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Abstract: Using a technique similar to Harrington’s method of moments, this paper develops a very simple but remarkably 
efficient approach to the calibration of established (basic) mobile radio propagation pathloss models. First, the theoretical 
foundations of the process, here referred to as the ‘Quasi-Moment-Method (QMM)’, is succinctly presented. Thereafter, for 
validation purposes, pathloss predictions due to its use are compared with corresponding data reported in the open literature, 
for a model that derived from the application of the Adaptive Neuro-Fuzzy Inference System, ANFIS. Results of the 
comparisons reveal that the root-mean square error (RMSE) values for the QMM-models compare favorably with those 
reported for the more computationally involved ANFIS model; and that all the six QMM-calibrated models considered in the 
paper, provided better spread-correlated root-mean-square (SC-RMS) and standard deviation (SD) prediction errors. QMM 
cross-application prediction performance is also evaluated through comparisons with measurement data obtained by the 
authors, for the Nigerian cities of Ibadan and Abuja. Outcomes of the comparisons clearly show that the QMM cross-
application performance, particularly for the calibrated ECC-33 models, may be described as excellent.   
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1. INTRODUCTION 
In propagating from source to destination, 
electromagnetic waves are in varying degrees, invariably 
subjected to reflections, refractions, scattering, and 
absorption, with the consequence that signal degradation 
manifest as energy loss, conventionally referred to as 
‘pathloss’, Ikegami and Yoshida, [1], Vieira et al., [2]: or 
channel propagation impairments, Sarkar et al. [3]. The 
radio link designer, in order to effectively plan, design, 
validate, and construct wireless communications 
networks, is consequently required to predict the nature 
and extent of signal quality degradation, and hence, 
account for the pathloss attributable to the system’s 
operational environment. This need, in the case of mobile 
cellular communications, is particularly underscored by 
the requirements of Site Placement Problem (SPP) and 
Site Selection Problem (SSP), as described, respectively, 
in two different publications by Khalek et al., [4], and by 
Calegari et al., [5]; the latter concerning the Software 
Tools for the Optimisation of Resources in Mobile 
Systems (STORMS) project. Both publications represent 
notable examples of the critical importance of optimum 
pathloss models to the design and implementation of 
schemes for network performance optimization.  

Although it is, in principle, possible to accurately 
specify terrain propagation loss characteristics by solving 
Maxwell’s equations, subject to appropriate boundary 
conditions, this approach is decidedly mathematically 
rigorous and absolutely intractable in virtually all cases of 
practical interest, [3], [4]. A possible alternative is to 

utilize exhaustive measurements, which, in addition to 
being expensive, is clearly impractical.  It is not 
surprising therefore, to find that researchers have, over 
the years, developed various methods and design tools in 
the form of empirical models Tutschku, [6]; Iskander and 
Yun, [7]; Fernandez et al., [8];  Gozalvez, Sepulcre and 
Palazon, [9], classified as either ‘large-scale pathloss 
models’ or ‘small-scale fading models’, with which to 
address these challenges. Unfortunately, it has been 
firmly established that it is impossible to find a model of 
such general applicability as to be independent of terrain, 
environmental conditions, and radio propagation 
scenario, [3]. Indeed, Erceg et al., [10], pointed out that 
classical pathloss models such as the Okumura-Hata [11] 
-and its derivatives-, rarely consider the needs of 
emerging communication systems and technology, and 
consequently inadequately provide for such needs, in 
network optimization schemes. Using a regression 
analysis approach, Erceg and his associates [10] analysed 
data available from comprehensive field measurements to 
obtain computational results, which suggest that this 
limitation may be addressed through the determination of 
optimum values for loss exponent and /or standard 
deviation of shadow fading indices, as may apply, in the 
model development process. One example that 
considered the needs of an emerging technology is 
offered by the contributions of Pitchaiah [12], whose 
work addressed the limitations imposed by the channel on 
the performance of the Local Multipoint Distribution 
Systems (LMDS) as a last mile solution in a wireless 
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environment, utilizing the higher data rates. These 
contributions inform that pathloss prediction models are 
able to perform reliably, only to the extent that factors 
concerning the physical environment are suitably 
accounted for in the course of the model development 
process. This is the case with typical empirical modelling, 
in which data collection correctly reflects terrain and 
associated propagation characteristics.  

