while,  𝑠	is called scale 
parameter 

Wavelet transform: 

𝛾 𝑠, 𝜏 = 𝑓 𝑡 Ψ",$∗ (𝑡)𝑑𝑡                        (2) 

Inverse wavelet transform: 

𝑓 𝑡 = 𝛾 𝑠, 𝜏 Ψ",$(𝑡)𝑑𝜏𝑑𝑠          (3) 

Simple Haar wavelet threshold is used in initializing the 
process of feature extraction. Haar wavelet function can be 
described as follows [44]: 

Ψ 𝑡 =
1,			0 ≤ 𝑡 < &

7
,

−1,			 &
7
≤ 𝑡 < 1,

0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                            (4) 

To realize the DWT, a series of successive filters were 
designed by [45], they are made of low and high pass 
quadrature mirror filters with two downsamplers by 2. 
Figure 1. shows a successive of low-pass represented by 
g[n] and high-pass filter represented by h[n] for three-level 
of DWT decomposition. At every level of decomposition, 
there are two coefficients produced by the filters. 
Approximations coefficients and detail coefficients 
produced by low pass and high pass filters respectively, the 
process of filtering and decimation is continuous up to the 
last selected level of decomposition [46]. 

 
3.2 Support Vector Machine 
SVM is a machine learning classifier highly suitable for 
binary classification with feature vectors of high 
dimension. It is very suitable and popularly used in 
biomedical signal processing and applications due to its 
capability of dealing with a high number of predictors and 
also high accuracy. The distance of optimal hyperplane 
obtained by SVM from feature space of high dimension 
and that of each class closest data sample is maximized by 
SVM [47]. It depends on its regularization parameter 
which controls the level of overlap between the class and 
kernel functions which is used for mapping of training data 
to a feature space of higher dimensional from an input 
space [48,49]. Figure 2. depicts an example of a 2-
dimensional separable classification problem by denoting 
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the maximum margin and optimal hyperplane. The support 
vectors are those data points on the margin line [50]. 

 
Figure 1. Three level Wavelet decomposition tree 

 
Figure 2. An example of a separable problem in a 2 

dimensional space 

Some of the common kernel functions used in SVM are 
linear kernel function with the equation as follows: 

𝐾 𝑋, 𝑌 = 𝑋C𝑌.                                    (5) 

Another type of kernel function is polynomial with degree 
𝑑 as follows 

𝑘 𝑋E, 𝑋F = (𝑋E, 𝑋F)G                             (6) 

Where 𝑑(𝑑 ≥ 1) is the number of polynomials. If the 
number of polynomials 𝑑 = 2 or 𝑑 = 3, then the function 
is called quadratic kernel function. 

3.2.1 Multi Class Support Vector Machine (mSVMs) 
Unlike binary classification using SVM, the multi-class 
classification is a complex as the output is more than one 
group each of mutually exclusive. Some of the methods 
developed to solve mSVMs problems include One-
Against-All (OAA), Binary Tree (BT), Directed Acyclic 
Graph (DAG), and One-Against-One (OAO). 
OAA SVM problem with 𝑀-class (𝑀 >2) was tested in this 
study. In this method, binary classifiers of number 𝑀 are 
constructed with one for each class. The hyper plane is 
constructed by 𝑚'M classifier between class m and the 
remaining 𝑀 − 1 classes [51]. 

SVMs optimization problem can be formulated with 
slack variables 𝜉E as follows: 
Find w, b, and 𝜉 ≥ 0 such that  

Φ 𝑤 = 𝑤C𝑤 + 𝐶 𝜉ER
ES&  is minimized 

Where w is weight vector, b is a bias term 

For all (𝑥E,𝑦E), 𝑖 = 1, … , 𝑁: 𝑠. 𝑡. 𝑦E 𝑤C𝑥E + 𝑏 ≥ 1 − 𝜉E (7) 
Where 𝐶 is regularization term to control over fitting 

Equation (7) can be generalized by minimizing 
Φ 𝑤, 𝜉 = &

7
(𝑤ZC𝑤Z)[

ZS& + 𝐶 𝜉EZZ\]^
R
ES& ,  

s.t. (𝑤]EC 𝑥E,)+𝑏]E ≥(𝑤ZC𝑥E)+𝑏Z + 2 − 𝜉EZ,           (8) 
𝜉EZ ≥ 0, for 𝑖 = 1, … , 𝑁:       𝑚 ∈ 1,… ,𝑀 \{𝑦E} 

