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Abstract: In this paper the influence of ground plane size on the performance characteristics of a thin-wire helical antenna 
characterized by a logarithmically varying turns spacing, and mounted above a circular ground plane of finite extent, is 
systematically investigated. The moment-method formulation utilized in the paper involves a wire-grid model for the ground 
plane as well as explicit expressions, deriving from a vector potential approach, for the radiation fields of this ‘loghelix’. 
Subsequent computational results obtained for a candidate 8-turn ‘loghelix’ axial-mode ( )0.8 1.4C λ≤ ≤  antenna using 
various combinations of ‘logarithmic variation factor’ and ground plane size, very clearly reveal that limiting the size of the 
ground plane to finite dimensions significantly improves antenna performance. Maximum gain obtainable, for example, 
emerged as 16.45dBi when a finite ground plane is utilized, as against 13.55dBi for the corresponding antenna, backed by an 
infinite ground plane. The associated axial ratio performance is characterized by 0.44dB average axial ratio 1.22dB≤ ≤  for 
the finite ground case, and1.96dB average axial ratio 2.75dB≤ ≤ , for the infinite ground plane case. A notable finding of the 
investigations is that the dip that typically features in the power gain profiles of antenna structures backed by finite ground 
planes will be eliminated, when ground plane size, relative to antenna size exceeds a certain minimum. 
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1. INTRODUCTION 
In one of the earliest rigorous investigations of the effects 
of size on antenna performance, Harrington [1], 
demonstrated that optimum gain, efficiency, and 
bandwidth achievable are functions of the device’s 
physical size, measured in units of wavelength. Since 
then, quite a few other size-based investigations, many of 
them with focus on the influence of the size of the finite 
ground plane in the antenna structure, have been reported 
in the open literature. Notable examples of these include 
contributions described in [2] and [3], for the rectangular 
microstrip antenna, [4], for the microstrip-fed monopole, 
and in [5] and [6], for the circular loop antenna. Others 
are the contributions of Bolli et al [7], concerning the 
aperture array of log-periodic antennas deployed for 
Earth station use in the SKA1-Low radio telescope: and 
the treatment of finite-ground-plane-backed monopole, 
reported by Basaery et al, [8].     
   For the helical antenna, which is the focus of this paper, 
several research publications ([9], [10], for example) have 
firmly established that size and shape of the finite ground 
plane have significant consequences for the antenna’s 
gain, axial-ratio bandwidth, and input impedance 
responses. Contributions by Nakano  et al [10] revealed 
that for the uniformly wound helix, conventional axial 
mode operation is maintained if the diameter of a backing 
finite circular conductor is at least 0.6λ at the operating 

frequency; and that if the size of the diameter is reduced 
to 0.4λ , a ‘backfire’ axial mode operation results. 
According to the results reported by Ahmad et al, [11], 
for the Quadrifilar Helical Antenna (QHA), the antenna’s 
input impedance remains virtually constant, if its height 
above a finite ground plane is at least 0.3λ . As a matter 
of fact, a related contribution in [12] optimized the far-
zone radiation characteristics of the QHA through an 
informed prescription of finite ground plane size. Results 
presented in the paper suggested that whereas the QHA 
backed by finite ground planes generally provided better 
(compared to infinite ground plane) 3dB axial ratio 
bandwidth and boresight axial ratio, in Low-Earth Orbit 
satellites, however, stability in input and far-zone 
parameters is achievable at the expense degraded 
boresight axial ratio.  Wadkar et al [13], investigated the 
influence of a small circular ground plane on the 
performance parameters of a uniformly wound, axial-
mode antenna, to find that a maximum gain of 2.08dB is 
obtained when the radius of the ground plane is 30