Because the classical (basic) empirical models, despite 
the advantage of computational simplicity, often lack 
desirable levels of prediction accuracy, quite a few 
research efforts have been dedicated to ‘tuning’ or 
‘calibration’ of the basic models, as a means of improving 
accuracy without losing ease of use. Notable examples of 
these optimization techniques include the contributions 
by Mardeni-Kwan[13], who implemented a regression-
type ‘Least Squares Method’; others are the regression 
analysis reported by Nissirat et al., [14], and the Genetic 
Algorithm optimization  scheme, implemented by Garah 
and his associates, [15].  In the main, these approaches 
involve improving the Root Mean Square (RMS) 
prediction error due to such basic models as the Lee, [16], 
COST231-Hata [17], and COST231-Walfisch-Ikegami 
[18], and ECC-33 models, [19]. Although RMSE values 
as low as 3.08dB  have been reported [15] as being due to 
the optimization of basic models with which RMSE 
values in excess of 20dB are otherwise associated, it is 
still held [20-22], that the associated prediction errors are 
in general, rather poor. As a consequence, research 
attention has been directed in recent times, to the 
development of empirical models, with basis in artificial 
intelligence techniques. These include the various 
Artificial Neural Networks (ANN)-based models 
described by Sotiroudis et al., [19], Cavalcanti and 
Cavalcante, [21], and Eichie et al., [22]. Others are the 
variants of the Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS)-based methods reported by Larijani, Curtis, and 
Wistex, [23], and the contributions by Faruk and his 
associates, [24 25]; as well as the Support Vector 
methods due to Timoteo [26], and Zhao, [27], and the 
Learning Machine approach introduced by Ayadi et al., 
[28].  

As pointed out by Faruk et al., [25], and Surajudeen-
Bakinde et al. [33], whereas the ANN and ANFIS-based 
models outperform the basic models in terms of Mean 
Prediction Error (MPE) and RMSE as performance 
metrics, the basic (uncalibrated) models outperform the 
ANN/ANFIS models, when Standard Deviation Error 
(SDE) is utilized as performance metric. For this reason, 
[25] suggested that in practical situations a trade-off 
between simplicity and ease of use (due to optimized 
basic models) on one hand, and on the other, accuracy 
and computational complexity (attributed to the 
ANN/ANFIS models) should prove expedient. It was 
further suggested in [25] that a hybrid of these two 
approaches could be the best option. And indeed, this 
suggestion is very strongly supported by the results 
reported by Cavalcanti and Cavacante [21], who utilized 
a hybrid of ECC-33, Ericsson, and Tr-36.942 for pathloss 
prediction concerning LTE and LTE-A networks.  

This paper presents a novel, a very simple, yet 

remarkably efficient approach to empirical pathloss 
calibration, which, on account of its similarity to the 
Matrix Methods originally developed by Harrington, [32], 
for the solution of field problems, is referred to as the 
‘Quasi-Moment-Method’, or ‘QMM’. For the purposes of 
validating the correctness and efficacy of the approach, 
pathloss predicted with its use is compared with 
measurement (and associated) data published in [24], and 
the outcomes of the comparison revealed that the model 
compares favourably with the more computationally 
intensive ANFIS model utilized in [24]. For example, in 
terms of MPE, respective values of -0.0289 and 9.85x10-6 
were recorded for the best performing QMM-calibrated 
ECC-33 and ANFIS models; and in the case of RMSE, 
SC-RMSE, and SDE, values (in dB) obtained for the 
QMM-calibrated ECC-33 model are (4.9854, 3.7326, 
1.9783),  respectively, as against (2.5023, 4.4881, 6.0535)  
respectively, for ANFIS as published in [24].  

2. THEORETICAL BACKGROUND 
The generic pathloss empirical model is conceived in this 
paper, as a solution to the ‘approximation problem’, as 
defined by Dahlquist and Bjorck, [31]. Accordingly, we 
let ( )l

P d  represent the continuous function, which 

accurately specifies propagation pathloss for the region of 
interest, and which is to be approximated by the function  

( ) ( ) ( ) ( )*
1 1 2 2 N Nl

P d d d dα ϕ α ϕ α ϕ= + + +K ,     (1) 

in which the set { }kϕ represents a set of known 

functions, and{ }kα , a set of unknown coefficients to be 

determined. The solution to this ‘approximation problem’ 
is considered optimum, when the unknown coefficients 
are so specified that the (weighted) Euclidean semi-norm 
of the error function defined as 

             ( ) ( )*

l l
P d P dε = −  ,                            (2)    

assumes its minimum possible value, for all values of the 
independent variable ‘d’. That is,   

                        

( ) ( ) ( ) ( )
2 2* *

1

N

k kl l l l
k

P d P d P d P d
=

− ≡ −∑          (3) 

is as small as possible. 

        As shown in [31], when { }kϕ is set of linearly 

independent functions, the solution to the approximation 
problem emerges as  

                    ( ) ( )*

1

N

n nl
n

P d dα ϕ
=

=∑ ,                       (4) 

provided that the unknown coefficients are solutions to 
the ‘normal equation’, given as  
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The inner product terms appearing in Eqn. (5) admit 
description, according to, [31],  

                                             

( ) ( )
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                           (6) 

 
Equation (5) can be cast in matrix format, if the 

following definitions are utilized: 
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and   
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1
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.