The decision boundary can be written as follows: 
𝑓 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥Z (𝑤ZC𝑤Z + 𝑏Z] for m=1, …, M 

The final classifier is of the form (9) after finding the 
saddle point of the Lagrangian 

𝑓 𝑥 = 𝛼E𝑥EC 𝑥 + 𝑏Z.                                       (9) 

Regardless of the number of M classes, there are only N 
coefficients and the number of non-zero α can be directly 
reduced by regularization 

3.3 Artificial Neural Network 
The Artificial neural network used a predefined algorithm 
to mimic learning input-output behavior. Its structures are 
inspired by the human nervous system and widely used for 
system modeling and function approximation. Multi-layer 
feedforward neural network with backpropagation 
learning is the simplest and most common ANN structure 
as shown in Figure 3. 
  

 
Figure 3. Multi-layer feedforward neural network 

The ANN process is to choose the structure of the 
system, number of layers, and the number of neurons in 
each layer, training samples are fed to ANN and weights 
are determined based on the learning algorithm. Steepest 
descent direction is used by a backpropagation algorithm 
to adjusts its weight and this direction is where the 
performance function rapidly decreased. 

4. SYSTEM ARCHITECTURE 

Our proposed system overall working principle is depicted 
in Figure 4. The EEG epilepsy raw data after recording 
from scalp surface or intracranially is preprocessed to 
remove the unwanted artifacts and noises as well as 
baseline corrections and other processing such as 
dimensionality reduction among others. After 
preprocessing, the preprocessed signal is passed to feature 
extraction stage where domain based techniques, 
statistical, nonlinear and other feature extraction 
techniques have been applied to extract a meaningful and 
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relevant features that are supplied to classifiers for 
classification.  

Different types of classifiers are available for 
classification of epileptic EEG signals into seizure and 
non-seizure conditions. Finally, the analysis and 
performance evaluation of classification results is 
conducted to ascertain the efficiency or otherwise of the 
system so that monitoring and other diagnosis and 
development of CAD system would be feasible.  
 

Figure 4.  Block diagram of the proposed technique 

4.1 EEG Datasets 
The experiment for this study was conducted using a well 
and widely acceptable university of Bonn database which 
was available online by the Department of Epileptology of 
Bonn University, Germany. Detail explanation and 
description of this dataset were given by Dr. Ralph 
Andrzejak of Epilepsy Center of the Bonn University 
Hospital of Freiburg [52]. During the signal acquisition, 
the data were recorded based on the standard 10-20 
electrode placement system. The EEG signals are of 23.6s 
duration with 173.6Hz as sampling frequency which was 
digitized using a 12 bit A/D converter. This dataset is using 
five different conditions and then divided into five 
classes/groups each of 100 single channels. The groups are 
Z, O, N, F, and S or A, B, C, D, and E classes.     This work 
selected three different classes to test a multi-class 
classification and compared with binary one, the classes 
are set Z or A which is recorded from the surface of the 
scalp of five healthy subjects, set F or C dataset is recorded 
from five epileptic patients at the time of non-seizure 
activity (interictal) intracranially during the period of 

acquisition and set S or E is recorded during epileptic 
seizure activity of five pre-surgical epileptic patients 
(seizure) using the intracranial recording. More 
information about the dataset can be found at [53] and the 
description of the epileptic EEG dataset is shown in table 
1 while figure 5 shows the example of raw epileptic EEG 
signal for S and N classes. 

Table 1. Description of EEG dataset 

Dataset Class Subject 
Condition Epileptogenic Foci 

Z 
F 
S 

Health 
Seizure-free 

Intervals Seizure 

Surface Scalp 
Intracranial 
Intracranial 

 

 
Figure 5. Example of EEG signals from set C and set 

 
4.1 Pre-processing 
This stage involves preprocessing the EEG epileptic signal 
before extracting meaningful features that can be used for 
classification. It is very essential to denoise the signal by 
removing artifacts and noise that contaminate the original 
signal during recording and processing, some of these 
artifacts include muscle artifacts, environmental artifacts, 
power line interference, etc. apart from artifacts 
elimination by EEGLAB software, baseline correction, 
digital filtering, and signal re-referencing have been 
performed using the same software. 

