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Abstract: Music, for the longest time, has impacted human lives tremendously. The ability of music to access and activate a 
wide range of human emotions is sensational. Audio features provide various information necessary for sound engineers, music 
producers, and artists to improve their craft to excite the vast majority of music listeners globally. In this paper, an analysis of 
audio features derived using the Spotify web API endpoint and Spotify (Python module for Spotify web servers) is presented. 
The dataset was curated from audio features of over 160,000 songs released from year 1921-2020. For clarity, statistical 
descriptions and probability distribution functions of the audio features are presented. Additionally, the interrelationship and 
correlation amongst the various audio features are demonstrated. Overall, the dataset would find useful applications in classical 
and contemporary music production. 
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1. INTRODUCTION 
Audio features data provide essential information about 
how different subtle aspects of music relate to each other 
[1], [2]. It is not surprising that some of these features are 
not so often talked about in the literature. As audio 
technology continues to advance in the coming years, it is 
imperative to note the changing variables in the music 
industry, primarily as it affects the consumers [3], [4]. 
This, in turn, has enormous potentials to induce strategic 
business decisions in the music production process. 
Toward this end, this study presents audio features using 
the Spotify Web API endpoint and Spotify (Python module 
for Spotify web servers). The dataset reported was curated 
from the audio features of over 160,000 songs released 
from the year 1921-2020. The parameters investigated 
comprise audio features such as duration, key, energy, 
danceability, liveness, notation, mode, time signature, 
acousticness, instrumentalness, loudness, speechiness, 
valence, tempo, id, type, popularity.  

This study analyzes the sonic effects of music from a 
comprehensive dataset on audio features for an informed 
decision by the various stakeholders in the music industry. 
These audio features are first curated and rigorously 
analyzed. The analysis was carried out in Jupyter 
notebooks with Python 3, using third-party packages- 
Pandas and Numpy as analytical tools. In the study, several 
audio feature parameters were investigated and 
analytically presented in section 4 of this paper. 

The analyzed audio features will be of immense benefit 
to 1) Music producers and sound engineers in terms of 
sonic features to tweak for optimal results. 2) Artists and 

songwriters concerning the structure and “wordiness” of 
their songs [5]. The data will also provide further insights 
into how the most successful artists have inspired their 
audience [6]. Finally, the insights provided by this data 
will provoke further research and development in the field 
of music production and distribution. 

The remaining part of this paper is organized as follows. 
Section 2 reports the related work and theoretical 
background. Section 3 presents the methodology, while 
Section 4 presents the results and useful discussions. 
Finally, the conclusion to the paper and future perspectives 
are given in Section 5. 

2. RELATED WORK  
In the existing works of literature, several studies have 
been reported on audio features analyses [7], [8], [9], [10], 
[11], [12], [13], [14]. In particular, the MARSYAS 
framework for audio analysis is proposed in [7]. The work 
reported a new method for temporal segmentation 
leveraging audio texture. In  [8], audio content analysis 
was used to develop an approach to automatic 
segmentation and classification of audiovisual data. An 
audio stream can be classified and segmented into speech, 
music, environment sound, and silence using a suitable 
approach proposed in [9]. Additionally, the work 
introduced a set of new features comprising of the noise 
frame ratio and band periodicity.  
 
The work in [10] proposes a multi-purpose approach 
capable of performing unsupervised audio analysis and 
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using an audio classification framework for audio features 
analysis. In [11], audio features were analyzed and 
evaluated for multitrack music mixtures. Additionally, the 
work introduces a convolutional neural network operating 
on a large temporal input for robust audio feature 
processing. Similarly, the lyrical and audio features of a 
song have been used to detect the emotion of the song [12]. 
An open-source python library called pyAudioanalysis 
was proposed in [13]. The library keeps track of several 
procedures for audio analysis. These comprise feature 
extraction, segmentation, audio signals classification, and 
content visualization. In [14], AENet, a new deep network 
was developed for audio event recognition. 

Additionally, musical genre classification of audio 
signals was presented in [15], and a comprehensive 
definition of audio features for music content description 
is reported in [16]. A novel audio feature for music 
emotion recognition is presented in [17]. Also, audio 
features for noisy sound segmentation are elaborated in 
[18], and music genre classification using MIDI and audio 
features are outlined in [19]. In [11], extensive analysis and 
evaluation of audio features for multitrack music mixtures 
are presented. 

