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Abstract: Industrial cooling fans are responsible for maintaining stable temperatures for delicate components. Therefore, a 
cooling system failure can certainly lead to machine downtime. Fault Condition Monitoring (FCM) is a predictive maintenance 
method that can be applied to cooling fans for fault prediction. As the components of a cooling fan wear off, its vibration 
pattern tends to alter or become more erratic. Thus, this paper uniquely elaborates on three intelligent vibration analysis 
techniques that are applicable in the FCM of cooling fans. In this research, 1) image encoding with convolutional neural 
network (CNN), 2) moving average, and 3) fuzzy logic techniques are designed, employed, and their potentials as FCM tools 
are compared. The vibration data is collected from an experimental test bench that consists of a fan, an accelerometer, and a 
microcontroller, among others. Once sufficient training data is obtained (11000 data points for each of the fan’s conditions), 
the three vibration analysis models are trained on that data using Python and MATLAB. The results reported in this paper 
illustrate the accuracy of these intelligent vibration analysis techniques in detecting faults in cooling fans. The novelty of the 
research revolves around the fan fault detection techniques that are being compared. The image-encoding technique described 
in this paper has yet to be applied for fault classification and detection. Additionally, while fuzzy logic and moving average 
are popular methods, this is the first time that they are being used for vibration analysis of cooling fans. Furthermore, this is 
also a novel comparative study of different vibration analysis techniques.  
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1. INTRODUCTION 
Industrial machines consist of various parts that must be 
kept at stable temperatures. To prevent these components 
from overheating, a good cooling system is a necessity. 
Thus, industrial cooling fans are required to operate at 
optimum levels to maintain proper temperatures for 
industrial machines. However, fans can be victims of 
sudden failures [1]. Should a cooling system failure occur, 
it may result in machine instability or downtime, as well as 
a reduction of manufacturing yield. Fortunately, with the 
rise of the Fourth Industrial Revolution, fault analysis and 
predictive maintenance techniques have begun to play an 
increasingly important part in industries. Fault condition 
monitoring or FCM systems for short can enable 
technicians to identify structural, mechanical, or electrical 
faults at an earlier stage before the issue spirals further out 
of control. As such, techniques to forecast possible system 
defects are garnering more and more attention every day 
[2]. The FCMs can be especially valuable for predictive 
maintenance of rotating mechanical machinery, such as 
cooling fans, which play a significant role in industries [3]. 
Predictive maintenance (PdM) systems can allow us to 
avoid manual checking procedures that are time-
consuming and prone to errors. As reported by the work of 
[4], when it comes to PdM, analyzing or monitoring 

vibration signals is one of the most effective methods to 
diagnose faults in rotational equipment, since it varies 
along with the change in the state of mechanical 
components. Therefore, this paper presents a novel 
comparative study on vibration analysis of industrial 
cooling fans to identify faults. The study compares the 
performance of three vibration analysis techniques: (1) 
image encoding and convolutional neural network (CNN), 
(2) moving average and (3) fuzzy logic. 

Through image encoding techniques, CNNs have 
recently gained prominence in vibration analysis due to 
their ability to extract temporal information from data as 
shown by the work of Zhao et al. [5]. Image encoding can 
convert portions of sequential data to two-dimensional 
colored images and then the texture features can be 
extracted from these converted images to gain insight into 
the state of the mechanical part [6]. A work done by 
Sanchez et al. [7] which involves the use of vibration 
analysis in bearings for failure prevention, displayed the 
use of CNN and image encoding in classifying vibration 
signals from bearings. A paper by Chen et al. [8], used an 
encoding method called gramian angular field (GAF) and 
CNN to classify patterns from candlestick graphs. Another 
encoding method suggested by Dekhane et al. [6], 
converted the incoming sequential data to grey-scale 
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images that could be classified by CNN models to identify 
trends in data. Due to the potential of CNN to classify 
sequential data, it was selected as a vibration analysis 
technique for this paper. It is used in conjunction with an 
image encoding technique proposed by Hur et al. [9]. The 
method was created for classifying human activities 
through the accelerometer data. Therefore, the originality 
of this specific vibration analysis technique lies in the fact 
that it is being applied in this research for classifying faults. 