λ , for 

a wire radius of 100
λ .  Sadeghikia and Horestam [14] 

reported a somewhat similar situation for a uniformly 
wound helical antenna operated in the axial mode, and 
utilized for space communications. The two key findings 
reported in [14] are that antenna optimum performance is 
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achieved when ratio of ground-plane radius to helix 
radius is 1.5, and for this ratio, performance is 
independent of number of helical turns.    
         A number of publications have suggested that the 
introduction of some non-uniformity into the geometry of 
the axial mode helical antenna represents a means of 
enhancing performance. Egorov and Ying [15], for 
example, described how the introduction of a geometrical 
non-uniformity may be utilized for the excitation of two 
distinct resonant frequencies by the helical antenna, for 
dual mode mobile telephony applications. Elkamchouchi 
and Salem, [16], [17], who investigated the effects of two 
types (exponential and logarithmic variation of helix 
diameter)  of geometrical non-uniformities, reported 
comparative outcomes, which suggested that the 
introduction of both the logarithmic and exponential 
variations in helix diameter attracted improvements in all 
antenna performance metrics over the uniformly wound 
helix. Further improvements were recorded for the best 
performing ‘exponential helix, [17], when a ground plane 
was introduced into the structure, with what the authors 
referred to as “a noticeable improvement in gain”.  The 
conclusions in [16] and [17] concerning the exponential 
helix are supported by the results presented by Chen et al 
[18], who considered an exponentially varying turns 
spacing, for which axial-ratio bandwidth improved by 
close to 59%  over that for an equivalent linearly spaced 
helix. It may be remarked in that connection that whereas 
[17] utilized a large (infinite) ground plane, the square 
ground plane utilized in [18] had finite dimensions.  
    Because a recent publication by Ayorinde et al [19], 
suggest that the helical antenna characterized by a 
logarithmic non-uniformity in its turns spacing, has better 
performance metrics than the ‘exponential helix’ of about 
the same geometrical profile, and since, as noted by 
Nakano et al [10], a finite ground plane significantly 
improves the helical antenna’s gain and axial ratio 
performances, this paper is motivated to examine the 
influence of ground plane size on the performance of the 
‘loghelix’.          

Using the same 8-turns axial mode helical antenna 
treated in [19] for the purposes of comparative 
evaluation, the paper presents a method-of-moments 
investigation, in which the finite ground plane is modeled 
as a wire grid of the type described in [6], [10], [20]. The 
computational results due to the analytical model very 
clearly demonstrate that the logarithmically non-uniform 
helical antenna’s performance improves remarkably, 
when the structure’s ground plane is of finite extent. In 
particular, over the frequency range considered, 
maximum achievable gain improved by about 3dBi (or 
21.4%) whilst average axial ratio attracted close to a 58% 
increase.  

A notable outcome of the study is that the power gain 
profiles associated with wire antenna structures backed 
by finite ground planes need not exhibit dips of the type 
suggested by the results of [5], [6], and [23], as being 
characteristic of such antennas. For the relevant results 
obtained in this paper reveal (for the first time, to the best 
of our knowledge) that when the size of the ground plane 
relative to that of the antenna (‘aspect ratio’) exceeds a 
certain minimum, the said dips will be eliminated.    

.  

2. ANALYSIS   
The geometry of Figure 1 describes a general N-turn 
helical antenna of circular cross section whose turns 
spacing varies logarithmically along its axis, and which is 
mounted on a circularly-shaped ground plane of finite 
extent.  

 
Figure 1. Problem Geometry 

 
Because the ground plane is modeled by a wire-grid 
consisting of circular-loop and radial elements, the vector 
magnetic potential for the problem admits description as a 
superposition of three contributing components: one due 
to the ‘loghelix’, and the other two, due to radial and 
circular-loop components, respectively, of the wire grid.    