In [20], features for content-based audio retrieval were 
examined, and the work in [21] takes a close look at 
semantic annotation and retrieval of music and sound 
effects. Furthermore, music and audio content are 
elucidated in [22], and the authors in [23] capture the 
modeling timbre distance with temporal statistics from 
polyphonic music. On the Integration of text and audio 
features for genre classification in music information 
retrieval [24], the authors present a clear exposition on how 
text and audio features can be integrated for optimal genre 
classification in the context of information retrieval. 

On exploring automatic music annotation with 
“acoustically-objective” tags [25], over 10,000 songs 
curated from the Swat10k data set were annotated with a 
relatively large mixed vocabulary of over 600 tags. The 
authors compare short-time audio features and 
demonstrated that ENT features perform better than 
MFCC features. They are of the same dimensionality 
based on the GMM classifier. In another related study on 
the representations of sound in deep learning of audio 
features from music, the authors [26] applied a deep 
convolutional neural network (DCNN) to a relatively 
sizeable audio dataset. They adopted empirical methods 
performance the proposed algorithm on audio 
classification tasks. The authors' trained network shows 
robust performance in terms of the classification tasks 
when roughly 5s of music derived by less complex 
transformations of the raw audio waveform is fed as input. 
Furthermore, the authors observed that the highly 
structured spectrograms results from the STFT lacked 
precision when used for classification compared to the 
representation achieved by the random matrix transform of 
raw waveforms. 

The subject of timbre-invariant audio features for 
harmony-based music is discussed in [27]. The authors 
present a new method geared towards enhancing the 
Chroma features. This is achieved by increasing the degree 
of timbre invariance while maintaining the features’ 
discriminative power at the optimal threshold. The study 
also revealed that the authors trashed the lower coefficients 
while the upper coefficients were preserved. This is based 

on the idea that the lower Mel-frequency cepstral 
coefficients (MFCCs) are closely related to timbre.  

Finally, score-independent audio features were adopted 
to describe music expression clearly in  [28]. When music 
is being performed, the musician tends to add 
expressiveness to the musical message by varying the 
timing, dynamics, and timbre of the musical events to 
communicate an expressive intention in the most 
understandable manner. In the traditional context, music 
expression is analyzed following the acoustic parameters' 
deviations concerning the written score. The authors also 
demonstrated how machine learning could better 
understand expressive communication and derive audio 
features at an intermediate level.  

In the next section, the methodology used for the audio 
features analysis is presented. 

3. METHODOLOGY 
In this paper, an analysis of a robust dataset comprising 
audio features extracted from over 160,000 songs released 
from 1921-2020 is presented. This was done in Jupyter 
notebooks with Python 3, using third-party packages; 
Pandas, and Numpy as analytical tools. The datasets 
reported in this article are outlined as follows, and a brief 
description of all the columns in the dataset is given in 
Table 1. 
 
 “data.csv” – Full dataset 
 “data_by_genres.csv” – Data by genres 
 “data_by_artist.csv” – Data by artists 
 “data_by_year.csv”- Data by year 
 
The data source location is the Spotify Web API, and the 
Spotify Web API is based on REST principles. Data 
resources are accessed via standard HTTPS requests in 
UTF-8 format to an API endpoint, and Web API uses the 
appropriate HTTP verbs for each action. 

First, we imported the essential libraries and dataset 
through several code lines and provided brief descriptive 
statistics of the dataset following some code lines in 
Python. Some columns that were not very useful were 
dropped using a few code lines and Python to ease data 
preprocessing. For suitable scaling, it was essential to 
convert the ‘duration_ms’ column to minutes. The 
distribution of sonic features in the dataset was critically 
examined, and the correlation between the audio features 
in the dataset was demonstrated to establish key 
interrelationships amongst the variables.  

In terms of popularity, specific sonic features were 
considered, and a correlation plot was made to show the 
relationships between the said audio features and 
popularity. Also, the trends in audio features based on a 
time series were established. To this effect, a function to 
find the average of audio features per year was created, and 
a line chart showcasing how audio features have changed 
over time was presented. Furthermore, analysis of the 
oldies' audio features (songs before the year 2000) and 
Millenials (songs after the year 2000 till date) was 
reported.  
A function to create a horizontal bar plot showcasing 
artists by popularity was first written, followed by 
showcasing the most famous artists before 2000 and 
distributing the sonic features. Finally, the most famous 
artists after the year 2000 and the sonic features' 
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distribution were reported. The dataset is analyzed and 
made available for research reproduction as 
comprehensive results reported in section 4 of this paper. 

