
VOL. 19, NO. 3, 2020, 1-6 
www.elektrika.utm.my 
ISSN 0128-4428

Real-time Digital Control of a Coupled-Tank Plant
with a Cyber-Physical System Node

Rosbi bin Mamat∗

School of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
∗Corresponding author: rosbi@fke.utm.my, Tel: 607-5535239, Fax: 607-5566262

Abstract: A real-time implementation of a digital proportional-integral controller on a Cyber-Physical Systems (CPS) node for
a coupled-tank plant to provide a testbed for verification of control algorithm and communication is described. The CPS node
embedded computer is based on the ADuC841 8-bit microcontroller and the embedded real-time multitasking software was
written in Pascal language. The node is interfaced to the Quanser’s coupled-tank plant via the on-chip 12-bit analog-to-digital
and digital-to-analog converters, and a RS-485 communication network connects it to other nodes to form a CPS. Experimental
results on the closed-loop control performances of the digital proportional-integral controller with three different tuning sets on
the coupled-tank plant, verified the functionality of the digital control algorithm.

Keywords: Real-time digital control, Cyber-physical systems, Proportional-integral control, Coupled-tank plant.

© 2020 Penerbit UTM Press. All rights reserved.

Article History: received 25 October 2020; accepted 5 December 2020; published 26 December 2020.

1. INTRODUCTION
Cyber-Physical Systems (CPS) are integrations of net-
worked embedded computers which interact dynamically
in real-time with physical processes. Embedded computers
and networks monitor and control the physical processes,
usually with feedback loops where physical processes
affect computations and vice versa [1]. Applications
of CPS includes automotive systems, industrial control
systems, power grid, avionic systems, medical devices etc.
CPS consist of three main technology components:

control, computation and communication – which is
commonly referred as 3C technologies. The computation
and communication components form the cyber-part of
CPS, while the physical process is the physical part of CPS.
The CPS nodes located at the lowest layer of CPS typ-

ically are autonomous nodes contain the 3C technologies
components. A CPS node consists of embedded computer
interfaced to process or plant, and a communication
network that connect it to other nodes or a server.
CPS node reads the plant states given by sensors through

analog-to-digital converters (ADC), computes the control
signals using some digital control algorithms and sends
the control signals to actuators through digital-to-analog
converters (DAC) to affect the plant. Information are
shared between other nodes and with higher levels of CPS,
and collaboratively they form global information synthesis
to achieve common objectives. This is a main difference to
the traditional embedded systems which were isolated and
mainly concentrating on predefined functionalities within
the overall system context [2].
One of the major reason for many badly tuned

proportional-integral-derivative (PID) controllers in pro-
cess industry is the lack of time to peform the controller

tuning [3]. Consequently, many PID controllers operated
in proportional-integral (PI) mode only, to ease the tuning
process. Therefore, it is reasonable to regard PI controller
as the main workhorse in process industry.
Due to the interaction with physical world, the dynam-

icity and the open-endedness of CPS, software testing and
verification post a difficult challenge [4].
This paper describes a real-time implementation of a

digital PI controller on a CPS node for a coupled-tank plant
to provide a testbed for verification of control algorithm
and communication at CPS node level and server-nodes
level. The coupled-tank plant is a popular lab-scale plant
frequently used in research and education [5, 6, 7].
The paper is organized as follows. In Section 2, the

difference equation describing the digital PI controller is
derived and the algorithm is presented. In Section 3 the
hardware of the CPS node and the embedded software
implementation aspects of the digital PI controller is
described and discussed. Section 4 describes experimental
setup with the coupled-tank plant. Section 5 presents some
experimental results on real-time control of coupled-tank
plant. Finally, the conclusion is drawn in Section 6.

2. DIGITAL PI CONTROLLER
In order to implement a digital PI controller, the standard
continuous-time PI controller need to be discretized or
digitized with the aim to obtain an algorithm in a difference
equation form suitable for implementation in software.

2.1 Discretization of Continuous-time PI Controller

Consider a standard feedback control structure as shown in
Figure 1, where 𝐺𝑐(𝑠) is the PI controller transfer function

1



Rosbi bin Mamat / ELEKTRIKA, 19(3), 2020, 1–6

given by Equation (1),𝑈 (𝑠) is the control signal,𝐸(𝑠) is the
error signal, 𝑌 (𝑠) is the plant/process output and𝑅(𝑠) is the
set point. The proportional gain 𝐾𝑐 and the integral time-
constant 𝑇𝑖 are tuning constants obtained through a design
process or from tuning rules.