For the loghelix, and following developments fully 
described in [19], it is readily established that the 
Cartesian components of the vector potential are given by 
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provided that the symbol  ζ , which features in the phase 
terms of the foregoing equations is defined by  
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It is also to be noted that for these expressions, ‘a’ stands 
for the radius of loghelix, φʹ  a ‘source quantity’- a 
running variable along the turns of the helix; whilst β
represents the structure’s ‘logarithmic variation factor’, 
and ,NΦ which in part, defines this factor, is given by 
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2 1N Nπ βΦ = + ; with α representing helix pitch angle 
of the originally uniform helix.   
        Vector magnetic potential for the mth circular-loop 
element of the wire grid has the Cartesian components 
identified as  
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whilst for the linear elements of the wire-grid, each of 
length symbolized by Lr, vector potential’s Cartesian 
components are readily evaluated as 
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in which nϕ identifies the inclination of nth radial element 
to the x-axis.  
Finally,   
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The angular measure denoted by φ  in Equations (1a) - 
(1c) is a running variable associated with the geometry of 
the loghelix, and should not be confused with ϕ ’, a 
spherical coordinate variable.  And for Equations (3a) and 
(3b),      
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When the well-known radiation-zone approximation 
characterized by jω= −E A  is utilized, and upon 
invoking the usual Cartesian-to-Spherical coordinates 
transformation, the radiation field integrals associated 
with the vector magnetic potentials defined by Equations 
(1) – (3) readily emerge as follows: 
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being the contributions from the loghelix, with  
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as contribution from each circular-loop element of the 
wire-grid. Contributions from each of the radial elements 
of the wire-grid are  
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2.1 Moment-method solution 
The solution to the problem formulated by the analysis 
presented in the foregoing discussions requires the 
determination of the only unknown (current distribution) 
quantity appearing in Equations (4) to (6). In this paper, 
use is made of the method of moments [21], for the 
determination of this unknown, in the following manner.  

 First, expansion functions (denoted by ‘T’) and 
weighting functions (symbolized by ‘W’) are defined for 
the three (loghelix, radial, and circular-loop) thin-wire 
component parts of the problem geometry, and then, the 
generalized impedance matrix appropriate to the problem 
is specified according to  

[ ]
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The subscripts ‘qh’, ‘qc’, and ‘qr’ appearing in Equation 
(7) identify the qth weighting function defined for the 
geometry of the loghelix, circular-loop, and radial 
elements of the structure, respectively; and a similar 
interpretation obtains for the subscripts ‘ph’, ‘pv’, and 
‘pr’ associated with the expansion functions.  On the 
other hand, the superscripts ‘m’ and ‘n’ in the equation 
refer to the mth and nth circular-loop and radial elements 
of the wire-grid. ‘Lp’, ‘Lc

’, and ‘Lr’ are linear operators 
[21], defined with the uses of Equations (4) to (6), for 
loghelix, circular-loop, and radial geometries, 
respectively. Inner product prescribed by ,• • in Equation 
(7) involves the use of the unit vectors, easily derived as  
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for the loghelix, [19],  
ˆ ˆ ˆsin coscir x yϕ ϕʹ ʹ= − +a a a                                                      (8b) 
in the case of each circular-loop element, and  
ˆ ˆ ˆcos sin
rdl n x n yϕ ϕʹ= +a a a ,                                                    (8c) 

for the nth radial element.  
Once a voltage excitation column vector is determined for 
the problem, the desired current distribution becomes 
available through the simple matrix processes of 
inversion and multiplication, as explained elsewhere, 
[21].  

2.1.1. Specifications  
For the purposes of computational results, the 
dimensional and operational specifications displayed in 
Table 1 are utilized in the paper. Because the axial-mode 
loghelix backed by an infinite ground plane treated in 
[19] is used for comparative evaluation, this paper adopts 
the same frequency range of1.6 2.8GHz f GHz≤ ≤ , which 
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corresponds to the log-helix dimensions defined by 
0.8 1.4.C λ≤ ≤  The logarithmic variation factor remains the 
same as in [19], and the height of the antenna above the 
ground plane is maintained at 0.15 λ at all the frequencies 
considered.   

Table 1. Physical specifications of antenna structure 

Freq. 
(GHz) 

Cλ rg/ λ 
γ=3 

rg/λ 
γ=3.5 

rg/ λ 
γ=4 

rg/ λ) 
γ=4.5 

rg/ λ 
γ=5 

rg/ λ 
γ=6 

1.6 0.8 0.381 0.445 0.508 0.572 0.635 0.762 
1.8 0.9 0.429 0.501 0.572 0.644 0.715 0.858 
2.0 1.0 0.477 0.557 0.636 0.716 0.795 0.954 
2.2 1.1 0.525 0.613 0.700 0.788 0.875 1.050 
2.3 1.15 0.549 0.641 0.732 0.824 0.915 1.098 
2.4 1.2 0.573 0.669 0.764 0.860 0.955 1.146 
2.5 1.25 0.597 0.697 0.796 0.896 0.995 1.194 
2.6 1.3 0.621 0.725 0.828 0.932 1.035 1.242 
2.8 1.4 0.669 0.781 0.892 1.004 1.115 1.338 
 
