
VOL. 21, NO. 3, 2022, 23-27
https://elektrika.utm.my
ISSN 0128-4428

 23

Intrusion Detection System (IDS) Accuracy
Testing for Software Defined Network Internet of

Things (SDN-IOT) Testbed
Sharifah H. S. Ariffin*, Jia Le Chong, Nurul Mu’azzah Abdul Latif, Nik Noordini Nik Abd Malik,

Rashidah@Siti Saedah Arsat, Muhammad Ariff Baharudin, Sharifah Kamilah Syed-Yusof and
Kamaluddin M. Yusof

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
*Corresponding author: shafizah@utm.my

Abstract: Intrusion detection system (IDS) are considered as one of the best solutions for network security as it can detect
intrusion and alert the network administrator on possible intrusions. However there are possible false alert that could cause
unnecessary trigger of the network to the administrator. This paper provides a proof of concept of the accuracy test of an
intrusion detection system (IDS) using software defined network IoT platform. The testbed uses UNSW-NB15 dataset that
feeds the testbed and the traffic are mirror in a Ryu Controller that is installed with Snort IDS to monitor any DDoS attacks.
For proof of concept false positive and false negative tests are run to ensure that the IDS are well configured. The experiment
shows that the SDN-IoT platform with Snort IDS is accurate in both false positive and false negative test.

Keywords: Intrusion Detection System, Software Defined Network (SDN), Internet of Things (IoT).

© 2022 Penerbit UTM Press. All rights reserved
Article History: received 21 February 2022; accepted 3 December 2022; published 22 December 2022.

1. INTRODUCTION
With recent interest and progress in the development of
internet and communication technologies over the last
decade, network security has emerged as a vital research
domain. Intrusion detection system (IDS) is deployed to
ensure the security of the network and all its associated
assets within cyberspace. There are also many studies in
the security of Internet of Things (IoT) network [1,2,3]
where enormous devices are easily connected and able to
communicate to each other. When the large volumes of
data generated by IoT are considered, it is obvious that the
traditional wireless network does not satisfy the network
users nor the network requirement. 5G and beyond
networks rely on software defined network (SDN) and
network function virtualization (NFV) for resource
management it is the key enabler for future’s ubiquitous
IoT [4]. Therefore, it is particularly important to design an
intrusion detection model that guarantees the security,
integration and reliability of the IoT. The focus of this
work is to provide the accuracy testing for IDS installed in
SDN-IoT platform to ensure the testbed is able to capture
DDoS attacks as it happens.

This paper is organized as follows: Section 2 present the
types of intrusion detection system commonly used by
network. Section 3 presents the accuracy test that include
the false positive and false negative test and hypothesis.
Section 4 provide the SDN-IoT testbed configuration and
set up. Section 5 consists of the results from the testbed

experimental. Section 6, we conclude on the testbed
experimental and configuration.

2. INTRUSION DETECTION SYSTEM (IDS)
There are several type of IDS include host based IDS,
network-based IDS, Signature IDS and Anomaly-based
IDS.

Host based IDS (HIDS): runs in the host system and
monitors the network activities. It keeps track of the
incoming and outgoing packets, and alert the administrator
in case of any miscellaneous activity held in the network.
HIDS analyses not only traffic but also system calls,
running processes, file system changes, communication
between processes and application logs. Anonymous
software allows machines to be updated automatically and
change lines of control etc. is an example of a host-based
intrusion detection system.

Network Based IDS (NIDS): is mainly deployed on
network nodes, which is capable of listening to collecting
data on the shared network segment in real time, so as to
analyse suspicious phenomena. There are two types of
NIDS: offline NIDS and online NIDS. Offline NIDS is a
non-real time system that analyses audit events after the
event and checks the intrusion activities. The Online NIDS
is a real-time online detection system which includes real-
time network packet analysis and real-time host audit
analysis [5,6].

Signature based IDS (SIDS): utilize pattern matching

Sharifah H. S. Ariffin et al. / ELEKTRIKA, 21(3), 2022, 23-27

 24

technique to find a known attack. Matching methods are
used to find a previous intrusion, where when an intrusion
signature matches the signature of a previous intrusion that
is already exist in the signature database, an alarm signal
is triggered. The hosts logs are inspected to find sequences
of commands or actions which have previously been
identified. SIDS is also known as Knowledge-based
Detection or Misuse detection [7]. Studies methods of
SIDS are created as a state machine, formal language string
pattern and semantic conditions [8-10].

Anomaly-based IDS (AIDS): is created using machine
learning, statistical based or knowledge based methods.
Any significant deviation between the observed behaviour
and the model is regarded as an anomaly. This technique
works on fact that malicious behaviour is different from
typical user behaviour. There are two phases in the
development of AIDS: the training phase and the testing
phase. AIDs trigger a danger signal when the examined
behaviour deviates from normal behaviour [11-13].