𝐺𝑐(𝑠) =
𝑈 (𝑠)
𝐸(𝑠)

= 𝐾𝑐

(
1 + 1

𝑇𝑖𝑠

)
(1)

𝐺𝑝(𝑠)𝐾𝑐

(
1 + 1

𝑇𝑖𝑠

)
-

6
- --
-
+𝑅(𝑠)

𝐸(𝑠) 𝑈 (𝑠) 𝑌 (𝑠)

PI Controller Process

Figure 1. Block diagram of a standard feedback control
system with PI controller

To obtain the digital PI controller algorithm, the PI
transfer function in Equation (1) was discretized by
approximating the derivative (𝑠) in Equation (1) using the
Trapezoidal method given by Equation (2), where ℎ is the
sampling period and 𝑧−1 is the back-shift operator. This
approximation is also called Tustin’s approximation or the
bilinear transformation [8].

𝑠 ≈ 2(1 − 𝑧−1)
ℎ(1 + 𝑧−1)

(2)

Substituting Equation (2) into Equation (1), Equation (3)
is obtained, where 𝑢𝑘 = 𝑢(𝑘ℎ) and 𝑒𝑘 = 𝑒(𝑘ℎ) denote the
discrete control and error signals respectively, at time 𝑡 =
𝑘ℎ.

𝑢𝑘
𝑒𝑘

= 𝐾𝑐

[
2𝑇𝑖(1 − 𝑧−1) + ℎ(1 + 𝑧−1)

2𝑇𝑖(1 − 𝑧−1)

]
(3)

By noting the operation of the back-shift operator such that
𝑒𝑘𝑧−1 = 𝑒𝑘−1 and 𝑢𝑘𝑧−1 = 𝑢𝑘−1, Equation (3) can be
simplified to:

𝑢𝑘 = 𝑢𝑘−1 + 𝛾1𝑒𝑘 + 𝛾2𝑒𝑘−1 (4)

where,

𝛾1 = 𝐾𝑐

(
1 + ℎ

2𝑇𝑖

)
and 𝛾2 = 𝐾𝑐

(
1 − ℎ

2𝑇𝑖

)
Equation (4) is the difference equation that gives the
digital PI control algorithm in a velocity form. To have

Require: 𝐾𝑐, 𝑇𝑖, ℎ and current set-point 𝑟𝑘
Initialized: 𝛾1, 𝛾1, 𝑢𝑘−1 = 0, 𝑒𝑘−1 = 0
1: loop
2: 𝑦𝑘 = readADC // read current process output
3: 𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘 // calc error signal
4: compute 𝑢𝑘 using Equation (4)
5: if 𝑢𝑘 > MAX_VALUE then
6: 𝑢𝑘 = MAX_VALUE
7: else if 𝑢𝑘 < MIN_VALUE then
8: 𝑢𝑘 = MIN_VALUE
9: end if
10: writeDAC(𝑢𝑘) // write control signal
11: 𝑢𝑘−1 = 𝑢𝑘 // update signals for next sampling
12: 𝑒𝑘−1 = 𝑒𝑘 // period
13: Wait for next sampling period
14: end loop

Figure 2. Digital PI control algorithm for implementation

a good approximation with continuous-time PI controller
behaviour, in the discretization process the sampling period
ℎ was chosen to be 100 ms, as commonly used in many
industrial controllers.

2.2 Digital PI Controller Algorithm

Figure 2 shows the digital PI controller algorithm for
software implementation which will be executed every
sampling period. The algorithm requires that the tuning
constants 𝐾𝑐 and 𝑇𝑖, and the set-point 𝑟𝑘 are available,
possibly transmitted over the network from the master
node. The sampling period ℎ is fixed at 100 ms.
The process output is read from the sensor using the

readADC function and the control signal is sent to the
actuator through the writeDAC function. Note that, 𝛾1 and
𝛾2 are precomputed outside the control loop to speed-up the
control loop execution. Note also, lines 5 – 9 implement
control signal clamping so that the control signal is within
the predefined minimum and maximum values.

3. CPS NODE IMPLEMENTATION
In this section, the hardware and software aspects of
the CPS node implementation are briefly described by
highlighting the 3C technologies involve in the node. The
node hardware consists of embedded computer, plant and
network interfaces, while the software involves real-time
multitasking embedded software for control and RS-485
communication.