  Finite circular ground plane size is specified by an 
‘aspect ratio’ defined by  

                         
log

circumferenceof ground plane
circumferenceof helix

γ = ,               (9) 

which, in this paper, varies between 3.0 and 6.0, as shown 
in Table 1. For these dimensions, Table 1 also displays 
the corresponding variations in ground plane radius, as 
frequency varies.  
   The computational implementation of the Method-of-
Moments scheme involved a wire-grid ground plane with 
4 circular loops and 12 radial elements. And in the 
Garlerkin approach (identical expansion and weighting 
functions), 64, 48, and 18 expansion functions were 
utilized for the loghelix, and the circular loop, and the 
radial elements, respectively.  The computational results 
obtained with the use of a 1V delta-gap feed model are 
presented and comprehensively discussed in section 3, 
which follows.  

3. DISCUSSION OF RESULTS 
Representative computational results describing the 
performance of loghelix antenna backed by a finite-sized 
ground plane are presented in this section, starting in the 
next sub-section, with current distribution.  
 
3.1. Current distribution 
 The current distribution profiles displayed in Figures 2.1 
– 2.5 are for various values of ground plane aspect ratio, 
for given values of β , in the representative cases of 
0.8 1.2C λ≤ ≤  

 
Figure 2.1. Profiles of current distribution along the 

helical arm length for 0.8C λ=  

The distributions of current along the helical arm length 
displayed by Figure 2.1 for Cλ = 0.8 reveals that 
regardless of the value of γ when β = 0, the decaying 
component and the surface wave part of the current 
waveforms are (with the notable exception of the case γ = 
4.5) about equally divided over the helical arm length, 
with slight differences in profiles and magnitude 
distributions. The ripples on the surface-wave part of the 
current distributions may be directly attributed to 
reflections from the open end of the helical structure. 
When β = 0.03, the decaying segments of the current 
profiles now approximately occupy the first five turns of 
the helix, leaving the last three turns to the surface wave 
portion.  Again, it is observed that the magnitude of 
current for the case γ = 4.5 is dominant especially in the 
decaying region. Compared to the case of β = 0, the feed-
point current values are larger and the reflection from the 
open end of the helix have diminished slightly.  
The profiles of Figures 2.1(c) and (d) for β = 0.05 and 
0.1, respectively, indicate that the decaying segments of 
the magnitude of currents move  moderately towards the 
open end of the helix as β increases, consequently 
reducing the span of the surface wave segments in 
comparison.  

 
Figure 2.2.Profiles of current distribution along the 

helical am length for 0.9C λ=  
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It can also be observed from the profiles that magnitude 
of current generally increases as the logarithmic variation 
factor (β) increases. 
         The profiles displayed in Figure 2.2 are for Cλ = 0.9, 
covering all the four values of β indicated. Unlike what 
obtained with the cases described for Figure 2.1, the 
decaying exponential components of magnitude of 
current, for various values of γ, though slightly larger, 
now extend only over the first two turns from the feed-
point. This means that in this case, the surface wave 
region of the current, which, as noted in [10] is essentially 
responsible for radiation in the axial direction, now 
extends over the remaining six turns of the loghelix, for 
all sizes of ground plane considered.  In this case, the 
extreme point of the exponentially-decaying segment of 
the profiles gradually moves towards the second turn as β 
increases.  According to these distributions, reflections 
from the antenna’s open end have significantly reduced, 
as evident from the mild ripples displayed by the current 
waveforms. This suggests that the increase in ground 
plane size is more influential on the exponential-decaying 
component of magnitude of current distribution. 