.

N

α

α

α

⎡ ⎤
⎢ ⎥
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⎢ ⎥
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⎢ ⎥⎣ ⎦

 ,                             (7c) 

so that the desired unknown coefficients are obtained 
through the simple matrix operations of inversion and 
multiplication as 

         [ ] [ ] [ ]1−
ϒ = Φ Π                             (8) 

Equation (8) is similar to matrix equation for the 
moment-method, expressed in terms of generalized 
network parameters, [32].   

Six of the more common basic pathloss models, 
namely, the Okumura-Hata, COST231-Hata, ECC-33, 
Egli, Ericsson, and Lee models, were selected as ‘base’ or 
‘reference’ models, for the implementation of the QMM 
scheme described in the foregoing. In the case of the 
Okumura-Hata model, as illustrative example, the ‘base’ 
model is given, for urban centers, as, [13], 

( ) ( ) ( ) ( )
( )( ) ( )

10 10

10 10

69.55 26.16log 13.82log

                 44.9 6.55log log
l te re

te

P Urban f h a h

h d

= + − −

+ −  
(9a) 

In Eqn. (9a), hte represents effective transmitter height, 
and hre stands for effective mobile receiver antenna 

height, both measured in meters.  The parameter ( )rea h  

is a correction factor for effective mobile antenna height, 
and is given, for small-to-medium sized cities as  

( ) ( )( ) ( )( )10 10
1.1log 0.7 1.56log 0.8re rea h f h f= − − −   

(9b) 

and for large cities,  

  
( ) ( )( )( )210

8.29 log 1.55 1.1, 300re rea h h f MHz= − ≤
   

(9c) 

or  

( ) ( )( )( )210
3.2 log 11.75 4.97, 300re rea h h f MHz= − ≥

 (9d) 

For the sub-urban environment, Eqn. (9a) modifies to  

 
( ) ( ) ( ) 2

102 log 5.428l l
fP sub urban P urban ⎛ ⎞− = − −⎜ ⎟

⎝ ⎠    
(10) 

Thus, in utilizing this ‘base’ model for the solution to 
the approximation problem of interest to the optimum 
model calibration process under discussion here, the 

following identification is made for the set { }kϕ : 
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1
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ϕ

ϕ

ϕ

ϕ

ϕ

⎧ ⎫⎧ ⎫
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⎪ ⎪ ⎪ ⎪−
⎪ ⎪ ⎪ ⎪

−⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭      (11) 

Since the ( ){ }l kP d are available from the processed 

field measurements, the only unknown quantities are the 
{ }kα , which are readily determined from the matrix 

operations of inversion and multiplication.       

2.1 Model Performance Evaluation and Validation 
For the purposes of ascertaining the validity and efficacy 
of the formulation, prediction results due to QMM-
calibrated basic models are compared with corresponding 
measurement results reported in [24], and with which the 
calibration of the basic models was effected.  In addition, 
the performances of the various QMM-modified models 
are compared, in terms of MPE, RMSE, SC-RMSE, and 
SDE, with the performance of an ANFIS model, as 
reported in [24], for the same sets of measurement data.  

 Outcomes of this evaluation are displayed in the 
graphical formats of Fig. (1) and Fig. (2), as well as the 
statistical performance metrics shown in Table 1. 

It is apparent from both Figs. (1) and (2) that the six 
QMM-calibrated reference models performed well-within 
the error bounds established by Phillips et al. [34]. This 
observation is supported by the associated computational 
results displayed in Table 1, concerning the statistical 
performance metrics of RMSE, SC-RMSE, MPE, and 
SDE, for the ANFIS and corresponding QMM-calibrated 
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models. These results reveal that whereas the ANFIS 
model recorded better RMSE and MPE metrics than the 
QMM-modified models, the latter models, in all cases, 
had better SC-RMSE and SDE metrics than the former. It 
should be remarked that even where the much more 
computationally intensive ANFIS model had better 

metrics, the corresponding metrics for the 
computationally inexpensive QMM models were 
comparable. And this observation is consistent with the 
remark in [25] that choice of use between ANFIS and 
efficiently calibrated  

 
 

 
Figure 1. Comparison of prediction of QMM-models with measurement data from Fig 7 [24]. 