As for the other two methods, moving average [10] and 
fuzzy logic [11], they are already considered traditional 
fault diagnosis techniques, along with k-nearest neighbor 
(KNN) [12] and support vector machine (SVM) [13]. An 
example of a fuzzy logic-based vibration analysis 
technique can be found in the work of Mukane et al. [14], 
which proposed a LabVIEW-based implementation of a 
fuzzy logic system to identify machine defects by carrying 
out vibration analysis. Although moving average and fuzzy 
logic have been used for rotational equipment, such as 
motors, they have not yet been applied for fault diagnosis 
of cooling fans. In this paper, these two techniques along 
with CNN are for analyzing vibration data and classifying 
faults in a cooling fan, which further contributes to the 
novelty of this study. This paper is organized as follows: 
the Methodology section describes the experiment that was 
conducted to apply the three techniques, while the Results 
and Analysis section illustrates the outcome of each 
technique. 

2. METHODOLOGY 
As the main objective of this paper is to present a system 
that detects faults through vibration analysis, an 
experimental setup with an accelerometer was carried out. 
The accelerometer was wired to an Arduino Nano 
(ATmega328) microcontroller board. The overall steps for 
the experiments described in this section are (i) data 
collection from the experimental setup, (ii) using a filter or 
algorithm to sort and clean the acquired vibration data, (iii) 
using the cleaned data to train the machine learning or deep 
learning model, validating the trained model, evaluating 
the trained model and deploying the model in real-time on 
the testing data to detect faults. 

First and foremost, to create a machine learning or deep 
learning model for this system, the most important step 
would be to collect data. Thus, an electronic sensor circuit 
was attached to a fan and the data from the circuit was 
serially logged into a single board before being saved in 
.csv format. The next few subsections give a detailed 
explanation of the system overview and the experiments 
that were carried out. 

2.1 System Overview 
The working sequence of the system has been explained in 
this subsection. Once the machine learning model has been 
trained, it is deployed on the system. Based on the model’s 
output, the system will decide whether there is a fault in 
the cooling fan or not. The system overview has been 
shown in Figure 1. 
 

 
Figure 1. The overview of the entire system. 

As mentioned earlier, the performance of three machine 
learning techniques (CNN, MA, and fuzzy logic) has been 
investigated in this paper. The sensor circuit is interfaced 
with the Arduino board through I2C, which in turn would 
be serially connected to a single board computer. The 
CNN, moving average, and fuzzy logic models would be 
running on the computer. Thus, the models analyze the 
data, and should any faults be detected, the user will be 
notified. 

2.2 Experimental Setup 
While there are a plethora of microcontroller boards in the 
market, an Arduino was chosen due to its user-friendly 
nature and ease of programming. Among the 
accelerometers compatible with Arduino, the MPU6050 
happened to show the highest level of sensitivity in 
comparison to the accelerometers ADXL335 and 
ADXL337, which is why it was selected for this project. A 
circuit board was made to sample data at a frequency of 
50Hz. The accelerometer sensor is connected to the 
Arduino board through the I2C interface. The circuit 
diagram has been shown in Figure 2. 
 

 

Figure 2. Schematics of the electronic circuit to collect 
vibration data from the fan. 

Data acquisition requires a storage device. For 
simplicity, the microcontroller was interfaced with a single 
computer to store the data. As the circuit (shown in Figure 
3) samples the vibration data, the sampled data would be 
serially sent to a single board computer to be saved in .csv 
format. 
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While the purpose of this paper is to compare vibration 
analysis techniques of industrial fans, experiments for this 
comparative study had to be done using a regular table fan. 
It is important to remember that when a cooling fan suffers 
from a defect, its vibration will change [1]. With the intent 
to experiment, we manually changed the fan speed to 
simulate the failure conditions. The table fan has three 
different modes of speed: 0, 1, and 2. Just for 
experimenting, speed modes 0 and 1 were considered 
normal speeds, while speed mode 2 was selected as the 
faulty mode. To begin data acquisition, the circuit board 
was attached to the outer metal casing of the fan, as shown 
in Figure 3. 