 
Table 1. Brief description of the audio features tested in the dataset 

 

 

Audio Feature Description 
duration_ms This audio feature describes the duration of the track in milliseconds.  

key This refers to the estimated overall key of the track. Integers map to pitches using standard Pitch Class 
notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on. If no key was detected, the value is -1. 

mode The mode indicates the modality (major or minor) of a track and the type of scale from which its melodious 
content is derived. This is mainly represented by one, and the minor is 0. 

time_signature This describes an estimated overall time signature of a track. The time signature (meter) is a notational 
convention to specify how many beats are in each bar (or measure). 

acousticness 
A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence; the 
track is acoustic. The distribution of values for this feature is referred to as the acousticness of the 
distribution. 

danceability 

Danceability describes how suitable a track is for dancing based on a combination of musical elements, 
including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is the least danceable, 
and 1.0 is the most danceable. The distribution of values for this feature is called the danceability 
distribution. 

energy 

Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, 
energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude 
scores low on the scale. Perceptual features contributing to this attribute include dynamic range, perceived 
loudness, timbre, onset rate, and general entropy. The distribution of values for this feature is often referred 
to as the energy distribution. 

instrumentalness 

The instrumentalness predicts whether a track contains no vocals. “Ooh” and “aah” sounds are treated as 
instrumental in this context. Rap or spoken word tracks are clearly “vocal”. The closer the instrumentalness 
value is to 1.0, the greater likelihood the track contains no vocal content. Values above 0.5 are intended to 
represent instrumental tracks, but confidence is higher as the value approaches 1.0. The distribution of values 
for this feature describes the instrumentalness distribution. 

liveness 
This detects the presence of an audience in the recording. Higher liveness values represent an increased 
probability that the track was performed live. A value above 0.8 provides a strong likelihood that the track is 
live. The distribution of values for this feature is referred to as liveness distribution. 

loudness 

This audio feature explains the overall loudness of a track in decibels (dB). Loudness values are averaged 
across the entire track and are useful for comparing the relative loudness of tracks. Loudness is the quality of 
a sound that is the primary psychological correlate of physical strength (amplitude). Values typical range 
between -60 and 0 dB. The distribution of values for this feature is called loudness distribution. 

speechiness 

Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording 
(e.g., talk show, audiobook, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks 
that are probably made entirely of spoken words. Values between 0.33 and 0.66 represent tracks that may 
contain both music and speech. 

valence 

A measure from 0.0 to 1.0 is describing the musical positivity conveyed by a track. Tracks with high valence 
sound more positive (e.g., happy, cheerful, euphoric), while tracks with low valence sound more negative 
(e.g., sad, depressed, angry). The distribution of values for this feature is referred to as the valence 
distribution. 

tempo 
The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, the tempo is the 
speed or pace of a given piece and derives directly from the average beat duration. The distribution of values 
for this feature is called tempo distribution. 

id The Spotify ID for the specific track. This ID is assigned to each track to ease identification. 
 

type The object type: “audio_features.” 

popularity 

This audio feature gives useful information about the popularity of the track. The value will be between 0 
and 100, with 100 being the most popular. The popularity is calculated by a suitable algorithm and is based, 
for the most part, on the total number of plays the track has had and how recent those plays are. Generally 
speaking, songs that are being played a lot now will have higher popularity than songs played a lot in the 
past. Artist and album popularity is derived mathematically from track popularity. Note that the popularity 
value may lag actual popularity by a few days: the value is not updated in real-time. 
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4. RESULTS AND DISCUSSIONS 
In this section, the results and discussions are reported. 
Specifically, the results are presented in section 4.1 and the 
discussion of results is given in section 4.2. 

4.1. Results of the Study 
The results from the analyses are briefly described as 
follows. First, an overview of the dataset is shown in Table 
2. Descriptive statistics about the dataset are given in Table 
3. The distributions between audio features are reported in 
Fig. 1. The correlation between audio features in the 
dataset is presented in Fig. 2 and Fig. 3, respectively. In 
terms of popularity, Fig. 4 shows the correlation with some 
selected audio features, whereas Table 4 showcases the 
average of some selected audio features by year. Fig. 5 
illustrates how some of these audio features have changed 
over the years, and Fig. 6 shows top artists of all time based 
on popularity. Fig. 7 shows the most famous artists before 
2000 (Oldies), while Fig. 8 showcases audio features' 
distribution before 2000 (Millennials). Furthermore, Fig. 9 
shows the most popular artists after the year 2000, and Fig. 
10 shows the distribution of audio features after the year 
2000. Finally, Fig. 11 gives the distribution of audio 
features after the year 2015 (Millennials).  