 
 

 

 
 

Figure 2. Comparison of prediction of QMM-models with measurement data from Fig 8 [24].
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Table 1. Comparative performance evaluation of QMM-Models 

                          Figure 7 [24]             Figure 8 [24] 

MODEL/ 
METRIC 

RMSE 
(dB) 

SC-   RMSE 
(dB) MPE (dB) SDE 

(dB) 
RMSE 
(dB) 

SC-
RMSE 
(dB) 

MPE (dB) SDE 
(dB) 

ANFIS [24] 2.5023 4.4881 9.85E-06 6.0535 1.5378 6.9608 4.98E-05 7.8850 
COST231-QMM 4.9854 3.9115 -0.0298 2.5816 7.5309 4.1702 -0.0097 5.5325 
ECC-33-QMM 4.6105 3.7326 -0.8514 1.9781 5.1898 5.1559 0.0260 1.9911 
ECC-33(LC)-QMM 4.5312 3.8729 -0.0266 1.9714 5.1924 5.1777 -0.1639 1.9177 
EGLI-QMM 4.9853 3.9105 -0.0066 2.5814 7.5309 4.1722 -0.0090 5.5328 
ERICSSON-QMM 4.9860 3.97.53 -0.0858 2.5816 7.5321 4.1776 0.0532 5.5365 
HATA-URB-QMM 4.9853 3.9112 -0.0234 2.5820 7.5310 4.1762 0.0428 5.5325 
HATA(SUB)-QMM 4.9853 3.9085 0.0168 2.5822 7.5310 4.1759 0.0401 5.5329 
LEE-QMM 4.9858 3.9137 -0.0724 2.5812 7.5310 4.1703 -0.0505 5.5327 

 
 
basic models will depend on a trade-off between 
prediction accuracy and ease of model implementation. 

With the validation, through the foregoing comparative 
analysis, of the QMM-calibration technique, its use with 
the calibration of basic models, using measurement 
results obtained for the Nigerian cities of Abuja and 
Ibadan as candidates, will be addressed in the ensuing 
sections. 

3. MEASUREMENT CAMPAIGNS 
Quite a few of the previously existing empirical models 
described in the open literature, [13, 14], have their bases 
in ‘optimization schemes’ designed to better fit basic 
models to measurement data for signal strength or power 
density collected for the terrain of interest. In the typical 
case, exemplified by the two references just cited, 
averages are taken, of measurements obtained from 
several base stations, and utilized as representative of the 
city for which a pathloss profile is to be established. A 
slight variation of this approach is adopted in this paper. 
Measurements taken for individual base stations are 
averaged for contiguous geographical locations, and this 
average is taken as representative of the geographical area 
covered by the base stations. 

3.1 Data Collection  
Two candidate Nigerian cities, Ibadan and Abuja, were 
considered for this paper, and the model calibration 
process was preceded by a phase of extensive data 
collection. Data sets were sourced from official 
measurement data on the existing networks of two major 
services providers in Nigeria, namely, MTN [29] and 
Airtel, [30]. In addition, field measurements were taken 
from 2009-2011 and later 2012-2013 at different times to 
cover the various seasons – wet rainy, and dry harmattan 
seasons. The measurements were informed by the 
distribution of the base stations across the locations, as 
made available by the services providers, and 
representative examples of which are displayed in Tables 
2 (for Abuja) and Table 3 (for Ibadan).  

Comprehensive data sets made available by the service 
providers included results of drive tests conducted on the 
two networks between 2007 and 2012, courtesy of 

engineering staff of the networks. Test equipment utilized 
for the field work include Lenovo ThinkPad and Toshiba 
Equium laptops, TEMS compatible mobile station – Sony 
Ericsson C702, USB GPS instrument, and TEMS dongle 
for real time drive-test data capture. A series of 
measurements were taken with SA2650 handheld 
spectrum analyzer having the frequency range 100kHz to 
3.5GHz, and Carmin handheld GPS instrument were used 
as control data to verify the drive test results. Data 
capture and processing were carried out with the Toshiba 
laptop.  
 
4. COMPUTATIONAL RESULTS AND 
DISCUSSIONS  
For all computational results presented here, base station 
antenna height is 30m, and mobile station antenna height 
is 1.5m. All the base stations operated within the GSM-
1800MHz frequency band.  

4.1 Pathloss Prediction by the QMM-models for 
Abuja  

Results presented in graphical formats in this section, 
concern the seven base stations, for which average 
pathloss, as earlier described, were obtained. The pathloss 
profiles in figure 3 refer to measured pathloss values 
obtained for BTS1, BTS2, BTS3, and BTS4 of Abuja, as 
identified in Table 2. And it is apparent from the profiles, 
that the best fit is due to the ECC-33 (QMM) models.  
Indeed, as can be seen from Table 4, the ECC-33 models 
(but for two exceptions) have the best performing 
statistical indices.  The exceptions to this observation are 
in the cases of Mean Prediction Error (MPE) for the 
QMM-calibrated Lee model, which performed better; as 
well as Spread-Correlated RMSE (SC-RMSE), for which 
the QMM-modified Hata (Sub-Urban) model had the best 
index of 5.3397dB. As a matter of fact, in terms of 
RMSE, the QMM-calibrated Lee model consistently 
came third, next to the ECC-33 and ECC-33 (Large City) 
models, in that order. One other remarkable feature of the 
results is that the Basic-COST231 model had a MPE (-
1.4036dB) almost the same in magnitude (-1.3296dB) as 
its QMM-  
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Table 2. Examples of the Abuja Cell Sites utilized in this study Source [30] 