 
Figure 2.3.Profiles of current distribution along the 

helical arm length for 1.0C λ=  

The trend displayed by the profiles of Figure 2.3 (Cλ = 
1.0) clearly show that the surface wave region of 
magnitude of current now strictly extends from about 1½  
turns of the helix to the open end, for all values of aspect 
ratio. Compared to the profiles of Figure 2.2, magnitude 
of current in this case, is noticeably larger, and the 
influence of the logarithmic variation factor is also more 
pronounced.  With the exception of γ = 3.5, all 
waveforms for other values of aspect ratio values share 
similar profiles. Indeed, when γ is greater than 4.0, the 
distributions of current magnitude for all values of β  are 
practically identical with moderate reflections from the 
open end.  On the other hand, for γ less than or equal to 
4.0, the differences in the profiles are limited to the 
exponentially-decaying region located between the feed-
point and about 1½ turns of the helix. 
       When the size of the log-helix is defined by  Cλ = 1.1, a 
distinguishing feature, as can be seen from Figure 2.4 is 
that the magnitude of current distribution is largest for γ = 
3.5, over all values of β .  And although magnitude of 
current is generally higher in this case than recorded for 
for the  Cλ = 1.0 case, the exponential decaying segment 

current distribution for the former is still limited to the 
span of the arm length extending from feed-point (φʹ  = 
0o) to 1½ turns of the helix, as with the latter.  
 

 
Figure 2.4.Profiles of current distribution along the 

helical am length for 1.1C λ=  

 In comparison with the current profile when Cλ = 1.0, the 
current plots for Cλ = 1.1 reflect stronger reflections from 
the open end in view of more visible ripples especially 
near the open end. 
          For the remaining values of Cλ considered (1.2, 1.3, 
and 1.4) the requirement of the same vertical span for 
both the uniform and non-uniform geometries of the helix 
implies that at the end close to the feed point, the turns 
compression of loghelix increases significantly. The 
consequences of this observation for magnitude of current 
distribution are typified by profiles displayed in Figure 
2.5, from which it can be deduced that there is significant   

 
Figure 2.5.Profiles of current distribution along the 

helical am length for 1.2C λ=  

reflections from the antenna’s open end. Other interesting 
features of these profiles concern the surface component 
of magnitude of current, for which, in this case, minimum 
value is recorded when aspect ratio is 6.0, for all values 
of β .  Also, magnitude of current is largest over the span 
of the antenna’s arm length when aspect ratio equals 3.5, 
again, for all values of β .  
 
3.2.  Radiation Fields 
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The ˆ θa -component, in the XZ-plane, of the radiation 
fields corresponding the current distributions of Figure 
2.1 are displayed in Figure 3.1. 

  
Figure 3.1. Far-zone ( ),0E θ θ for 0.8C λ=  

It is readily observed from the profiles that the main 
lobes, for all values of logarithmic variation factor and 
aspect ratio, are completely symmetrical about the helical 
axis (θ = 0o) above the finite ground plane, whereas, (with 
the exception of γ = 4.5)  the minor lobes in the backward 
direction (θ = 180o) below the ground plane are of 
relatively moderate strength. According to these profiles., 
the most directive beam in the forward direction (θ = 0o) 
is obtained in all cases of non-uniformity. When γ = 4.5, 
in the region above the finite ground plane modeled by 
wire-grids, the patterns essentially display no sidelobes, 
though in the backfire direction (θ = 180o), the pattern 
strength increases as β increases particularly for γ = 4.5 
case. 

 
Figure 3.2. Far-zone ( ),0E θ θ for 0.9C λ=  

Although the theta-component of the radiation field 
patterns corresponding to the current distribution profiles 
of Figure 2.2 (for Cλ = 0.9) follow the same general trend 
as those of Figure 3.1, one obvious difference seen from 
Figure 3.2 is that the most prominent back lobe is now 
associated with the ground plane size defined by γ = 4.0.  
In addition, the minor lobes in this case are of relatively 
lower strength, and the patterns better support the 

suggestion that compared with the uniform helix in terms 
of minor lobes below the ground plane, the loghelix is a 
more efficient radiator. 