2.1 Snort Intrusion Detection System
In this paper Snort IDS is used as signature based IDS and
it has the abilities to let users set their local rules. In the
testbed, the constructed attack will be DDoS SYN flooding
attack while the local rule will be configured by collecting
the metrics and parameters from the observation of the IoT
network traffic. For the experiment, the testbed uses an
open source dataset which is UNSW-NB15 dataset [14].
In the SDN-IoT platform, the controller has been chosen
as the target of the attacker. By flooding huge traffic
towards the controller, it will attack the network and cause
system malfunction. IDS should be able to detect the attack
before the controller is malfunction due to the attack. In
this project, the DDoS SYN flooding attack will be carried
out repetitively every 2 hours in a day in order to collect
the time taken for the controller malfunction as listed in
Table 1. The time taken for the controller malfunction will
be the metrics for the IDS to set their detection time for the
attack. The detection time will be set less than the time
taken for controller malfunction in order to ensure the IDS
can protect the network by detecting the attack right before
the network being down. From the Table 1, the minimum
period the IDS should react to the attack before the
controller malfunction is less than 6.19 seconds. Thus the
time taken for the IDS to react to the attack is set as 5
seconds, which is 1 second earlier before controller
malfunction. Figure 1 shows the flow of the testbed
configuration for the accuracy test to be conducted. DDoS
detection time is determine using Table 1, types of data
packets is observe in the Wireshark display and the
accuracy test is run to ensure the IDS is working well.
Snort local rule uses data from the local network traffic to
ensure workability of the IDS installed.

3. IDS ACCURACY TESTING
False positive (FP) test and false negative (FN) test have
been carried out to study the accuracy of the IDS based on
the local rules’ configuration. The IDS is allowed to run
and observe the traffic for several days. The activities of
the IDS during the test will be logged into log file for
analysis. Throughout the test, the IDS can achieve highest

accuracy by giving null percentage of false positive rate
and false negative rate.

Table 1. Average time taken for the controller malfunction

Starting Time
Time Taken for the

controller malfunction,
N (s)

Average (s)

 1 2 3
0:00 6.57 7.58 5.98 6.71
2:00 6.34 6.89 7.02 6.75
4:00 6.02 6.58 6.49 6.36
6:00 6.85 7.32 6.48 6.88
8:00 5.73 6.45 6.38 6.19
10:00 43.45 40.87 38.56 40.96
12:00 6.59 6.47 6.98 6.68
14:00 9.47 9.86 10.68 10
16:00 50.78 55.43 59.64 55.28
18:00 >60 >60 >60 >60
20:00 30.84 28.79 31.64 30.42
22:00 6.75 6.42 6.21 6.46

Figure 1. Flow of Snort local rule configuration

False positive test is carried out to make sure that the
IDS will not provide false alert. For example, to
understand False Positive (FP), the IDS is supervising a
normal IoT traffic and there is no attack occurring.
However, IDS mistakenly detected an abnormal traffic
behaviour and report it as an attack.

Before carrying out this test, some hypothesis is set:

1. If the IDS is not configured, IDS will not be able to
detect any malicious traffic occurred, hence no report
will be generated.

2. If IDS is over configured, IDS supervise the normal
traffic and make report on traffic although there is no
malicious traffic occurred.

Sharifah H. S. Ariffin et al. / ELEKTRIKA, 21(3), 2022, 23-27

 25

3. If IDS is well configured, IDS will supervise the
traffic, but no report will be generated since it is
normal traffic (i.e., no attack was launched).

Hence, to carry out this test, SDN-IoT testbed need to
be set up. The UNSW NB15 IoT traffic dataset is used as
the real time normal IoT traffic environment. IDS will
supervise the traffic and its activities will be logged into
log file for further analysis. Firstly, the IDS is not
configured with those local settings and allowed to run for
several days. The activities of the IDS are logged into log
file, and we find out that there is no report generated.
Hence, it proves our first hypothesis. Secondly, we over
configure the IDS with the parameter (eg: count =30 in 5
seconds) and repeat the same steps as above. From the log
file, we find out that the IDS keep reporting the malicious
traffic although it is normal traffic. Hence, it proves the
second hypothesis. Thirdly the IDS is well configured and
repeat the steps. From the result, there is no report
generated and proves the third hypothesis. Equation (1)
shows the calculation of the false positive rate

 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 	 ./
./012

 (1)

where,
FP = false positive event, TN = True negative event.