New site ID TAG City/District 
Capacity 

Dimension 
Area 

Longitude Latitude BSC 

AB0009 BTS1 Garki Abuja 
Metropolis 7.47268 9.01526 EABBS02 

AB0043 BTS2 Garki Abuja 
Metropolis 7.4930537 9.0323886 EABBS01 

AB0061 BTS3 Garki Abuja 
Metropolis 7.4841082 9.037777 EABBS01 

AB0063 BTS4 Garki II Abuja 
Metropolis 7.497663 9.0395236 EABBS01 

AB0006 BTS5 Garki II Abuja 
Metropolis 7.48801 9.08198 EABBS01 

AB0018 BTS6 Maitama Abuja 
Metropolis 7.48091 9.10639 EABBS02 

AB0019 BTS7 Maitama Abuja 
Metropolis 7.50487 9.09258 EABBS01 

 
 

Table 3. Examples of the Ibadan Cell Sites Utilized in this study Source [30] 

New site ID TAG City/District 
Capacity 

Dimension 
Area 

Longitude Latitude BSC 

OY0041 BTS1 Ibadan Ibadan 3.8535035 7.3429193 EOYBS01 

OY0030 BTS2 Ibadan Ibadan 3.8536683 7.3794129 EOYBS01 

OY0058 BTS3 Ibadan Ibadan 3.8700244 7.3385585 EOYBS01 
 

calibrated version; though the latter recorded much better 
performances with the other indices.  

Similar trends are displayed in the cases of BTS’ 2, 3, 
and 4, as can be seen from Figs. (4)-(6), and Table 4. The 
last column of Table 4 displays the statistical 
performance metrics of QMM models, calibrated with the 
use of pathloss, averaged over seven BTS’, at each radial 
distance away from the transmitting antenna. These 
results suggest that when average values, taken over a 
large data set are utilized for QMM pathloss calibration, 
performance improves remarkably.  

As an example, for the best performing ECC-33 
model, RMSE improved from the worst recorded case of 
2.8505dB, for BTS1, to 0.4452dB, in the case of pathloss 
average. It is also readily observed that RMSE 
performances improved to below 5.0 dB for all the other 
models, except for the worst performing Hata (sub-urban) 
model, for which RMSE, nonetheless, improved from 
11.5998 (for BTS2) to 7.8784dB. It may be concluded 
that this Hata (sub-urban) model is clearly a poor 
reference model, for use with pathloss model calibration 
for Abuja. 

4.1.1.   Cross-Application performances of the QMM 
Pathloss Models -Abuja 
In a recent publication, Zhang et al., [35], introduced 
‘cross-application’ as a performance metric, defined as a 

measure of the ability of a basic model calibrated with 
measurements in a given area, to accurately predict 
pathloss in some other area with similar terrain features. 
A variation of that definition is adopted in this paper. 
‘Cross-application’ is taken here, as referring to the 
ability of a QMM-model, calibrated with pathloss 
averaged over a set of BTS’, to accurately predict 
pathloss for individual BTS’ within the set. Two different 
scenarios, based on this adaptation of the term, are 
examined in this section. The first involves BTS’ 1 to 5 
(Garki), and the second, BTS’ 6 and 7, for Maitama. The 
pathloss profiles of Figs. (7)   and (8), for BTS’ 1 to 5, 
and BTS’ 6 and 7, respectively, compare pathloss 
predicted on the basis of calibration with ‘BTS’ group 
averages’ on one hand, with measured pathloss for some 
BTS’ in the group, on the other.  

In the case of the profiles of Fig. (7) and the 
corresponding statistical performance metrics displayed 
in Table 5, it is readily observed that the ECC-33 
calibrated models are able to predict individual BTS 
pathloss with RMSE values ranging between 2.8973dB 
for BTS4, and 5.533dB for BTS3. All other models (with 
the exception of the sub-urban Hata model), in most of 
the cases, also performed creditably well in this regard.   
The same general trend is repeated for the group 
including BTS’ 6 and 7, whose pathloss profiles are 
displayed in Fig. (8). In this case though, a different 
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pattern of RMSE values emerged. For example, in the 
case of BTS 6, the best ‘cross-application’ performing 
QMM-calibrated model is the Egli model (3.0860dB) and 
the worst performing is the Ericsson model, for which a 
value of 4.8269dB was recorded, for RMSE.    
Another interesting feature in the case of BTS 6, is that 
both the QMM-calibrated Egli and Hata (urban area) 
models, in that order, recorded better RMSE (3.0860dB; 
3.3591dB) values than the ECC-33 calibrated models. 
And indeed, both models (Egli and Hata (urban)), again, 
in the same order, had better cross-application MPE 
values than the ECC-33 models. 
 