It is very essential to extract meaningful information 
with a smaller number of parameters to improve the 
accuracy of computer-aided device (CAD) system 
especially smart internet of things (IoT) devices. 
Therefore, instead of using raw EEG epileptic signals with 
full-length data which contain a lot of redundancy and 
large dimensionality that results in a poor signal input 
representation to classifiers and render the classification 
tedious and complex. To overcome these issues, time-
frequency features have been deployed to decompose the 
signal into sub-level and thereafter statistical and nonlinear 
features were extracted which gives a smaller number of 
parameters by reducing its dimension and upheld the 
system accuracy. 

Performance 
Analysis 

Pre-Processing 

DWT 
Decomposition 

DWT Sub-bands 

 Start 

Epilepsy Data 

Energy 
Features 

Combined 
Features 

 Stop 

Classification 
 

Nonlinear 
Features 

Statistical 
Features 
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Figure 6. Decomposition levels of DWT

4.3 Feature Extraction and Classification 

4.3.1 Time-Frequency Features 
Time-frequency features are suitable features for 
biomedical signals to cater to their nonlinearity and 
nonstationarity. In this paper, DWT has been used as a 
technique for extracting time-frequency features by 
decomposing the signal into many sub-bands. To ensure 
that all the signal levels have been properly captured, 
Daubechies mother wavelet was chosen as a mother 
wavelet because it has been discovered in the literature to 
be very effective in dealing with EEG signal. Also, level 
10 decomposition was selected. Figure 6 depicts the 
decomposition of seizure class into sub-bands. 

4.3.2 Statistical Features 
At each sub-band of DWT decomposition, some statistical 
parameters have been selected to further reduce the 
dimensionality of the signal. Details and approximation 
coefficients of 𝑑&	 − 	𝑑h	combined with 𝑎h	respectively 
were calculated and prepared for further analysis or as 
input to the classifier. The standard statistical parameters 
used in this study are: mean, median, mode, maximum, 
minimum and standard deviation. 

4.3.3 Nonlinear Features 
Approximate entropy and sample entropy have been 
further calculated from the DWT statistical features to 
capture the nonlinearity of EEG epilepsy signal to make it 
more robust and significance to classifiers. 

For approximate entropy, the template vector of size m 
is defined as a windowed signal 

𝑢 𝑖 = [𝑥 𝑖 			𝑥 𝑖 + 1 … 		𝑥[𝑖 + 1 − 𝑚]]C,           (10) 

The self-similarity of the template vector 𝑢 𝑖  is defined as 

𝐶EZ 𝑟 = &
R(Zk&

Θ(𝑟 − 𝑢 𝑖 − 𝑢[𝑗] n)R(Z
FSo ,   (11) 

Where, r is the tolerance and Θ(x) is the Heaviside step 
function, i.e. 

Θ(x) = 1,																						𝑥 ≥ 0,
0,														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                               (12) 

𝐶E would be high when 𝑢 𝑖  and 𝑢 𝑗  sequences are very 
near if 𝑋 is mostly self-similar. The self-similarity indices 
are aggregated by Approximate entropy over all shifted 
possibilities of template vectors given the tolerance and 
template length. 

The Approximate entropy is given as 

𝐴𝑝𝐸𝑛 𝑋,𝑚, 𝑟 =
1

𝑁 − 𝑚 + 1
log 𝐶EZ 𝑟 −

R(Z

ESo

 

&
R(Z

log 𝐶EZk& 𝑟 .R(Z(&
ESo                                      (13) 

For the sample entropy, it’s difference with approximate 
entropy is that the self-similarity of template vectors for all 
pairs 𝑢 𝑖  and 𝑢[𝑗] with tolerance r is defined as 

∅Z 𝑟 = Θ(𝑟 − 𝑢 𝑖 − 𝑢[𝑗] n)R(Z
ESo

R(Z
FSo,F\E .      (14) 

If the signals are self-similar, ∅Z(𝑟) is high. The 
SampEn is given as 

𝑆𝑎𝑚𝑝𝐸𝑛 𝑋,𝑚, 𝑟 = 𝑙𝑜𝑔∅Z 𝑟 − 𝑙𝑜𝑔∅Zk& 𝑟 .      (15) 

4.3.4 Energy Features 
To further capture the EEG Epilepsy signals significant 
characteristics and information, energy of the signal was 
also calculated as features to be used for classification. 