False negative test is carried out to ensure that the IDS

will report the issue on time without missing any malicious
traffic. For example, to understand False Negative (FN),
the IDS is supervising IoT traffic. An attack has suddenly
occurred, but IDS unable to detect the abnormal traffic
behaviour and did not report the issue. The IDS will
supervise the traffic and its activities will be logged into
log file for further analysis. Firstly, the IDS is not
configured with the local settings. Similar hypotheses are
used for false negative test. IDS is allowed to run for a day
and attack is launched at different hours (as shown in Table
1) and we find out that there is no report generated. Hence,
it proves the first hypothesis since IDS does not recognize
the attack yet. Secondly, we configure the IDS to be more
sensitive with the parameter (e.g.: count =200 in 5
seconds) and repeat the same steps as above. From the log
file, we found out that the IDS sends report of the
malicious traffic. Hence, it proves the second hypothesis.
Thirdly, the IDS is well configured and repeat the steps.
From the results, the IDS report accurately once attack has
occurred and proves our third hypothesis. Equation (2)
shows the calculation of the false negative rate:

𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 	 .2
.201/

 (2)

where,
FN = false negative event, TP = True positive event

4. SDN-IOT TESTBED SET UP
For SDN-IoT testbed set up, we need to do network
configuration of the centralized controller, connecting the
SDN switches and setting up the SDN wireless interface
by using embedded devices such as Raspberry Pi and

Zodiac Fx. In this paper, we will focus on setting up an
SDN-IoT testbed by using Raspberry Pi and Zodiac Fx.
Figure 2 illustrates the hardware set-up for SDN-IoT
testbed. Raspberry Pi A is connected to the Port 1 of the
Zodiac Fx, it will act as the background IoT traffic
generator. Raspberry Pi B is connected to the Port 2 of
Zodiac Fx. It acts as the wireless access point to provide
wireless connections for IoT applications. Raspberry Pi C
which acts as the Ryu controller and Snort IDS is
connected to Port 4 of Zodiac Fx and to a monitoring
display. At the same time, Raspberry Pi C is also connected
to Port 3 of Zodiac Fx by using mirror porting technique
so IDS on Raspberry Pi C can observe and monitor the
whole traffic. Raspberry Pi D is connected with a wireless
dongle in order to connect to the wireless access point
(Raspberry Pi B) wirelessly. It acts as the attacker bot to
construct DDoS attack.

Zodiac Fx is an OpenFlow switch which is designed in
smaller size and suitable used on a desk rather than in a
data center. User can develop SDN applications using real
traffic from the hardware by using Zodiac Fx switch. Ryu
controller and Snort IDS have been implemented into
Raspberry Pi C. Ryu controller will handle the network by
managing the flow control to the switches via southbound
APIs and the applications via northbound APIs. The Snort
IDS will in charge of monitoring the event occurred in the
network via mirror porting from the OpenFlow switch. It
will alert the Ryu controller via UNIX socket6 in the same
Raspberry pi once it detects DDoS event occurred.

Connection of Rasberry Pi (RP) to Zodiac FX (ZFX):
Connect RP C to the Zodiac FX switch (as shown in Figure
2) The configuration is shown in Figure 3. Log into the RP
then edit the file “/etc/network/interfaces” to add or
modify the IP address on the interface connecting to ZFX.
A nano editor will be opened and go to the end of the file
to key in RPZ1 algorithm (shown in Figure 3 b). After that,
restart the network service and then verify the connectivity
to ZFX.

Figure 2. SDN-IoT Hardware testbed layout

SDN Controller configuration: After RP C is connected

to ZFX, a configuration need to be done to ensure RP C is
connected to the SDN controller. This configuration flow
is shown in Figure 4 a). Verify that the Ryu controller is
install properly and once Ryu controller is installed, start
the controller. You will be able to observe the output via
terminal windows or Wireshark display. In order to
observe the whole traffic, mirror porting need to be set up.
Then go back to “/etc/network/interfaces” and add RPZ2

Sharifah H. S. Ariffin et al. / ELEKTRIKA, 21(3), 2022, 23-27

 26

algorithm (as shown in Figure 4 b).

a) RP to ZFX configuration flow

b) RPZ1 Algorithm

Figure 3. Configuration and algorithm for RP to ZFX
connection

a) SDN controller configuration flow

b) RPZ2 algorithm

Figure 4. SDN controller configuration flow and
algorithm

5. RESULTS AND DISCUSSION
The RP A in Figure 2 is used to generate the normal traffic
in the network. Figure 5 a) shows the normal traffic in the
SDN-IoT testbed of UNSW-NB15 IoT dataset. tcpreplay
command is used to replay the IoT data while the controller
will record the data using Wireshark packet sniffer. RP D
is used to generate DDoS attack using hping3 command.
And traffic with DDoS is shown in Figure 5 b) with
average 100 packet per seconds (shown by the dotted line),
where a traffic behaviour is obviously different from the
pattern in a) with average 40 packet per seconds (shown by
the dotted line).