4.2 Cross-Application performances of the QMM 
Pathloss Models -Ibadan 
As a second example of the cross-application 
performances of the six QMM-calibrated models 
considered in this paper, the case of predicted pathloss 
profiles obtained from models calibrated with some 
measurements taken in Ibadan is presented in this section.  

First, the performances of six calibrated models are 
compared with the measurement data from which they 
derive. The pathloss profiles of Fig. (9) graphically 
describe these performances, in the case of BTS2 of 
Table 3, as an example. 
Computational results concerning statistical performance 
metrics for these cases further describe the performances 
of the calibrated models. For example, in the case of Fig. 

9(a), 1.9872dB was recorded as RMSE for the two 
QMM-ECC-33 models, and for Fig. 9 (b), RMSE values 
of 7.2131dB and 7.5865dB were recorded, respectively, 
for the calibrated Ericsson and Egli models. For BTS’ 1 
and 3, the ECC-33 models still give the best 
performances, though results for BTS 2, for the models 
represent the best. 

Using the definition adopted in this paper for ‘cross-
application’, the performances of the calibrated models 
for the three BTS’ considered for Ibadan, are described 
by the profiles of Fig. (10). The ‘QMM-models’ in the 
illustrations refer to the basic models, calibrated in this 
case, with average pathloss, taken over the three BTS’ 
listed for Ibadan. 

As was the case for the two Abuja scenarios earlier 
described, the best performing ‘cross-application’ models 
for Ibadan are the ECC-33 models (RMSE(dB) = 3.0295; 
2.3187; 5.1182; for BTS’ 1, 2, and 3, respectively),  but a 
number of interesting departures occur in this case. For 
BTS1, the COST231 recorded the next best RMSE value 
of 5.8926dB, but for BTS’ 2 and 3, it was the calibrated 
Hata (urban-5.9536dB) and Ericsson (5.1128dB) models, 
respectively, that came after the ECC-33 models. In terms 
of MPE, the Lee models generally performed best, though 
corresponding values for the ECC-33 models were quite 
close. On the other hand, the ECC-33 models recorded far 
better Mean Absolute Error (MAE) results.  
 

 
 

 
Figure 3. Predicted pathloss profiles for BTS 1 of Abuja 
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Table 4. Statistical performance metrics for the QMM models: Abuja 

Model/BTS BTS1 (dB) BTS 2 (dB) BTS 3 (dB) BTS 4 (dB) Average  (dB) 
COST231 MPE =-1.3286 