The above features are combined in one file and serve 
as our features for training and testing mSVM and ANN 
classifiers. 
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4.4 K-fold Cross-Validation 
Cross-validation is a method of testing the validity of 
machine learning algorithm in which features are divided 
into two subsets one for training data and the other one for 
test data. If the data is separated into k-subsets the cross-
validation is called k-fold cross-validation. 5-fold cross-
validation have been employed in this study as shown in 
Figure 7. 

 
Figure 7.  Illustration of 5-fold cross-validation 

 
The features were divided into 5-fold groups as subsets 

with one subset as test data and the remaining four subsets 
as training data so that the iteration would be five times. 

4.5 Classification 
At this stage, ANN and SVM were used for classification 
of pre-ictal and ictal (normal and seizure) classes. To 
optimized the classifier's performance and to select 
efficient and robust classifier for smart IoT devices, 
different types of SVM classifier as well as different 
number of neurons were selected and tested. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 
In this paper, EEG epilepsy signal from University of 
Bonn, Germany database were used for training and 
testing. 300 EEG records from two classes of normal, pre-
ictal and ictal were downloaded as .txt files and distributed 
randomly for classification of normal and seizure beats. 
300 EEG records are fed to artificial neural network and 
SVM, approximately 70% is used for training and the 
remaining is used for validation and testing. The 
classification performance is considered in terms of 
sensitivity, specificity and accuracy. The used measures 
are defined as 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	∗ 100%	 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
	∗ 100% 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
	∗ 100% 

where TP is True Positive (correctly identified), FP is False 
Positive (incorrectly identified), FN is False Negative 
(incorrectly rejected), TN is True Negative (correctly 
rejected). 
      To test the robustness of classifiers as well as to 
advance from binary to multiclass classification which is 
much challenging task as the EEG signals is recorded from 
different subjects at different brain location during ictal, 
interictal and normal conditions for real implementation in 
our smart devices to be used by individuals and health care 
units. Various classification between different groups have 
been performed as follows: 

a) Binary classification between class S (ictal) and 
class Z (normal) 

b) Binary classification between class S (ictal) and 
class F (interictal) 

c) Binary classification between class Z (normal) 
and class F (interictal) 

d) Classification between class S (ictal), class F 
(interictal), and class Z (normal) have been 
performed as multiclass classification 

      The detail performance analysis of different group is 
shown in table and figures   

5.1 Performance of S vs Z Group 
The performance of seizure condition with normal 
condition for SVM classifier with different kernel function 
is shown in table 1, with linear, quadratic, and polynomial 
function achieved 100% for accuracy, sensitivity, and 
specificity. Also, various SVM methods have been 
experimented to optimize the SVM classifier performance 
as depicted in Figure 8. FFNN classifiers using the 
proposed scheme with different number of neurons is 
shown in Figure 9 with almost all the number of neurons 
tested in this study achieved 100% accuracy, sensitivity, 
and specificity. 

Table 2. Different Kernel functions of SVM for S vs Z 

 
 
 

Test 
Data 

Test 
Data 

Test 
Data 

Test 
Data 

Test 
Data 

Iteration 
1/5 

Iteration 
2/5 

Iteration 
3/5 

Iteration 
4/5 

Iteration 
5/5 

Number of Samples 
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Figure 8.  Performance of SVM methods for S vs Z classes 

 

Figure 9.  Performance of FFNN layers for S vs Z classes 

5.2 Performance of S vs F Group 
Our proposed approach was tested on ictal and interictal 
groups with SVM and FFNN classifiers. Table 2 shows the 
performance of different SVM kernel functions with 
polynomial function gives the highest accuracy, 
sensitivity, and specificity of 96.7%, while Figure 10 
shows different SVM methods. Furthermore, the 
performance of FFNN classifier is shown in Figure 11 with 
25 number of neurons gives highest accuracy, sensitivity, 
and specificity of 95.66%, 95.72%, and 95.70% 
respectively. 