 

Figure 3. The experimental setup was carried out on a 
regular fan as shown in this image. 

The Arduino Nano board and the accelerometer were 
soldered together as shown in the above figure. In the 
experiment, the board was serially interfaced with the 
single board computer known as Raspberry Pi for data 
logging. Since the size of a Raspberry Pi is small, it was 
possible to make the experimental setup more compact. 
The data for each fan mode were categorized into folders. 
In Table 1, the acceleration data arrangement has been 
shown with units for each axis in m/s2. 

Table 1. Structure of the collected data. 

X-Axis (m/s2) Y-Axis (m/s2) Z-Axis (m/s2) 

-6.538618 15.561279 1.795532 
-7.182129 17.356812 -0.598511 
-5.386597 18.553833 2.394043 

 

2.3 Fault Classification using Image Encoding and 
CNN 

Convolutional neural networks (CNNs), which are 
modeled after the biological vision system, are a family of 
neural networks explicitly used for image recognition and 
classification [15]. In this paper, an image encoding 
technique proposed by Hur et al. [9] has been applied to 
obtain the colored images from the data set. While the 
formula proposed by the paper was originally developed to 
classify human activities, it is being used in this paper to 
classify vibration trends of the cooling fan. Thus, this 
application itself is a noble contribution. Furthermore, 
while the applied formulas were indeed taken from a 
journal, a three-dimensional array of (900, 450, 3) (900 
rows, 450 columns, and 3 depth dimensions) was used to 

host the pixel values calculated from the formula. The 
NumPy Python library was used to create the array. The 
pixel values were iterated over the array to produce the 
RGB image. Thus, this step adds an algorithmic novelty to 
the presented CNN-based vibration analysis method. 

Initially, to go through the image encoding phase, the 
vibration data from the fan are normalized. The specific 
formulas (equations (1), (2), (3), and (4)) were used to 
encode the data in three colored channels (red, green, and 
blue). For a clearer explanation of how the time series data 
was converted to colored images, the steps have been 
illustrated below. It should be noted that all the formulas 
mentioned in this section were referenced by Hur et al. [9]. 

Step 1 - Normalize all the accelerometer signals and 
scales to 255 using the formulas shown in Eq. (1), (2), (3), 
and (4). 
 

𝐷 = 	
𝑥1 𝑦1 𝑧1
⋮ ⋮ ⋮
𝑥𝑁 𝑦𝑁 𝑧𝑁

 
Eq. (1) 

𝑥 = 	
𝑥 − min	(𝑋)

max 𝑋 − min	(𝑋)
 

Eq. (2) 

𝑦 = 	
𝑦 − min	(𝑌)

max 𝑌 − min	(𝑌)
 

Eq. (3) 

𝑧 = 	
𝑧 − min	(𝑍)

max 𝑍 − min	(𝑍)
 

Eq. (4) 

 
In Eq. (2), 𝐷 represents the array to hold the vibration 

readings from the axes 𝑥, 𝑦, and 𝑧 for every instant until a 
certain instant value of 𝑁 (for example 450) is reached. In 
the latter three equations of Step 1, the symbols 𝑥, 𝑦 and 𝑧 
represent the normalized values of the three axes.  

Step 2 - Convert the normalized data into three integers 
that correspond to pixel values in red, green, and blue 
colored channels. As such, for each sample (each sample 
of 𝑥, 𝑦, and 𝑧), three different pixel types would be 
produced as shown by Eq. (5), (6), and (7). 
 

𝑅𝑥 = 	 𝑥  Eq. (5) 
𝐺𝑥 = 	 𝑥 −	 𝑥 ×10:  Eq. (6) 

𝐵𝑥 = 	 𝑥	×	10: − 	 𝑥	×	10: 	×10:  Eq. (7) 
 

The variables 𝑅𝑥, 𝐺𝑥 and 𝐵𝑥 in the three equations of 
Step 2, represent the colors red, blue, and green for the 𝑥 
axis values. The same operation would be carried out for 
the corresponding values of the 𝑦 and 𝑧 axes. 

