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Abstract: In the view of heterogeneous flow characteristics of solid particles in pneumatic pipeline system, electrostatic signals 
of an array 16 electrical charge sensors were developed. The distribution solid particle properties of the electrostatic signals in 
handling of vertical pneumatic conveying system under different flow conditions were monitored and experimental verification 
was conducted. The results show that the energy distribution of an array electrostatic signals can be used to determine the 
distribution of solids inside the pipe. Regardless of the differences in mass flow rate, the pattern of experimental outputs was 
identical which demonstrates that mass flow rate disparity has no impact on the structure of voltage output. This result also 
indicates that the electrical charge sensor able to quantify the dissemination of solid particles in pneumatic conveying stably 
and accurately.  
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1. INTRODUCTION 
Over recent decades there are enormous demand for the 
use of pneumatic conveying system from diverse 
industries likes energy, chemical, food manufacturing, 
medication, ceramics, rubber and plastic [1]. Some of the 
key factors which lead to increase recognition of 
pneumatic conveyor across various end-use industries for 
instance are high reliability, low operational and 
maintenance costs, reduced risk of material spillage, and 
low energy consumption.  

Monitoring the flow performance in pneumatic 
conveying pipeline is vital when the stable flow transmute 
towards temporal flow due to the gas velocity and 
transporting air is not enough. This phenomenon would 
trigger stern pipeline blockage. Consequently, one of the 
most auspicious methods used to measure the solid-gas 
two-flow in pneumatic conveying pipeline is the 
electrostatic technique due to the advantages of stable 
performance, non-invasive structure, and low cost [2]  

Considering the sensitivity of measurement, 
electrostatic sensor has a drawback of limited sensitivity, 
as a result, only particles proximate to electrode can be 
efficaciously sensed. Therefore, electrostatic monitoring 
system composed of single sensor has poor accuracy for 
the application of gas-solid flow density monitoring or 
particle size monitoring [3]. With the intention of 
improved the accuracy and reliability monitoring system, 
positioning multiple electrostatic sensors around the 

circumference of pipe have become trend among 
researchers [4-6].  

Kumar et al. analysed the real-time monitoring system 
for unstable and stable flow condition by adopting the Fast 
Fourier Transform and Hilbert-Huang Transform 
techniques. They constructed a circular of six electrostatic 
sensors array with used of arc-sharped type electrode at 
two different section of a pilot pneumatic conveying 
pipeline [7]. Nonetheless, the factors influence the sensing 
characteristics such as material and geometric shape of 
electrode used were also analysed [8-10]. Zhang et al. 
proposed data fusion algorithms and cross-correlation 
technique to present the dynamic characteristics of the 
particles flow by using strip-shaped electrodes and square-
loop shaped electrodes of the sensing head embedded in a 
vertical square-shaped pipe with different flow conditions 
[11].  Thuku et al. investigated the circular electrostatic 
sensor arrays constituted from rod-shaped electrode to 
establish the sensing model and formulated the 
relationship between sixteen and four sensors [12]. 
Furthermore, a new improved model for ring-shaped 
sensing head for electrostatic sensor based on point 
charged was presented and analysed using finite element 
method [13] which suitable for circular electrostatic sensor 
arrays. Other issues influence the interest of researchers for 
the solid-gas two-phase flow in the context of high-
velocity pneumatic conveying were the impact of 
electrifying particle collisions and mechanical processes 
which frequently resulted to particles deterioration, 
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electrostatic type flow measurements and flow 
characteristics performance [14-15].  

The major purpose of this work is to develop a prototype 
electrical charge sensor which used as measuring tool to 
monitor the concentration profile of solid-gas two-flow in 
the pneumatic pipeline for different flow conditions. The 
sensing unit were electrical charge type of sensor or better 
known as electrostatic sensor. Two algorithms were used 
namely linear back propagation and filtered back 
propagation algorithms to determine the tomographic 
images. Experiments were carried out in a laboratory scale 
test rig vertical pipe pneumatic conveyor.  

2. METHODOLOGY  

2.1 Sensing Mechanism  
The electrostatic charges are produced due to movement of 
solid particles in a pneumatic pipeline. At any point when 
particle encounters another surface like pipe wall the 
electrification of solid particles might possibly predicted.  

Ma et al. classified two main factors determine the 
quantity of charge on the moving particles in the pipeline 
such as chemical and physical properties of particles and 
the surrounding environment. Particle size and shape, 
velocity, volume resistivity, dielectric permittivity, 
chemical compositions are under physical and chemical 
properties. Besides, temperature, humidity and pipeline 
roughness are considered under surrounding environment 
properties [16]. 