 
Figure 3.3. Far-zone ( ),0E θ θ for 1.0C λ=  

Radiation field patterns for the case Cλ = 1.0 (due to the 
current distributions of Figure 2.3) are displayed in 
Figure 3.3. These patterns very clearly reveal notable 
improvements in both directivity of the main lobes and 
minor lobes of the loghelix, compared with the two cases 
discussed. An interesting feature of the patterns is that 
with the exceptions of the ground plane size cases for 
which 𝛾 = 3.5	𝑎𝑛𝑑	𝛾 = 4.0, the patterns are virtually 
identical, for all degrees of non-uniformity considered.  It 
is also interesting to observe that the back lobe strengths 
have decreased significantly compared to the previous 
cases, and the dominant back lobe, which increases in 
strength as β  increases, is now associated with 𝛾 = 3.5. 

 
Figure 3.4. Far-zone ( ),0E θ θ for 1.1C λ=  

At the frequency of operation for which  Cλ = 1.1, the 
theta-component of the antenna’s radiation field patterns 
for the different combinations of γ and β, differ 
significantly from those for the three values of Cλ earlier 
discussed, as can be seen from Figure 3.4. First, the 
‘dominant’ back lobe characteristic of the patterns for Cλ 
< 1.1 has now shifted its occurrence to the ground plane 
defined by 𝛾 = 3.0; and is now relatively larger in 
strength and exhibits a considerably more pronounced 
degree of asymmetry. The minor lobes below the ground 
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plane are also relatively smaller in size, and as a matter of 
fact, the only noticeable side lobe above the ground plane 
is that associated with the 𝛾 = 3.0  patterns.  
 

 
 

Figure 3.5. Far-zone ( ),0E θ θ for 1.2C λ=  

Figure 3.5 displays the far-zone patterns due the current 
distributions of Figure 2.5, for which Cλ is 1.2. One 
immediately noticeable feature of the patterns is that the 
‘dominant backlobe’ associated with patterns for the 
other values of Cλ earlier discussed, is not featured in this 
case. In addition the patterns are now characterized by 
sidelobes of strength relatively larger compared with 
those of the patterns earlier discussed; and the field 
patterns in the forward direction, in the case of 𝛾 = 6.0 
now has a slight asymmetry. 

 
 

       Figure 3.6. Far-zone ( ),0E θ θ for 1.3C λ=  

Figure 3.6 reveals that with further increases in  Cλ to 1.3 
the slight asymmetry observed in Figure 3.5 for the 
patterns for γ  = 6.0 become more noticeable as β   
increases, and extend to the other patterns. . It is further 
revealed  that the symmetry displayed by the main lobes 
of field patterns for values of 1.2C λ ≤  no longer feature. 
And it can also be observed that significant side lobes 
exist, mainly below the finite ground plane, and with 
strengths, generally noticeably smaller than those of the 
corresponding patterns for  Cλ < 1.3.  

    As confirmed by the excellent values of axial ratio (in 
§3.2) due to antenna for all values of ground plane size 
over the entire range of frequencies considered, the 
patterns of the  ϕ  -components of the far-zone fields are 
practically identical to those of the θ -components. 
 
3.2.  Axial ratio  
In antenna theory and practice, Axial Ratio (AR) 
represents a measure of the degree of circular 
polarization, ascribable to an antenna’s radiation field, 
[22]. For the computational results presented and 
described in the ensuing discussions, use is made of the 
expression given as [19], 

( )
( )
( )

122 2 4 4 2 2

10 122 2 4 4 2 2

2 cos2
10log

2 cos2

E E E E E E
AR dB

E E E E E E

θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ

δ

δ

⎡ ⎤+ + + +⎢ ⎥= ⎢ ⎥
+ − + +⎢ ⎥⎣ ⎦

                                                                                     (10) 
The axial ratio profiles displayed in Figure 4 describe the 
influence of ground plane size on the axial ratio of the 
logarithmically-wound helical antennas by comparing 
axial ratio performances of different ground plane sizes, 
including the infinite ground plane. 
                      