Step 3 - The colored pixels generated over a certain 
interval would be stored in matrices. Storage of the 
generated pixels into three different matrices of red, blue, 
and green as displayed in Eq. (8), (9), and (10). 

 
 

𝑅 = 	
𝑅𝑥1 𝑅𝑦1 𝑅𝑧1
⋮ ⋮ ⋮

𝑅𝑥𝑁 𝑅𝑦𝑁 𝑅𝑧𝑁
 

Eq. (8) 

𝐺 = 	
𝐺𝑥1 𝐺𝑦1 𝐺𝑧1
⋮ ⋮ ⋮

𝐺𝑥𝑁 𝐺𝑦𝑁 𝐺𝑧𝑁
 

Eq. (9) 

𝐵 = 	
𝐵𝑥1 𝐵𝑦1 𝐵𝑧1
⋮ ⋮ ⋮

𝐵𝑥𝑁 𝐵𝑦𝑁 𝐵𝑧𝑁
 

  Eq. (10) 
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Step 4 – Finally the three colored matrices are 

concatenated into a single image. The overall process of 
image encoding has been explained in Figure 4.  

 

Figure 4. Block diagram representing the image encoding 
process. 

While the formulas used for obtaining the RGB images 
were the same as proposed by Hur et al. [9], the pixel array 
was arranged differently. A Python library called NumPy 
was used to make an array of dimensions (900,450,3) 
(meaning 900 rows, 450 columns, and 3 channels) to host 
the RGB pixels. During the real-time implementation, the 
accelerometer is to be attached to the cooling fan and the 
vibration data can be serially compiled on a computer. 
After sufficient data are collected, they are categorized to 
go through the image encoding phase. The images 
obtained are classified by a trained CNN model. The 
convolutional neural network in this project was created 
using the PyTorch deep learning framework. Just as there 
are many categories among machine learning techniques 
or different types of neural networks, there are several 
CNN architectures. Among them, the Resnet and the VGG 
series are the most powerful algorithms for image 
classification. Therefore, the compiled RGB images were 
trained on the Resnet50 and the VGG16 architecture. 
Under the Results and Analysis section, their accuracy is 
compared.  

2.4 Fault Classification Using Moving Average and 
Euclidean Norm 

Moving average (MA) is a type of statistical method that 
calculates the averages of different subsets in a data set. An 
average of each point within a certain interval is calculated. 
Although it is the simplest of the three techniques 
described in this paper, MA is considered a powerful 
filtering technique for time series or sequential data. It is 
effective for removing noise or fluctuations from the data 
[16]. Furthermore, it is less computationally expensive in 
comparison to CNN and fuzzy logic. While MA is a fairly 
old method, it has yet to be applied for fault classification 

in cooling fans as presented in this paper. Additionally, 
MA is rarely used for fault classification. The fact that this 
method has been used for finding faults in a cooling fan 
presents a contribution to this paper. The formula for MA 
has been shown in Eq. (11), where 𝐴= represents the 
average of a set of values at a certain interval and n 
represents the total number of intervals: 
 

𝑀𝐴 = 	
𝐴? +	𝐴: + 	⋯+	𝐴=

𝑛
 

        Eq. (11) 

 
The MA is used in conjunction with another method 

called Euclidean norm, which means the straight-line 
distance between two points in Euclidean space. Since, in 
this paper, Python is the primary language for data 
analysis, the NumPy library was used for calculating the 
Euclidean Norm between points. The equation for 
Euclidean Norm is displayed in Eq. (12).  

 

𝑑 𝑝, 𝑞 = 	 (𝑞F − 	𝑝F):
=

FG?