4.2. Discussion of Results 
The results of this study are briefly discussed as follows. 
In Table 2, Sergei Rachmaninoff, James Levine, and 
Berliner Philharmoniker recorded a duration of 831667, 

the energy of 0.211, and danceability of 0.279 each, while 
John McCormack had a duration of 159507, energy of 
0.203, and danceability of 0.518. These results show that 
the John McCormack duration is lower, but the energy has 
a higher value. Following the results for a count across key 
audio features of 168592, in Table 3, the acousticness, 
danceability, and energy recorded mean values of 
0.501360147, 0.533648407, and 0.48857702, respectively. 
Similarly, the standard deviations of the acousticness, 
danceability, and energy are 0.377992926, 0.175918949, 
0.267346249, respectively. The maximum values of 
acousticness, danceability, and energy are 0.996, 0.988, 
and 1, respectively. These results imply that these features 
are highly important and each achieves nearly 100% 
measure, with the energy as most efficient, followed by the 
acousticness. 

On the distribution of the audio features, as shown in 
Figure 1, the acousticness assumes a U-shaped 
distribution, while the danceability showed a reasonably 
normal distribution with a peak value of 0.60. For this 
distribution, the duration lies less than 12 minutes. The 
energy also gave a highly promising distribution, whereas 
the loudness did not pick until at -40 to 0. In this scenario, 
popularity is roughly 3000 but suddenly falls to around 300 
till the 20th year. It rises slowly achieving a peak of 600 at 
the 45th year, and then fell steadily to 0 in the 90th year. The 
tempo is evenly distributed around 100 with a peak value 
of over 1000. Last, the valence was seen to almost occupy 
the entire range 0 to 1, and the years 1950-2020 showed a 
flat distribution with a peak at 4000.

 

Table 2. Summarized overview of the dataset 

UNNAMED: 0 ACOUSTICNESS ARTISTS DANCEABILITY DURATION_MS ENERGY EXPLICIT 
0 0.732 ['Dennis Day'] 0.819 180533 0.341 0 
1 0.982 ['Sergei 

Rachmaninoff', 
'James Levine', 

'Berliner 
Philharmoniker'] 

0.279 831667 0.211 0 

2 0.996 ['John 
McCormack'] 

0.518 159507 0.203 0 

3 0.982 ['Sergei 
Rachmaninoff', 
'James Levine', 

'Berliner 
Philharmoniker'] 

0.279 831667 0.211 0 

4 0.957 ['Phil Regan'] 0.418 166693 0.193 0 

  

Table 3. Summarized view of the descriptive statistics of key audio features in the dataset 

 UNNAMED: 0 ACOUSTICNESS DANCEABILITY DURATION_MS ENERGY 

COUNT 168592 168592 168592 168592 168592 

MEAN 84295.5 0.501360147 0.533648407 232701.5574 0.48857702 

STD 48668.46263 0.377992926 0.175918949 122392.1252 0.267346249 

MIN 0 0 0 5108 0 

25% 42147.75 0.0978 0.412 172160 0.265 

50% 84295.5 0.515 0.543 209133 0.48 

75% 126443.25 0.896 0.662 263707 0.709 

MAX 168591 0.996 0.988 5403500 1 
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Figure 1. Distribution of the audio features 
 

 

 
 

Fig. 2. Correlation matrix of sonic characteristics among the audio features  
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Figure 3. Detailed correlation matrix among the audio features investigated 
 
 

Audio features correlation with popularity 

 
Fig. 4. Correlation between some selected audio features and popularity 

 
 

Table 4. Average of some selected audio features by year 
 

YEAR ACOUSTICNES
S ENERGY INSTRUMENTALNES

S 
LOUDNES

S 
DURATION_MIN

S 
DANCEABILIT

Y EXPLICIT 

1921 0.895823 0.236784 0.32233 -17.0954 3.831865 0.425661 0.054688 

1922 0.939236 0.237026 0.44047 -19.18 2.798409 0.48 0 

1923 0.976329 0.246936 0.401932 -14.3739 2.972605 0.568462 0 

1924 0.935369 0.348118 0.58281 -14.1567 3.081525 0.549403 0 

1925 0.965422 0.264373 0.408893 -14.5167 3.068845 0.57189 0 
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Figure 5. Changes in audio features over time in years 