This accuracy test has been done to ensure the proof of
concept that the SDN-IoT IDS in the testbed is functioning
using the hypothesis. The testing in this experiment was
done by observe the false positive or false negative issue
in the SDN-IoT testbed. From the experiment and
calculation, both FP and FN show 0. Hence, throughout the
test, the IDS able to achieve highest accuracy by giving
null percentage of false positive rate and false negative
rate. Figure 6 shows the activities of IDS recorded in the
Log file.

a) Normal Traffic

b) DDoS attacked traffic

Figure 5. Testbed normal and attacked traffic using

UNSW IoT dataset via Wireshark display

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 10.0.1.8
netmask 255.255.255.0
gateway 10.0.1.99

$ sudo nano /etc/network/interfaces

auto eth1
iface eth1 inet manual
up ifconfig eth1 promisc up
down ifconfig eth1 promisc down

Sharifah H. S. Ariffin et al. / ELEKTRIKA, 21(3), 2022, 23-27

 27

Figure 6. Activities of IDS recorded in Log file

6. CONCLUSION
This paper presents the set up configuration for SDN-IoT
testbed to provide accuracy testing platform for the Snort
Intrusion detection system (IDS). To ensure that the IDS
in any platform work as it should be, network administrator
need to ensure that IDS do not provide unnecessary trigger
to the network. The accuracy testing has been conducted
both false positive and false negative test taking account
the hypotheses of the configuration. Both accuracy test had
shown null percentage and this shows that the snort IDS is
working well and the network are well configured.

ACKNOWLEDGMENT
The authors would like to thank all those had contributed
to the paper. The author wishes to express gratitude to the
Universiti Teknologi Malaysia under the Ministry of
Higher Education Malaysia (MOHE), for providing the
facilities for the experiment. The authors would like to
thank the school of Electrical Engineering for financially
supporting the work of this project.

REFERENCES
[1] E. Benkhelifa., T. Welsh., and W. Hamouda. “A

Critical Review of Practices and Challenges in
Intrusion Detection System for IoT: Toward
Universal and Resilient Systems”, IEEE Comm
Surveys & Tutorials, 2018, vol.20, no. 4, pp3496-
3509.

[2] A. Munshi., N. Ayadh. and N. A. Almalki. “ DDoS
Attack on IoT Devices”, Int. Conf. On Computer

Applications & Information Security (ICCAIS),
2020.

[3] R. Arthi. and S. Krishnaveni. “Design and
Development of IoT Testbed with DDoS Attack for
Cyber Security Research”, Int. Conf on Signal
Processing & Comm (ICPSC), May, 2021

[4] K. S. Alper and A. Pelin. “Explainable Security in
SDN-Based IoT Network,” in Sensor 2020, 20,
MDPI

[5] S. Pontarelli., G. Bianchi., and S. Teofili., “Traffic-
aware Design of A High-Speed FPGA Network
Intrusion Detection System, IEEE Trans. Comput.,
vol 62, no 11, pp2322-2334, 2013.

[6] A. Abraham., C. Grosan. and C. Martin-Vide.
“Evolutionary Design of Intrusion Detection
Programs”, Int. J. Netw. Secur., vol. 4, no. 3, pp328-
339, Jan 2010.

[7] C. Modi., D. Patel., B. Borisaniya., H. Patel., A.
Patel., M. Rajarajan., “A Survey of intrusion
Detection Technique in Cloud”, Journal Network
Computer Applied, 36, (1), pp 42-57, 2013.

[8] C. R. Meiners., J. Patel., E. Norige., E. Torng., and
A. X. Liu. “Fast Regular Expression Matching Using
Small TCAMs for network Intrusion Detection and
Prevention Systems”, Proceedings of 19th USENIX
conference on Security, Washington DC, 2010.

[9] C. Lin., and Y. D. Lin. “ A Hybrid Algorithm of
Backward Hashing and Automation Racking for
Virus Scanning”, IEEE Trans Computer 60, (4),
pp594-601, 2011.

[10] Symantec, “Internet Security Treat Report”, vol 22.,
2017

[11] A. L. Buczak., and E. Guven. “A Survey of Data
Mining and Machine Learning Methods for Cyber
Security Intrusion Detection”, IEEE Communication
Surveys Tutorial, 18, (1), pp1153-1176, 2016.

[12] A. Meshram., and C. Haas. “Anomaly Detection in
Industrial Networks using Machine Learning: A
roadmap”, Machine Learning for Cyber Physical
Systems, 2016, pp65-72., 2017.

[13] O. Can., and O. K. Sahingoz. “ A survey of Intrusion
Detection System in Wireless Sensor Network,
International Conference on Modeling Simulation
and Applied Optimization (ICMSOA), pp 1-6, 2015.

[14] Zoghi, Zainab and G. Serpen. “UNSW-NB15
Computer Security Dataset: Analysis Through
Visualization”, arXiV preprint arXiV:2101.05067,
2021.