 

 Eq. (12) 

The variables 𝑝 and 𝑞 represent two points in Euclidean 
n-space. As for the function 𝑑(), it represents the function 
for Euclidean distance. Finally, the 𝑞F and 𝑝F are cartesian 
coordinates, whereby the 𝑖 stands for a particular instance 
of the coordinate (for example 𝑝?, 𝑝:, 𝑝I or 𝑞?, 𝑞:,	𝑞I). By 
using the combination of MA and Euclidean norm 
methods, it may be less onerous to observe the changes in 
vibration under faulty conditions, since averaging can be a 
powerful filtering technique. In the results section, the 
output of this method is compared with the other two 
methods in terms of accuracy and practicality. The MA 
method was applied separately to all three different fan 
speeds. From the graph outputs, it is possible to visualize 
the level of vibration at each axis as the speed changes. If 
this technique is efficient enough, it will be possible to 
identify the maximum and minimum levels on the MA 
graphs and use simple if-else operations to classify trends 
in vibration data. Hence, MA represents a simple method 
for identifying faults in cooling fans.  

2.5 Application of Fuzzy Logic 
Technically, fuzzy logic refers to variables that may be any 
real number between 0 and 1 inclusive. It is based on the 
concept of partial truth, where the true value of a variable 
may range from being either true or false [17]. The fuzzy 
logic technique employs a form of reasoning like humans 
since its decision-making process involves intermediaries 
between yes and no [18]. As one of the oldest machine 
learning methods, it has been used in a variety of 
electronics ranging from rice cookers to washing machines 
[19, 20]. In a fuzzy logic system, the input data is first put 
through fuzzification, whereby it is converted to a value 
between 0 and 1. After that, the membership functions of 
the input are constructed, which make up the rule base and 
the inference engine. The inference and the rule bases are 
the ones that classify the data. The classification result 
goes through defuzzification before being sent as an 
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output. A typical block diagram of a fuzzy logic system has 
been displayed in Figure 5. 
 

 
Figure 5. Block diagram of the fuzzy logic method (the 

highlighted blocks make up the fuzzy 
logic controller). 

To apply fuzzy logic to predict faults in industrial fans 
would be to construct membership functions to classify the 
vibration data. As mentioned earlier, the data from the 
experimental setup are categorized into three files based on 
the fan speed. The accelerometer measures the vibrations 
along the x, y, and z axes. Thus, membership functions 
must be constructed for each axis. For each axis, the 
membership functions will classify the fan’s overall 
acceleration (Low, Medium, and High) based on the input 
data. To construct the membership functions, it was 
necessary to see the distribution of data along each axis at 
each speed. For that, histograms were plotted in each case. 
Once it was possible to observe the distribution of data, 
boundaries were formed for the fuzzy logic membership 
functions. Through trial and error, triangular pulses were 
plotted over each distribution to contain most of the data. 
The data distribution of the axes x, y, and z are displayed 
in Figures 6, 7, and 8, respectively. 
 
 

 
Figure 6. Data distribution along the x-axis at the three 

different speeds with the estimated 
triangular pulse. 

 
Figure 7. Data distribution along the y-axis at the three 

different speeds with the estimated 
triangular pulse. 

 
Figure 8. Data distribution along the z-axis at the three 

different speeds with the estimated 
triangular pulse. 

With a proper understanding of the data distribution 
complete, the membership functions are plotted. The 
horizontal range of the values in the distribution remained 
the same, but the range along the vertical axis was changed 
from 0 to 1. The membership functions derived from the 
histograms and triangular plots are displayed in Figures 9, 
10, and 11. 

 

 
Figure 9. Membership Functions for the X-axis 

acceleration. 
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Figure 10. Membership Functions for the Y-axis 
acceleration. 

 
Figure 11. Membership Functions for the Z-axis 

acceleration. 

The membership functions represent the fuzzy 
conditions that are used to classify the status of the cooling 
fan motor. In Figures 9, 10, and 11 the membership 
functions are labeled as small, medium, and high, which 
represent the speed modes 0, 1, and 2 of the cooling fan 
respectively. However, before that, we need to know what 
conditions are used the classify the acceleration along the 
three axes. For example, if the acceleration value at the x-
axis is between 0.11 m/s2 and 2.43 m/s2

, the state of the x-
axis acceleration would be small (the state of the fan at 
speed mode 0). The conditions to classify the acceleration 
for each axis are shown below in Table 2. 