3.1 CPS Node Hardware Prototype

The embedded computer is based on the ADuC841 8-bit
microcontroller manufactured by Analog Devices Inc. [9].
This is an optimized 8052 single-cycle core with peak
performance of up to 20 MIPS, integrated with 8-channel
high accuracy 12-bit ADC and two 12-bit DAC, suitable
for digital control. There are other on-chip peripherals
such as Universal Asynchronous Receiver/Transmitter
(UART), Serial Peripheral Interface (SPI), timer and
General Purpose Input/Output (GPIO) which were utilised
in the node implementation.
The node hardware prototype was built on the ADuC841

Evaluation Board from Analog Devices as shown at
the bottom of the circuit board in Figure 3. The
RS-485 [10] interface is industry’s most widely used
balanced transmission-line standard, enables the node to be
networked. The 4-bit binary switch can be used to set the
node address on this network, and this address is displayed
on the 7-segments LED display in hexadecimal. Note that,
even though the RS-485 standard allows up to 64 nodes, in
this prototype it is limited to only 15 nodes on the network.

3.2 Real-time Embedded Software Implementation

The embedded software for the node was written in
Pascal language and compiled with Turbo51 free Pascal
compiler [11].
The important software modules and their dependencies

on other modules and on the on-chip peripherals are
shown in Figure 4. On the top layer, the CPS node
embedded software consists of communication (COMM),

2



Rosbi bin Mamat / ELEKTRIKA, 19(3), 2020, 1–6

Figure 3. Prototype of the CPS node on the ADuC841
Evaluation Board

control (CONTROL), and user interface (USER INTF) tasks
which are run in a mutitasking environment provided by
the operating system module (OS).
The OSmodule basically is a small cooperative real-time

kernel that provides the facilities for creating, scheduling
and dispatching the software tasks with the help of timer in
the ADuC841 chip.
Figure 5 shows an excerpt from the main program of the

CPS node. Lines 10 – 12 show how the procedures loop0
in CONTROL module, task in COMM module, and heartBeat
are created to be multitasked by the OS module in a
periodic time-triggered manner. The period for execution
of those modules are defined in lines 5 – 6. In this way,
CONTROL module is executed every 100 ms, and the COMM
module is executed every 250 ms. The heartBeat task
is executed every two seconds used as the CPS software
health indicator. These three tasks are scheduled and
executed accordingly by OsSchedule in line 16.
The COMM module depends on reception (RXPACK),

processing (PROCPACK) and transmission (TXPACK) of data
packets, which eventually depend on UART serial interface
to communicate on the RS-485 network. Data received
fromUART are buffered by interrupt service routine so that
no received data is lost. The packet for communication
consist of seven bytes data including a checksum byte
which provides a rudimentary way for data integrity and
error checking. The PROCPACK module also responsible
to perform other commands in received packets such as
setting and updating the PI parameters, change set points,
read plant output etc.
The CONTROLmodule consists of procedure loop0which

executes the PI control algorithm given in Figure 2.
However, due to presence of noise in the level sensor
readings of the coupled-tank plant, the PI algorithm was
modified to include a first-order digital filter to reduce the
noise in the sensor readings.
Equation (5) give the difference equation for implement-

ing the noise filter where, 𝑓𝑘 and 𝑓𝑘−1 are current and
previous filtered output, and 𝑦𝑘 is the current plant output.
𝛼 ranges 0 – 1 is used to select the filtering effect; 𝛼 = 0

Figure 4. Software modules and on-chip peripherals
dependencies in the CPS node

1: program main;
2: uses ...; // include all the modules
3:
4: const
5: CTRL_period = 100;
6: COMM_period = 250;
7: OSTick_mS = 5; // OS tick in milliseconds
8: begin
9: OSInit;

10: OSCreateTask(Ctrl.loop0, CTRL_period div OSTick_mS, 0);
11: OSCreateTask(Comm.task, COMM_period div OSTick_mS, 1);
12: OSCreateTask(heartBeat, 2000 div OSTick_mS, 2);
13: OsRun;
14: while True do
15: begin
16: OsSchedule;
17: end;
18: end.