 
 

                      
Figure 6. Top artists (all time) based on popularity 

 
 
 

              
Figure 7. Most popular artists (oldies) 
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Figure 8. Distribution of audio features before the Year 2000 

 
 
 
 

 
Figure 9. Most popular artists after the year 2000 (Millennials) 
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Figure 10. Distribution of audio features after the year 2000 (Millennials) 

 
 

 
 

Figure 11. Distribution of audio features after the year 2015 (Millennials) 
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From the correlation matrix in Figure 2, the popularity and 
year appear to be highly correlated. The energy, loudness, 
popularity, and year appear to not correlate with the 
acousticness, whereas the energy is positively correlated 
with the loudness. Further to this, Figure 3 shows the 
details of the correlation matrix. Energy and acousticness 
appear to have the least correlation of -0.77, and this is 
followed by acousticness and year having a correlation of 
-0.64.  Each audio feature seems to be self correlated on 
the matrix with a unit value. However, the highest pair 
correlation observed is between year with popularity, 
followed by energy with loudness. 

As shown in Figure 4 on audio features correlation with 
popularity, energy leads, followed by loudness, whereas 
acousticness has the worst correlation with popularity. In 
Table 4, the danceability grows as the year increased from 
0.425661 in 1921 to 0.57189 in 1925. The energy was 
building rapidly from 0.236784 in 1921 to 0.348118 in 
1924 and then fell to 0.264373 in 1925. The acousticness 
grew from 0.895823 in 1921 to 0.975369 in 1924 and then 
rise to 0.965422 in 1925. Different from these trends, the 
instrumentalness was seen to be rising and falling across 
the investigated years. On the changes in audio features 
over time in years, all tested audio features show random 
variations. The acousticness appears to be more dynamic, 
while the explicit shows a relatively stable trend.  

The top artists of all time, as shown in Figure 6, show 
that the Beatles are the most popular with around 20000, 
whereas the Johnny Cash and Beach Boys take the bottom 
lead with popularity around 13000. For the most popular 
oldies, as shown in Figure 7, the Beatles retakes the lead 
with around 18000, followed by the Rolling Stones around 
17500. Bob Marley and the Wailers appear to be the least 
with popularity around 10500. For the audio distribution 
before the year 2000, danceability shows a normal 
distribution, acousticness shows a U-shaped distribution. 
The energy appears to be rising vigorously to an early peak 
and then fell steadily. The valence is seen to be almost 
evenly distributed around 3000. The speechiness increases 
steadily to a peak at 0.17 and then drops drastically to a 
record low at 0.8. Last, the instrumentalness initially 
assumes the 80000 extreme but subsequently falls to 0 
afterward. 

On the most famous artists (Millenials) after the year 
2000, as shown in Figure 9, Taylor Swift is seen to be the 
most renowned artist in the 21st century with the popularity 
of over 9800, followed by Eminem with the popularity of 
8200, while Kanye West is seen as the least popular artist 
at the time with around 5200. 

On the audio feature distribution after the year 2000 
(Millenials) in Figure 10, both danceability and valence 
show normal distribution. The year had all peak, and the 
popularity and energy maintained the same trend. Figure 
11 shows the distribution of audio features after 2015 for 
Millenials: only the danceability, duration_ms, energy, 
tempo, and valence show fairly credible results. 

5. CONCLUSION 
Statistical analysis of the sonic effects of music from a 
comprehensive dataset on audio features is presented in 
this paper. The audio features derived from the Spotify 
web API endpoint and Spotify (Python module for Spotify 
web servers) were first curated by a third party and 
rigorously analyzed. This was done in Jupyter notebooks 

with Python 3, using third-party packages-Pandas and 
Numpy as analytical tools. Several audio feature 
parameters such as duration, key, energy, danceability, 
liveness, notation, mode, time signature, acousticness, 
instrumentalness, loudness, speechiness, valence, tempo, 
id, type, and popularity were examined and analyzed. 
Results indicate a strong correlation amongst the tested 
parameters, and the danceability appears to follow a 
standard distribution curve with slight variations in some 
scenarios. The insights provided by this data would 
provoke further research in the field of sound and speech 
synthesis, audio technology, music production, and sound 
and audio distribution. Future work would focus on 
developing an efficient audio feature analysis tool to 
reduce the impact of interference on useful signals. 
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