Table 2. Conditions to classify each variable. 

Accelerometer Axis Range for 
acceleration 
value: A (m/s2) 

Acceleration 
Status 

X-axis 
 

0.1 < A ≤ 2.4 Small 
14.9 < A ≤ 62.7 Medium 
6.1 < A ≤ 25.4 High 

Y-axis 0 < A ≤ 6.0 Small 
29.8 < A ≤ 180.2 Medium 
10.2 < A ≤ 90.6 High 

Z-axis 0.0 < A ≤ 2.1 Small 
7.1 < A ≤ 26.0 Medium 
2.1 < A ≤ 9.0 High 

 

For the fuzzy logic system to be able to classify the input 
data, fuzzy rules must be established to classify the cooling 
fan motor’s conditions. Since different fan speed modes 
were used to simulate the fan conditions, the fuzzy logic 
system classifies the speed modes through the rules 
displayed in Table 3. 
 

Table 3. Fuzzy rules to classify the fan’s condition. 
No. X Accel. Y Accel. Z Accel. Accel. Condition 
1 Small Small Small Small OK 
2 Small Small Medium Medium OK 
3 Small Medium Small Medium OK 
4 Small Medium Medium Medium OK 
5 Medium Small Small Medium OK 
6 Medium Small Medium Medium OK 
7 Medium Medium Small Medium OK 
8 Medium Medium Medium Medium OK 
9 Small Small High High FAULTY 
10 Small Medium High High FAULTY 
11 Small High Small High FAULTY 
12 Small High Medium High FAULTY 
13 Small High High High FAULTY 
14 Medium Small High High FAULTY 
15 Medium High Small High FAULTY 
16 Medium High Medium High FAULTY 
17 Medium High High High FAULTY 
18 High Small Small High FAULTY 
19 High Small Medium High FAULTY 
20 High Medium Small High FAULTY 
21 High Medium Medium High FAULTY 
22 High Small High High FAULTY 
23 High High Small High FAULTY 
24 High Medium High High FAULTY 
25 High High Medium High FAULTY 
26 High High High High FAULTY 

 
The input data from the accelerometer sensor is 

classified based on the range of conditions shown in Table 
2 and the fuzzy rules displayed in Table 3. If the overall 
status of the fan’s acceleration is in Small or Medium 
mode, the status of the fan is OK. Should the acceleration 
of the fan be High, the fan’s motor is considered 
FAULTY. For clarity, a block diagram representing the 
explanation is shown in Figure 12. 

 
Figure 12. Process of classification using the fuzzy logic 

technique. 

3. RESULTS 

3.1 Results of CNN and Image Encoding 
After data collection from the accelerometer had been 
complete, the data were categorized into three separate 
files to better analyze the vibrations at three different fan 
speeds. Firstly, as mentioned in the methodology section, 
the vibration readings were converted into colored images 
using formulas from the Iss2Image image encoding by 
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Hur et al. [9]. Results of the conversion are shown in 
Figure 13. After all the raw accelerometer data had been 
converted to colored images, the output results were 
prepared for training. 
 

 
Figure 13. Samples of the colored images were produced 

for speeds 0 (left), 1 (center), and 2 (right). 

Finally, after all the raw accelerometer data had been 
converted to colored images, the output results were 
prepared for training. The image data was split into three 
directories as always necessary for training a machine 
learning model: train, validation, and test. Once that was 
done, the data was trained on the two CNN architectures, 
Resnet50 and VGG16. For each architecture, the data was 
trained for 100 epochs with a batch size of 8. Graphs were 
plotted to illustrate the performance of each model during 
the training and the testing phase, as shown in Figures 14, 
15, 16, 17, 18, and 19. The overall performance of each 
architecture has been tabulated in Table 4. 
 