Figure 5. Main program of the CPS embedded software

ignores the unfiltered data, while 𝛼 = 1 turn-off filtering.
In this implementation 𝛼 = 0.9 was used. With the
inclusion of this noise filter, the error calculation in line
2 of Figure 2 is modified to 𝑒𝑘 = 𝑟𝑘 − 𝑓𝑘.

𝑓𝑘 = 𝛼𝑦𝑘 + (1 − 𝛼)𝑓𝑘−1 (5)

4. EXPERIMENTAL SETUP
To test the functionality of the CPS node embedded
software and for verification of digital control algorithm,
the CPS node was used to control the water level of a
coupled-tank plantmanufactured byQuanser Inc. [12]. The
experimental setup is shown in Figure 6.

4.1 Coupled-tank Plant Configuration

The Quanser’s coupled-tank plant consists of a pump, two
cylindrical tanks and awater basin which acts as a reservoir.
The two tanks are vertically mounted on top of each other
such that water from the top tank (Tank1), which is filled by
the pump from the water basin, can flow to the bottom tank
(Tank2) which eventually will flow into the water basin
under gravity.
In this experiment, the plant is configured as a state-

coupled SISO system (configuration 2) [12]. The controller
is designed to regulate or track the water level in Tank2 by
manipulating the pump, while Tank1 acts as buffer.
In each tank, water flow from the bottom through an

outlet orifice. Outflow from the tanks, hence the plant
dynamics, can be varied by using the different outlet inserts

3



Rosbi bin Mamat / ELEKTRIKA, 19(3), 2020, 1–6

Figure 6. Coupled-tank plant and CPS node setup

which can be screwed into the tapped holes at the bottom
of each tank. In this experiment, inserts with diameter of
0.476 cm (medium insert) were fitted in both tanks.
A disturbance tap, when opened, causewater fromTank1

flows directly to the water basin, is used to introduce
disturbance flow into Tank2. The water level in each tank is
measured by a pressure sensor located at the bottom of each
tank which was calibrated to give a sensitivity of 6.1 cm/V.
This sensitivity was used to convert the level readings from
voltage to centimeters.
The Quanser VoltPAQmodule provides the necessary in-

strumentations for the sensors, power supply and amplifier.
The signals from the sensors and to the pump are 0 – 5 V
compatible. The pump amplifier gain was set to 3 in this
this experiment. The interfacing between the CPS node and
the coupled-tank plant sensor and actuator is shown by the
block-diagram in Figure 7.

4.2 Data Collection

The plant output 𝑦(𝑡), and the control signal 𝑢(𝑡) were
measured directly with a data acquisition card equipped
with 12-bit ADC and DAC on a PC. The sampling rate
for data acquisition is two seconds. The PC also served as
the master node for sending PI controller tuning parameters
and set points to the CPS node via the RS-485 network.

5. EXPERIMENTAL RESULTS
Two sets of experiments were performed. In the first set,
the coupled-tank plant model is estimated experimentally
in the form of a first-order plus dead-time (FOPDT) model
shown in Equation (6), where 𝐾 is the process gain, 𝜃 is
the delay and 𝜏 is the time-constant. This FOPDT model is
used to calculate tuning settings for the PI controller using
three different tuning rules. These three different sets of

Figure 7. Interfacing the CPS node to coupled-tank plant

tunings serve as ways of obtaining three different closed-
loop dynamics which can be used to access or verify the
digital PI control algorithm.
In the second set of experiments, the closed-loop

performances of the digital PI controller on level tracking
and load disturbance rejection were recorded for three
different sets of tunings. The load disturbance is introduced
by turning the disturbance tap to half-open, which will
cause some of the water in Tank1 flows directly to the water
basin, consequently, produced a level drop in Tank2.

𝐺𝑝(𝑠) =
𝐾𝑒−𝜃𝑠

(1 + 𝜏𝑠)
(6)

5.1 Plant Model Estimation and PI Tuning

Due to the nonlinear dynamics of coupled-tank plant, the
plant model was estimated around an operating level of
15 cm to obtain a linearized model around 15 cm level.
A step input voltage of 0.2 V (𝑢(𝑡)) was given to the
pump amplifier and the level output voltage given by the
level sensor (𝑐(𝑡)) was recorded in open-loop. From this
open-loop response, the estimated FOPDT model for the
coupled-tank plant is given by Equation (7). Where, the
delay and time-constant are in seconds, and the unit for the
process gain is Volt/Volt.