RMSE =6.2475 
MAE = 5.0985 
SDE = 1.7333 

MPE =-1.3217 
RMSE =9.3105 
MAE = 8.0922 
SDE = 3.1027 

MPE =-1.2861 
RMSE =4.7547 
MAE = 5.5333 
SDE = 0.6526 

MPE =-1.3769 
RMSE =2.5934 
MAE = 2.2135 
SDE = 0.1375 

MPE =-1.2747 
RMSE =4.2086 
MAE = 3.4565 
SDE = 0.7605 

ECC-33 (LC) MPE =0.0777 
RMSE =2.8411 
MAE = 2.1852 
SDE = 0.3848 

MPE =0.0772 
RMSE =2.0391 
MAE = 1.6109 
SDE = 0.6108 

MPE =0.0672 
RMSE =2.1408 
MAE = 1.7254 
SDE = 0.1684 

MPE =0.0763 
RMSE =1.5242 
MAE = 1.2074 
SDE = 0.1256 

MPE =0.0732 
RMSE =0.4496 
MAE = 0.3344 
SDE = 0.0249 

ECC-33 MPE =-0.0368 
RMSE =2.8405 
MAE = 2.1820 
SDE = 0.4026 

MPE =--0.0234 
RMSE =2.0290 
MAE = 1.6306 
SDE = 0.1775 

MPE =-0.0186 
RMSE =2.1396 
MAE = 1.7329 
SDE = 0.1869 

MPE =-0.0207 
RMSE =1.5228 
MAE = 1.1862 
SDE = 0.1456 

MPE =-0.0208 
RMSE = 0.4452 
MAE = 0.3438 
SDE = 0.0420 

EGLI MPE =-3.3011 
RMSE =6.9400 
MAE = 6.0624 
SDE = 1.2601 

MPE =-2.3902 
RMSE =9.6698 
MAE = 8.1576 
SDE = 2.8208 

MPE =-5.2400 
RMSE =6.9601 
MAE = 6.0908 
SDE = -0.2789 

MPE =-3.0358 
RMSE =3.7492 
MAE = 3.0486 
SDE = -0.2019 

MPE =-2.8303 
RMSE =4.9090 
MAE = 4.1615 
SDE = 0.4186 

ERICSSON MPE =0.1727 
RMSE =6.1607 
MAE = 4.1740 
SDE = 1.8269 

MPE =0.1515 
RMSE =9.2164 
MAE = 8.0493 
SDE = 3.1703 

MPE =-0.1492 
RMSE= 4.5830  
MAE = 3.1750 
SDE = 0.7109 

MPE =0.1558 
RMSE =2.2053 
MAE = 2.0238 
SDE = 0.2264 

MPE =0.1497 
RMSE =4.0137 
MAE = 3.3242 
SDE = 0.8494 

HATA -SUB MPE =-7.0361 
RMSE =9.3152 
MAE = 8.3663 
SDE = -0.5413 

MPE =-7.0452 
RMSE =11.5998 
MAE = 9.4161 
SDE = 0.2364 

MPE =-6.8156 
RMSE =8.2417 
MAE = 7.4801 
SDE = -0.8357 

MPE =-7.2945 
RMSE =7.6141 
MAE = 2.2943 
SDE = 2.0609 

MPE =-6.7809 
RMSE =7.8784 
MAE = 7.0576 
SDE = -1.4192 

HATA(URBAN) MPE =-2.2595 
RMSE =6.5093 
MAE = 5.5416 
SDE = 1.5576 

MPE =-2.2702 
RMSE =9.4904 
MAE = 8.0921 
SDE = 2.9613 

MPE =-2.2010 
RMSE =5.0819 
MAE = 4.1049 
SDE = 1.5443 

MPE =-2.3467 
RMSE = 3.2167 
MAE = 2.7315 
SDE = -0.0300 

MPE =-2.1784 
RMSE =4.5643 
MAE = 3.8622 
SDE = 0.5904 

LEE MPE =-0.0092 
RMSE =6.1604 
MAE = 4.7408 
SDE = 1,8266 

MPE =-0.0144 
RMSE =9.2152 
MAE = 8.0921 
SDE = 3.1766 

MPE =-0.0174 
RMSE =4.5806 
MAE = 3.1485 
SDE = 0.7106 

MPE =-0.0056 
RMSE =2.2000 
MAE = 2.0431 
SDE = 0.2269 

MPE =-0.0150 
RMSE =4.0170 
MAE = 3.3241 
SDE = 0.8493 

 
 

 
Figure 4. Predicted pathloss profiles for BTS2 of Abuja 
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Figure 5. Predicted pathloss profiles for BTS 3 of Abuja 

 
 

 

Figure 6. Predicted pathloss profiles for BTS 4 of Abuja
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Figure 7. Cross-application pathloss profiles: QMM-predicted Vs. BTS’ 1, 3, and 5 of Abuja 

Table 5. Statistical Cross-Application performance metrics for the Abuja QMM-models 

Model/Cluster BTS1 (dB) BTS 2 (dB) BTS 3 (dB) BTS4 (dB) BTS5  (dB) 
COST231 MPE =1.4953 