 
Figure 4. Axial-ratio profiles for different sizes of     
                  ground plane for various values of β  
 
It is immediately obvious from the profiles, that the use 
of finite sizes for the ground plane significantly enhances 
the circular polarization attributes of the logarithmically 
wound helix. According to the results, for the uniformly 
wound helix, the influence of ground plane size is slight, 
particularly in the frequency range 1.9 2.3GHz f GHz≤ ≤ . 
With the introduction of the logarithmic non-uniformity 
in the antenna’s turns spacing, however, the axial ratio 
performance is remarkably enhanced, as can be seen from 
Table 2, which compares average values of axial ratio. 
Data on the table reveal that the best AR averages occur 
for the size of ground plane defined by 3.5γ = ; the only 
exception to this being  the case of 0.10, 6.β γ= =  

A number of other interesting features are discernible 
from the profiles of Figure 4. For example, when the 
ground plane size is defined by 4.0γ = , axial ratio, for 
all values of β  has a unique profile over the frequency 
range ; and in the particular case of the uniform helix, 
represents the only finite ground plane size, for which 
axial ratio is greater than 3dB at any frequency.   
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Table 2. Comparison of average values of axial ratio 

Ground 
Plane 
Size 

0.00β =  0.03β =  0.05β =  0.10β =  

ARave      ( 
dB) 

ARave  
(dB) 

ARave 
(dB) 

ARave 
(dB) 

Infinite 2.1615 2.0157 1.9645 2.2494 

3.0γ =      1.4708     0.7800     0.6123     0.4567 

3.5γ =      1.4331     0.7438     0.5863     0.4492 

4.0γ =      1.7477     0.9575     0.7766     0.5800 

4.5γ =      1.5631     0.8208     0.6623     0.4831 

5.0γ =      1.5923     0.9269     0.8023     1.2240 

6.0γ =      1.6900     1.0908     0.9598     0.8290 

 
Another interesting feature is that the 3dB axial ratio 
bandwidth is practically the same (the best possible for 
the frequency range considered) for the various 
combinations of γ and β , the cases of the infinite ground 
plane and 4γ =  (for the uniformly-wound helix) being 
exceptions. 
 
3.2.  Power gain  
The power gain profiles of Figure 5 derive from the 
computational results obtained with the use of the 
expression given as [23] 

( ) ( )( )2 2

10 2

, ,
( ) 10log

30
f f f f

p
in in

E E
G dB

I R
θ ϕθ ϕ θ ϕ⎡ ⎤+

⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

,               (11) 

where Iin and Rin feed-point current and feed point input 
resistance, respectively; while ( ) ( )0 0, 0 ,0f fϑ ϕ = .  

  
Figure 5.1 Power gain profiles for different sizes of 

ground plane for various values of β  
 
The curves of Figure 5.1 very clearly show that for all 
degrees of logarithmic non-uniformity, the use of a 
ground plane of finite extent, in general significantly 
improves the power gain response of the antenna. As a 
matter of fact, maximum achievable gain is consistently 
higher for the finite ground plane cases than for the large 
(essentially infinite) ground plane case, as can be seen 
from Table 3.  

Table 3. Maximum achievable gain with various ground 
plane sizes 

Groun
d Plane 

Size 

0.00β =  0.03β =  0.05β =  0.10β =  

Max 
Gain(dBi

) 

Max 
Gain(dBi

) 

Max 
Gain(dBi

) 

Max 
Gain(dBi

) 

Infinite 11.3770 13.0970 13.3780 13.5500 

3.0γ =  13.3700 14.1500 14.1000 13.8700 

3.5γ =  13.3000 14.1300 14.1200 13.9300 

4.0γ =  13.1200 14.1400 14.1700 14.0200 

4.5γ =  13.1700 14.2800 14.3300 14.1900 

5.0γ =  13.1600 14.3900 14.4700 13.9500 

6.0γ =  14.7500 16.2800 15.9900 16.4500 
  
Nonetheless, the gain profiles identify a particularly 
noticeable effect of ground plane size on the gain of the 
loghelix backed by a ground plane of finite extent.  