𝐺𝑝(𝑠) =
𝐶(𝑠)
𝑈 (𝑠)

= 2.3𝑒−9𝑠
(1 + 35𝑠)

(7)

This model includes the dynamics of the amplifier, pump,
level sensor and water tanks. It will be used to calculate
the PI controller tuning settings using three well-known PI
tuning rules. Two tuning rules which were proposed in the
thirdmillennium, the Amigo [3] and the SIMC [13], and the
classical Ziegler-Nichols [14] were selected. For a FOPDT
process model in the form of Equation (6), the tuning rules
for Amigo is given by Equation (8), SIMC by Equation (9)
and Ziegler-Nichols by Equation (10).

𝐾𝑐 = 1
𝐾

(
0.15 + 0.35𝜏

𝜃
− 𝜏2

(𝜃 + 𝜏)2

)
𝑇𝑖 = 0.35𝜃 + 13𝜃𝜏2

𝜏2 + 12𝜃𝜏 + 7𝜃2
(8)

𝐾𝑐 = 0.5𝜏
𝐾𝜃

𝑇𝑖 = min(𝜏, 8𝜃) (9)

𝐾𝑐 = 0.9𝜏
𝐾𝜃

𝑇𝑖 = 3.3𝜃 (10)

From the estimated FOPDT model in Equation (7) and
tuning rules given by Equations (8) – (10), the PI settings

4



Rosbi bin Mamat / ELEKTRIKA, 19(3), 2020, 1–6

were calculated as tabulated in Table 1. These settings
were used in evaluating the closed-loop performances of
the digital PI controller.

Table 1. PI tuning settings calculated from three different
tuning rules

Tuning Rules 𝐾𝑐 𝑇𝑖
Amigo 0.38 28.9
SIMC 0.85 35.0

Ziegler-Nichols 1.52 29.7

5.2 Closed-loop Responses Under Digital PI Control

The two performances observed in the closed-loop re-
sponses are set-point tracking and load disturbance rejec-
tion around the 15 cm level where the FOPDT model was
estimated. For each PI tuning (𝐾𝑐 , 𝑇𝑖) in Table 1, set-
point changes were given after the levels have reached
their steady-states. Set-points were changed from 15 cm
to 18.3 cm levels and then back to 15 cm. After this the
load disturbance was introduced. The point at which the
disturbance was introduced is indicated by an arrow in
Figures 8 – 10.
Figure 8 shows the responses under PI control with

Amigo tunings, where 𝑦 is the water level and 𝑢 is the
control signal produced. The set-point tracking shows
a good tracking with about 6% overshoot. The load
disturbance caused the water level to drop by more than
3 cm, and it took about 250 seconds to fully reject the
disturbance.
Figure 9 shows the responses under PI control with

SIMC tunings. The set-point tracking shows a faster
response compared to the Amigo tunings with about 14%
overshoot. The load disturbance caused the water level to
drop by 3 cm, and it took 200 seconds to fully reject the
disturbance, faster than the one with Amigo tunings.
Figure 10 shows the responses under PI control with

Ziegler-Nichols tunings. The set-point tracking shows
a fast response with high overshoot (about 32%). This
is where the Ziegler-Nichols tuning-rules are frequently
abused. The tuning rules were meant for good load
disturbance rejection, not for set-point tracking. As can
be observed in Figure 10, Ziegler-Nichols tunings gave
excellent response to load disturbance, where the water
level dropped by 2 cm only, and it took 130 seconds to fully
reject the disturbance, much quicker than PI controller with
Amigo and SIMC tuning rules.
Observation of the responses produced by these tuning

rules as shown in Figures 8 – 10, shows that this general
behaviour is consistent with results already analyzed and
reported elsewhere [3], [15]. These results verified the
correctness and functionalty of the implemented digital PI
controller.

6. CONCLUSION
An implementation of a digital proportional-integral (PI)
controller on a Cyber-Physical Systems (CPS) node to
provide a testbed for verification of control algorithm and
communication was described. This shows that, it is
possible to implement a real-time digital PI controller with

0 200 400 600 800 1000
Time (Seconds)

12

14

16

18

20

y 
(c

m
)

0 200 400 600 800 1000
Time (Seconds)

2

3

4

u
(V

ol
ts

)

Disturbance

Figure 8. Closed-loop response under digital PI control
with AMIGO tuning rules

0 200 400 600 800 1000
Time (Seconds)

12

14

16

18

20
y 

(c
m

)