5.3 Performance of Z vs F Group 
To further validate our suggested technique using different 
epilepsy conditions, group Z of normal signal was 
compared with interictal group. SVM classifier with linear 
kernel function outperformed other functions as it attains 
100% accuracy, sensitivity, and specificity. While for 
SVM methods, QP_SVM and SMO_SVM scored 100% 
accuracy, sensitivity, and specificity as shown in table 3 
and Figure 12. For FFNN classifier, Figure 13 shows the 
performance analysis for various number of neurons with 
10 number of neurons gives the highest accuracy, 
sensitivity, and specificity of 77.02%, 96.99%, and 
97.20% respectively. 

Table 3. Different Kernel functions of SVM for S vs F 
 

Kernel 
Function 

Sensitivity(%) Specificity(%) Accuracy(%) 

Linear 
Quadratic 

Polynomial 
Rbf 

95.1 
90.0 
96.7 
60.0 

95.1 
90.0 
96.7 
71.6 

95.0 
90.0 
96.7 
71.6 

Table 4. Different Kernel functions of SVM for Z vs F 

 
 

 
Figure 10.  Performance of SVM methods for S vs F 

classes 
 

 
 
Figure 11.  Performance of FFNN layers for S vs F classes 
 
 

95

96

97

98

99

100

QP_SVM SMO_SVM LS_SVM

S vs Z group

sensitivity specificity accuracy

95

96

97

98

99

100

QP_SVM SMO_SVM LS_SVM

S vs F group

sensitivity specificity accuracy

85
86
87
88
89
90
91
92
93
94

S vs F group

sensitivity specificity accuracy

Kernel 
Function 

Sensitivity(%) Specificity(%) Accuracy(%) 

Linear 
Quadratic 
Polynomial 
rbf 

100 
88.2 
89.5 
76.3 

100 
88.2 
89.5 
76.3 

100 
86.7 
86.7 
55.0 

84
86
88
90
92
94

S vs Z group

sensitivity specificity accuracy
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Figure 12.  Performance of SVM methods for Z vs F 

classes 
 

 
 

Figure 13.  Performance of FFNN layers for Z vs F 
classes 

 
5.4 Performance of Multiclass Classification 
The method proposed in this study have performed very 
well for binary classification, therefore, to further 
investigate the robustness of this technique we performed 
multiclass classification on our epilepsy signals to develop 
and implement a real clinical application device. The 
epilepsy signals of ictal, interictal, and normal conditions 
have been classified using SVM and FNNN chosen 
classifiers. Multiclass SVM classification have accuracy, 
sensitivity, and specificity of 100%, 98.33% and 96.67% 
respectively. 

We compare the performance between the chosen 
classifiers SVM and FFNN to find the best classifier for 
our epilepsy signals. Best kernel function has been 
compared with best FFNN system in each classification 
category as shown in table 5. 

 
Figure 14.  Performance of FFNN layers for S vs Z vs F 

classes 

6. CONCLUSION 
Due to the increase in the need to develop a suitable CAD 
system that to be incorporated in today’s smart devices for 
the use in clinical environment and individual for quick, 
easy, and proper monitoring of epileptic seizure 
occurrence and condition, this work proposed a suitable 
feature extraction technique that combine the time-
frequency, nonlinear and statistical feature to extract a sig-
nificant features to characterize the ictal, interictal and 
normal condition using Bonn University database. Our 
features were combined and fed into FFNN and SVM 
classifiers for classification, binary and multiclass 
classification have been experimented to validate and 
evaluate our approach which shows a significant 
improvement in clinical diagnosis to detect various 
epileptic conditions effectively and accurately as 
compared to other works in literature as shown in table 6.  
     This work can be further improved in the future by 
using large amount of dataset and classes for the system to 
characterize more epileptic seizure conditions. Also, 
optimization techniques would be incorporated to optimize 
both the feature extraction techniques as well as classifiers. 
Deep learning approach investigation is under way to 
eliminate the use of manual feature extraction by 
conventional feature extraction approaches and classifiers. 
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