The oscillations of electric field owing to the charged 
particles path would gain a signal can be identified by 
sensing head associated with suitable signal conditioning 
circuit. The sensing interaction is attained solely by 
electrostatic induction from the charging solid particles 
provided the sensing head is implanted within the pipeline, 
therefore there is no direct connection between the sensing 
head and the solid particles. Contrary if the sensing head is 
disclosed directly to the moving solid particles inside the 
pipeline therefore the charge will transmit immediately to 
the signal conditioning circuit. Nonetheless, electrostatic 
induction becoming major interaction if diameter of the 
exposed sensing head is smaller than pipe diameter. [17]. 
Figure 1 displays a theoretical framework model for 
electrostatic sensing system. 

2.2 Electrical Charging Phenomenon 
Understanding the physical mechanism behind the 
electrical charging phenomena would lead to better insight 
of particle property. As explained previously in section 
2.1, the existent of electrostatic charge in pneumatic 
pipeline due to collision among moving solid particles and 
friction between particles and the pipe wall would produce 
a triboelectric effect. Electrical charge sensor can be used 
to examine this triboelectric effect which involve the 
sensing principle through the movement of a charged 
particle. With the purpose of investigating the correlation 
between the charged particles and the sensing head of 
electrical charge sensor apprehending the mathematical 
modeling is crucial.  
 
 

 

Figure 1. Model of Electrostatic Sensing System 

The identical mathematic model of electrical charge 
sensor has been derived comprehensively by many 
researchers [18-21]. The pragmatic model is developed by 
considering the physical geometry of the sensing head is 
conductive ring with outer surface earthed, the diameter of 
the sensing head (D), the axial length (W) and subsisting 
in the electrostatic field of a point charge +q. The radial 
thickness of sensing head is disregarded. This model 
studies the single point charge, q which moves at a constant 
velocity, v. Figure 2 shows the coordinate system 
modelling of electrical charge sensor with respect to the 
point particle charged.  

 
Figure 2. Coordinate Modelling of Electrical Charge 

Sensor 
 

The total induced charge q’ on the inner surface of the 
sensing head is given by equation 1.  
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The actual current output of the sensor due to the 

movement of the point charge, q is given by equation 3. 
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Based on equations 1 and 3 the signals of induced 

charge q’ and current from the electrical charge sensor 
have been plotted and shown in figures 3 and 4, 
respectively.   

 
Figure3. Induced Charge Signal 

 

 
Figure 4. Current Signal 

 

2.3 Electrical Charge Sensor 
The fundamental concept of an electrical charge sensor is 
charged to voltage converter contingent on the principle of 
Coulomb’s theory of charge as stated in equation 4.  
 

CVQ =     (4) 
 

  Where Q is the quantity of charge in coulombs, C is a 
capacitance in farads and V is voltage in volts. Figure 5 
shows the circuit diagram of the electrical charge sensor.  

This sensor consists of two main parts i.e., sensing head 
and suitable electronic conditioning circuit. The sensing 
head is segregated from the pipe wall by a nylon plug. The 
moving charged particles pass through the pipe will be 
detected by the sensing head made from silver steel 
conductor rod.   
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Figure 5. Electrical Charge Sensor Circuit Diagram 
 

The electronic circuit used for conditioning the signal 
received from the moving charged particles has three 
major phases which are analogue front end, voltage gain 
and noise mitigation. These three phases are performed by 
pre-amplifier, secondary amplifier, and low pass filter. The 
main function of this part of sensor is to convert the 
detected charge signal to voltage signal and amplifies the 
electrostatic signal considering the detected charge signal 
received by sensing head is very weak.  Then this signal 
will transform into three types of outputs. The first output 
used to acquire the velocity is an ac voltage signal. The 
second output can be used for spatial filtering test is a 
rectified voltage signal. The third output used for 
concentration profile is an averaged voltage signal. The 
electrical charge sensor is shown in Figure 6. 

 
 

 

Figure 6. Electrical Charge Sensor  

2.4 Experimental Scheme 
The experimental test rig was designed to obtain the data 
for this project. The test bench comprises of a reservoir, a 
bunker, material feeder vane, vertical pipe and 16 electrical 
charge sensors. These 16 electrical charge sensors were 
installed equally around the circumference of pipe with a 
height of 1.4m from the feeder. Solid particles, made from 
plastic material with a size of 3mm cubes each are fed 
down through the pipe of 100mm diameter via the variable 
speed screw feeder at controlled rates. Figure 7 shows the 
16 electrical charge sensors installed around the pipe wall.  
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Figure 7. Sixteen Electrical Charge Sensors Mounted 
Around the Pipe   

The measurement was performed by connecting all 16 
sensors to a data acquisition system. The Keithley KUSB-
3116 data acquisition card with sampling frequency of 1 
kHz was used to capture the signal data. This data 
acquisition card communicated the signal between the 
electrical charge sensor and the computer for storage and 
processing purposes. The responses from each sensor in 
time domain were then plotted and shown in Figures 8 and 
9. 