0 200 400 600 800 1000
Time (Seconds)

2

3

4

u
(V

ol
ts

)
Disturbance

Figure 9. Closed-loop response under digital PI control
with SIMC tuning rules

0 200 400 600 800 1000
Time (Seconds)

12

14

16

18

20

y 
(c

m
)

0 200 400 600 800 1000
Time (Seconds)

2

3

4

u
(V

ol
ts

)

Disturbance

Figure 10. Closed-loop response under PI control with
Ziegler-Nichols tuning rules

5



Rosbi bin Mamat / ELEKTRIKA, 19(3), 2020, 1–6

RS-485 networking facility using an 8-bit microcontroller
such as ADuC841 with minimal hardware requirement.
The CPS node was used to control the Quanser’s

coupled-tank plant and the closed-loop performances were
observed when the plant were under the digital PI control,
tuned with three different tuning rules. The set-point
tracking and load disturbance responses with those tunings
show general behaviour which is consistent with results
already analyzed and reported in literature. These results
verified that: (i) the implemented digital PI controller
functionalty is correct; and (ii) the estimated FOPDT
process model is accurate enough to be used for calculating
the PI tunings.

REFERENCES
[1] E. A. Lee, “Cyber Physical Systems: Design

Challenges”, Proc. 11th IEEE Int’l Symp. On Object
and Component-Oriented Real-Time Distributed
Computing (ISORC 08), 2008, pp. 363–369.

[2] B. Rumpe, I.Schaefer, B. Schlingloff and A. Vo-
gelsang, “Special issue on engineering collaborative
embedded systems”, in SICS Software-Intensive
Cyber-Physical Systems, vol. 34, pp. 173–175, 2019.

[3] T. Hägglund, “The one-third rule for PI controller
tuning”, Computer and Chemical Engineering, vol.
127, pp. 25–30, 2019.

[4] T. Bures, D. Weyns et. al, “Software Engineering for
Smart Cyber-Physical System – Towards a Research
Agenda”, ACM SIGSOFT Software Engineering
Notes, vol. 40, pp. 28–32, November 2015.

[5] K. H. Johansson, “The quadruple-tank process: A
multivariable laboratory process with an adjustable
zero”’, IEEE Transactions on Control Systems
Technology, vol. 8, pp. 456 – 465, 2000.

[6] J. B. M. Santos, G. A. J’unior, H. C. Barroso and P.
R. Barros, “A Flexible Laboratory-Scale Quadruple-
Tank Coupled System for Control Education and
Research Purposes”, Proc. 10th International Sym-
posium on Process Systems Engineering - PSE2009,
2009, pp. 2151-2156.

[7] J. Carrasco, W. P. Heath, M. C. R. Liñan, R. Alli-
Oke, O. A. R. Abdel Kerim and S. R. Gutierrez,
“Controlling a quadruple tanks rig with PLCs as a
Masters dissertation project”, 10th IFAC Symposium
Advances in Control Education, August 28-30,
Sheffield, UK, 2013, pp. 238 – 243.

[8] K.J. Åström and B. Wittenmark, Computer Con-
trolled Systems, Theory and Design, 2nd ed.,
Prentice-Hall, Englewood Cliffs., N.J., 1990.

[9] Analog Devices Inc., aduc841_842_843 Datasheet,
2017, http://www.analog.com, Accessed 20 Febru-
ary, 2020.

[10] Telecommunications Industry Association (TIA),
Electrical Characteristics of Generators and Re-
ceivers for Use in Balanced Digital Multipoint
Systems, ANSI TIA/EIA-485A, March 1998.

[11] Turbo51, Turbo Pascal for 8051 microcontrollers,
https://turbo51.com/, Accessed 20 February, 2020.

[12] Quanser Inc.,UserManual Couple Tank Experiment
Set Up and Configuration, Quanser Inc., Canada,
2012.

[13] S. Skogestad, “Simple analytic rules for model
reduction and PID controller tuning”, Journal of
Process Control, vol. 13, pp. 291 – 309, 2003.

[14] J.G. Ziegler and N.B. Nichols, “Optimum settings
for automatic controllers”, Trans. ASME, vol. 64, pp.
759 – 768, 1942.

[15] K.J. Åström and T. Hägglund, “Revisiting the
Ziegler–Nichols step response method for PID
control”, Journal of Process Control, vol. 14, pp.
635 – 650, 2004.

6