 
 

 
Figure 14. Performance of Resnet50 during training. 

 

 
Figure 15. Performance of Resnet50 during testing. 

 

 
Figure 16. Testing accuracy of the Resnet50 model. 

 

 
Figure 17. Performance of VGG16 during training. 

 

 
Figure 18. Performance of VGG16 during testing. 

 

 
Figure 19. Testing accuracy of the VGG16 model. 

 

Table 4. Results of the two CNN architectures. 

CNN 
Model 

Training 
Loss  

Testing 
Loss 

Testing 
Accuracy 

Resnet50 8.2 %  9.5 % 81.2 % 
VGG16 0.9 % 0.6 % 98.7 % 
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Based on Table 4, the VGG16 model performed better 
than the Resnet50 model, as it has a higher testing 
accuracy. If we compare the graphs of testing accuracy 
for both models, we can see that the testing accuracy 
mostly remained steady for the VGG16 model, unlike for 
Resnet50 where the testing accuracy fluctuated 
tremendously over the 100 epochs. However, training 
VGG16 took longer since it is much deeper. 
Nevertheless, both models could have been slightly 
overfitted. Improvements to training should be made in 
the future. Overall, when using the trained model to make 
predictions on testing data, VGG16 displayed much 
higher accuracy. The testing was done in batches of 4 
images at a time. The output displays for each model are 
tabulated in Figure 20. 
 

Resnet50 Output 
Actual Image: [‘two’, ‘one’, ‘zero’, ‘two’] 

 
Prediction: [‘one’, ‘one’, ‘zero’, ‘two’] 

 
VGG16 Output 

Actual Image: [‘zero’, ‘one’, ‘two’, ‘one’] 

 
Prediction: [‘zero’, ‘one’, ‘two’, ‘one’] 

 
Figure 20. Comparison of output results. 

 

As seen from the display, for this batch the VGG16 
predicted all the samples correctly while the Resnet50 
made a few mistakes. Although VGG16 did display high 
accuracy, it should be noted that neural networks work best 
when trained with large datasets [15]. The dataset for this 
project was relatively small. Therefore, results for both 
CNN architectures may be better when trained with more 
data.  

3.2 Results of the Moving Average Method 
The application for the MA was simple. The collected data 
were analyzed using the Python libraries pandas, NumPy 
and Seaborn. Raw data from the accelerometer were taken 
through the Euclidean norm and MA. In the graphs, for a 
clearer understanding, the MA line was highlighted in 
black. Results from this method were comparatively easier 
to understand than the other methods. The graphs indicated 
the threshold as shown in Figures 21, 22, and 23. Should 
this method be sufficiently accurate, it can be possible to 

identify faults using the basic if-else statements rather than 
using complex machine learning or statistical methods. 
 

(a) 

 
 

(b) 

 
Figure 21. Euclidean (a) and Moving Average Graph (b) 

for Fan Speed 0. 

 

(a) 

 
(b) 

 
Figure 22. Euclidean (a) and Moving Average Graph (b) 

for Fan Speed 1. 

The red lines in figure 23 indicate the levels above or 
below which the samples from the compiled data will be 
categorized into different speed modes. Thus, by looking 
at Figures 23, 24, and 25, we can estimate that if the MA 
is above 30 and below 50, the fan speed is at level 2, which 
is indicative of a faulty system. The indicator levels were 
applied to the vibration dataset to estimate the validation 
and evaluation accuracy. Firstly, the dataset was split into 
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training and testing data per the rules. The result for both 
parts displayed high accuracy as shown in Table 5. 

 

(a) 

 
(b) 

 
Figure 23. Euclidean (a) and Moving Average Graph (b) 

for Fan Speed 2. 

 

Table 5. Validation and Evaluation Accuracy of MA. 

Validation Accuracy 99.2% 
Evaluation Accuracy 99.3% 

 

Based on the results of Table 5, it is clear that although 
the MA technique is simple, the results have proven to be 
highly accurate for this experiment.  