  
Figure 5.2 Effect of ground plane size on the power gain 

of the loghelix 
 

In order to underscore this effect, the curves of Figure 5.1 
are displayed in the alternative format of Figure 5.2.  And 
as can be seen from the latter set of profiles, power gain 
is characterized by sharp dips when aspect ratio is less 
than or equal to 4.0.  Because such dips in power gain 
profiles appear characteristic of antenna structures backed 
by finite ground planes (see [5] [6], as examples), it is 
reasonable to conclude that such dips will only feature, 
when the size of the ground plane relative to the 
corresponding size of the antenna (or ‘aspect ratio’), is 
less than a critical value. It is worth  remarking that in the 
case of the loghelix under consideration here, the dips 
associated with power gain coincide with the instances of 
the ‘dominant back lobes identified in section 3.2, as 
occurring for the relative ground plane sizes defined by 
( ) ( ) ( ) ( ), 0.85,4.0 ; 0.95,3.5 ; 1,10,3.0 .C λ γ =  
 
3.3.  Front-to-back ratio  
An antenna radiation pattern’s front-to-back ratio 
represents a measure of the effectiveness of the finite 
ground plane in reducing backward radiation. It is given 
by  
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Figure 6.1  Variations of front-to-back ratio with 

normalized circumference for various combinations of β
and γ  

In Equation (12), ( ) ( )0 0, 180 ,0b bθ ϕ = , and all other 
quantities remaining as earlier defined.              
 
     Figure 6.1 displays the variations of front-to-back 
(F/B) ratio with normalized log-helix circumference, for 
different combinations of geometrical non uniformity and 
ground plane size. And as may be expected, the dips 
associated with the power gain profiles also featured in 
the front-to-back ratio (F/B). Unlike what obtained for 
power gain and axial ratio (which are pattern ‘forward 
direction’ parameters) the F/B ratio curves for all cases of 

6γ =  are markedly different from those for the other 
values of γ , as can be seen from Figure 6.2. This is 
evidently due to the fact that F/B ratio, as defined by 
Equation  (12), is function of   both main lobe and back 
lobe parameters.   
 

 
Figure 6.2  Profiles of front-to-back ratio showing 

influence of ground plane size  

4. CONCLUSION 

This paper has systematically investigated the influence 
of ground plane size on the performance characteristics of 
a helical antenna, whose turns spacing is defined by a 
logarithmic variation along its axis. Using the structure 
considered in [19] (which examined the effects of the 

logarithmic non-uniformity) as candidate for the 
investigations, a Method of Moments analysis involving a 
wire grid model [6], [8], [20], for the circular ground 
plane was adopted.  

Subsequent computational results obtained and 
comprehensively discussed in the paper reveal a number 
of interesting features concerning the effects of the 
ground plane size on the antenna’s performance metrics. 
Notable examples of these include the fact that when the 
ground plane size, as defined by an aspect ratio denoted 
by γ is such that 3.0 4.0γ≤ ≤ , the radiation field pattern 
is characterized by a ‘dominant back lobe’, for all degrees 
of logarithmic non-uniformity. This property is further 
manifested in the profiles of the antenna’s power gain in 
the forward direction, which, for these values of ground 
plane size, exhibits what has been described in the paper 
as  sharp ‘dips’ of the type that feature in the power gain 
profiles reported in [5], [6], for example. Because the 
results reveal that these dips are eliminated for ground 
plane size greater than that defined by 4.0γ =  in this 
case, it is concluded that power gain profiles for wire 
antenna backed by finite-sized ground planes will not 
exhibit such dips, if the aspect ratio is judiciously 
specified. This conclusion is, as far as be ascertained, 
being reported for the first time, in the open literature. 

 Although similar comments apply for the antenna’s 
axial ratio and F/B profiles, an additional feature emerged 
in the case of the latter, for γ = 6.0. In this case, F/B ratio 
generally decreased with C λ up to about 1.25C λ= , when 
it starts increasing. This suggests that for this ground 
plane size, radiation field strength is not maximum along 
the ( )0 00 ,0  axis in the forward direction, whereas, it is 

relatively strong along the ( )0 0180 ,0  axis, in the 

backward direction. 
Finally, the computational results very clearly reveal 

that the use of a finite ground plane significantly 
enhances the loghelx antenna’s performance metrics well 
beyond the effects of the logarithmic non-uniformity, as 
reported in [19].      
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