 

 

Figure 8. Charge Signal of Output 1  

 
Figure 9. Current Signal of Output 1 

 
 

3.3 RESULTS AND DISCUSSIONS 

3.1 Average Output of the Sensors 
A few sets of data at various flow rates within 110 g/s to 
500 g/s of the averaged voltage output are captured 
through data acquisition Keithley KUSB-3116 for each 

electrical charge sensors to investigate the concentration 
profiles. Figure 10 shows the graph of the averaged voltage 
at flow rate 350g/s. 
 
 

 
Figure 10. Average output at flow rate of 350 g/s 

 
 

From the observation, it clearly shows that distributions 
of net charge carried by particles are not concentrated 
uniformly over the measurement section. This non-
uniform particle distribution happened due to non-constant 
particles flow rate generated by the rotary valve used in 
this experiment. 

    

3.2 Measured and Predicted Outputs 
The calculation of predicted voltage for the output of 
sensor is derived by determine a scaling factor prior to 
calculate the predicted voltage of the sensor output. 
Considered that the solid particles distributed uniformly 
within the measurement section, the scaling factor, ST for 
predicted output is calculated by following equation.  
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Predicted voltage output Pi = Sensitivity * KU. 
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The total sensitivity of sensors, ST is given by the 
summation of sensitivity map. The calculation of scaling 
factor was done to measure mass flow rate from 110 g/s to 
500 g/s. Figure 11 shows comparison between measured 
output and predicted output for flow rate at 350g/s. 
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Figure 11. Experimental sensor output and predicted 
sensor output for full flow regime at flow rate of 350 g/s. 
 

Generally, the experimental output voltages measured 
from the sensors are nearly identical to the predicted output 
voltage. However, further observation shows that some of 
the experimental outputs are higher than predicted output 
otherwise some of the experimental outputs are lower than 
predicted voltage.  

Then the regression graph was plotted for full flow 
regimes at various flow rates within 110g/s to 500g/s to 
determine the relationship between sensors output and 
measured flow rates as shown in Figure 12.  

 

 
Figure 12. The sum measured output and predicted 

output with regression lines. 
 

The graph shows a positive linear relationship between 
the transducer output and the measured flow rate. The 
correlation coefficient of both measured and predicted 
output is 1.000 and the gradient of the linear regression line 
is 0.022. Therefore, the two regression lines for both 
measured and predicted outputs are overlap as clearly 
shown in Figure 12. The following equation is obtained by 
applying linear fit regression for both measured and 
predicted output regression lines. 

 
6357.0022.0)( +×= flowrateoutputV   (9) 

3.3 Concentration profiles 
The averaged output produced by output number three of 
electrical charge sensor is used to generate the 
concentration profiles of flow regimes at different flow 
rates. Two types of image reconstruction algorithms 
namely linear back projection (LBP) algorithm and filtered 
back projection (FBP) algorithm have been chosen to 
present the tomographic images of the concentration 
profile for plastic bead particles over the measurement 
section in the pneumatic pipeline. Figures 13 and 14 show 
the tomogram of concentration profile for full flow at 

measured flow rates of 350 g/s using LBP and FBP 
algorithms, respectively. 
 

  
Figure 13. Concentration profiles for full flow at 350 

g/s using LBP algorithm. 
 

 
 

Figure 14. Concentration profiles for full flow at 350 
g/s using FBP algorithm. 

 
Figures 13 and 14 graphically visualize the tomographic 

images for dissemination of concentration profile across a 
measured sectional view of pneumatic pipe.   For linear 
back projection profiles show that electrical charge sensors 
detected the existence of charge adjacent to the sensing 
region and the amount of charge proximate to the pipe wall 
are greater compared than charge at the center of pipeline. 
As for the filter back projection algorithm the 
concentration profiles almost uniformly distributed at any 
region across a measured pipeline. 

4. CONCLUSION 
Electrical charge sensor is one of the efficacious 
instruments for imaging dissemination of solid particles in 
pneumatic pipeline system. The method and technique 
have been developed effectively is emerged that electrical 
charge sensor is applicable for measuring equipment to be 
used in laboratory and industry.  

The electrical charge sensor is greatly responsive to 
sense charge proximate to sensing region based on the 
proved results deduced from theoretical and experimental 
data. Positioning an array of 16 electrical charge sensors 
around the circumference of pipe and the application of 
linear back projection algorithm and filtered back 
projection algorithm are effective measurement technique 
for solid-gas flow in pneumatic conveyor system.  
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