RMSE =6.5575 
MAE = 5.5743 
SDE = 0.2047 

MPE =1.3453 
RMSE =9.3288 
MAE = 8.1702 
SDE = 3.8784 

MPE =-4.7453 
RMSE =7.4133 
MAE = 5.6636 
SDE = 2.2366 

MPE =3.3797 
RMSE =4.0801 
MAE = 3.3797 
SDE = -0.9150 

MPE =-2.5678 
RMSE =4.9052 
MAE = 3.9318 
SDE = -1.2348 

ECC-33 (LC) MPE =0.0845 
RMSE =3.4905 
MAE = 6.2312 
SDE = 0.5258 

MPE =0.1656 
RMSE =4.4270 
MAE = 4.3056 
SDE = 3.0558 

MPE =-3.3345 
RMSE =5.487 
MAE = 3.5732 
SDE = 2.8660 

MPE =4.7906 
RMSE =5.8819 
MAE = 4.8539 
SDE = -2.2281 

MPE =-1.1470 
RMSE =3.6386 
MAE = 2.9719 
SDE = -1.8942 

ECC-33 MPE =0.1827 
RMSE =3.4839 
MAE = 3.0434 
SDE = 0.9873 

MPE =0.0673 
RMSE =4.9276 
MAE = 4.3676 
SDE = 3.0755 

MPE =3.4327 
RMSE =5.3243 
MAE = 5.6378 
SDE = 2.8514 

MPE =4.6923 
RMSE =5.8007 
MAE =4.7841  
SDE = -0.9150 

MPE =-1.2452 
RMSE =3.6621 
MAE = 2.9919 
SDE = -1.8553 

EGLI MPE =3.0948 
RMSE =7.0950 
MAE = 6.2038 
SDE =0 .05258 

MPE =2.8448 
RMSE =9.2487 
MAE =8.1703  
SDE = 3.5912 

MPE =-6.3448 
RMSE =8.5266 
MAE = 6.8635 
SDE = 2.5220 

MPE =1.7802 
RMSE =2.8970 
MAE = 2.0882 
SDE = -0.5538 

MPE =-4.5178 
RMSE =5.8991 
MAE = 5.2911 
SDE = -1.6988 

ERICSSON MPE =0.0072 
RMSE =6.3842 
MAE = 4.9100 
SDE = 0.1032 

MPE =0.2428 
RMSE =9.2487 
MAE = 8.1704 
SDE = 3.9488 

MPE =-3.2572 
RMSE =6.3620 
MAE = 4.6886 
SDE = 3.7414 

MPE =4.8678 
RMSE =5.3776 
MAE = 4.8678 
SDE = -1.4306 

MPE =-1.0699 
RMSE =4.3915 
MAE = 2.8979 
SDE = -0.9987 

HATA -SUB MPE =7.2032 
RMSE =9.6256 
MAE = 8.0301 
SDE = 2.2309 

MPE =6.9532 
RMSE =11.5682 
MAE = 9.3151 
SDE = 1.9480 

MPE =-10.4532 
RMSE =8.0225 
MAE = 10.4532 
SDE = 0.0379 

MPE =-2.2382 
RMSE =3.2628 
MAE = 2.8601 
SDE = -0.6543 

MPE =-8.2657 
RMSE =9.2651 
MAE = 8.8833 
SDE = -3.6949 

HATA(URBAN) MPE =2.4259 
RMSE =6.8301 
MAE = 5.8796 
SDE = 0.3659 

MPE =2.1759 
RMSE =9.4979 
MAE = 8.1702 
SDE = 3.7373 

MPE =8.0408 
RMSE =6.3615 
MAE = 2.8406 
SDE = 5.6759 

MPE =2.4491 
RMSE =3.3501 
MAE =2.4719  
SDE = 0.6978 

MPE =-3.4884 
RMSE =5.4487 
MAE = 4.7061 
SDE = -1.4822 

LEE MPE =0.1707 
RMSE =6.3868 
MAE = 4.9775 
SDE = 0.1057 

MPE =0.0743 
RMSE =9.2457 
MAE = 8.1703 
SDE = 3.9486 

MPE =-3.4207 
RMSE =6.6441 
MAE = 4.7709 
SDE = 3.69365 

MPE =4.4703 
RMSE =5.2302 
MAE = 4.7403 
SDE = -1.3668 

MPE =-1.2332 
RMSE =4.3633 
MAE = 2.9898 
SDE = -1.0161 

  



VOL. 19, NO. 3, 2020, 35-48 
www.elektrika.utm.my 
ISSN 0128-4428 

 

     

45 

 

Figure 8. Cross-application pathloss profiles: QMM-predicted Vs. BTS’ 6, and 7- Abuja 

 
 

 

 
Figure 9. Comparison of pathloss profiles: QMM-predicted Vs. Measured BTS2- Ibadan 
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Figure 10. Cross-application pathloss profiles: QMM-predicted Vs. BTS’ 1, 2, and 3- Ibadan 

5. CONCLUDING REMARKS 
This paper has presented the ‘Quasi-Moment-Method’ 
(QMM) as a very simple and remarkably efficient 
calibration tool for empirical radio propagation pathloss 
modeling. After a succinct description of the method’s 
characterizing features, predictions due to its use were 
compared with corresponding predictions published in 
[24], in which the ANFIS method was utilized. Results of 
that comparison revealed that in terms of RMSE and 
MPE, the QMM-calibrated models performed fairly 
closely to the ANFIS model, and recorded better SC-
RMSE and SDE metrics.  

Further evaluation of the QMM through calibration of 
six basic pathloss models, using measurement data for 
Abuja and Ibadan very clearly demonstrated that QMM-
calibration of the basic models (particularly the ECC-33 
models, in this case) provide excellent RMSE, MPE, 
MAE, and SDE results. Finally, and using a slight 
variation of the definition of ‘cross-application’ recently 
introduced by Zhang et al. [35], it was shown in the 
paper, that when the basic models are calibrated with the 
average of measurements taken over several base station 
pathloss data, the resulting models are able, with RMSE 
values well-within the error bounds established by 
Phillips et al. [34], to predict pathloss, for individual base 
stations involved in the averaging.      

There is still a lot of scope for further investigations 
into the characteristic features of the QMM, including 
limitations and the physical interpretations of the 
calibration process, as may be available from the entries 
into the components of the matrix expression of Eqn. (8). 
It is also conceivable that QMM may represent a very 

good candidate for some hybrid modeling process, of the 
type proposed in the concluding remarks of [25].  
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