 

3.3 Results of the Fuzzy Logic Method 
Membership functions for each of the accelerometer axes 
were used to classify the testing data of the cooling fan. 
Classifications were done using the conditions shown in 
Table 2 and the fuzzy logic rules mentioned in Table 3. 
The validation and evaluation accuracies were recorded. 
Overall, the results were favorable. The validation 
(training) and evaluation (testing) accuracies of the fuzzy 
logic technique are displayed in Table 6. 
 

Table 6. Validation and Evaluation Accuracy. 

Validation Accuracy 96.1% 
Evaluation Accuracy 98.1% 

 

3.4 Comparison of the Different Methods 
Now we have finally come to the part where we compare 
the three different methods. Among the three techniques, 
classification using Image Encoding and CNN was the 
most sophisticated, while MA was the simplest. All the 
methods displayed high accuracy. Evaluation accuracies 
have been tabulated below in Table 7. 

Table 7. The accuracy of each technique. 

CNN 
(VGG16) 

Moving 
Average (MA) 

Fuzzy 
Logic 

98.7% 99.3% 98.1% 
 

According to the results, despite being the simplest 
method, MA displays the highest accuracy in fault 
prediction. The VGG16 model from the CNN technique 
has the second-highest accuracy and Fuzzy Logic has the 
lowest number in this regard. Nevertheless, all three 
methods showed exceptionally high accuracies and can 
easily be applied to identifying faults in the experimental 
setup.  

When selecting the best method among the three, the 
logical choice would be to select the one with the highest 
accuracy, which is the MA method. However, some 
considerations must be made before deciding on the best 
method. It should be noted that the data collected for in 
project was only from an experimental setup rather than an 
industrial one. It may be possible that vibration readings 
collected from industrial sites may suffer from 
interferences from the surroundings. Thus, the vibration 
readings may not be as consistent as the ones collected 
from the hardware setup in this experiment. As a family of 
neural networks, CNNs can deal with inconsistencies as 
well as non-linearity. However, it is at the moment 
unknown how the MA algorithm will perform when it 
encounters these issues. Thus, more studies should be 
carried out in the future regarding these vibration analysis 
techniques to determine which is truly the most accurate. 

4. CONCLUSION 
The primary purpose of this study was to compare different 
techniques of vibration analysis for industrial cooling fans. 
Proper vibration analysis is required to predict faults that 
may occur in machinery and carry out earlier maintenance 
before the issue gets out of hand. By having such an 
intelligent system, companies get avoid downtime, as well 
as expensive repairs. In this paper, three different vibration 
analysis techniques were compared based on their 
potential for predictive maintenance. The fault diagnosis 
techniques illustrated in this document involve image 
encoding and CNN, MA, and fuzzy logic.  

Since vibration is the necessary variable, an 
accelerometer was interfaced with an Arduino 
microcontroller board and attached to a cooling fan. Due 
to the inaccessibility of an industrial type of fan or blower, 
an experimental fan was used for this study. The three 
different speed modes (0,1 and 2) of the fan were used to 
represent the healthy and faulty conditions (at speed 2 the 
fan’s condition is assumed to be faulty). After the data had 
been collected and categorized accordingly, they were 
trained on the three techniques.  

As displayed under the Results and Analysis section, the 
accuracies of the three methods are compared with one 
another. For the first technique, which involved image 
encoding and the use of CNN, the VGG16 architecture 
showed much higher accuracy compared to the Resnet50 
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architecture. It also showed much lower testing and 
training loss, which is indicative of its high accuracy. 

Regarding the MA technique, it showed validation and 
evaluation accuracies of 99.2% and 99.6% respectively. As 
for fuzzy logic, the validation and evaluation accuracies 
were 96.1% and 98.1%, respectively. Overall, all three 
techniques showed considerably high evaluation 
accuracies. Among the three, fuzzy logic was the least 
accurate (98.1%). At 98.7%, the VGG16 showed the 
second highest accuracy. Compared to the other two, the 
CNN-based method was the most complex. Ironically, the 
MA technique, which was the simplest, displayed the 
highest evaluation accuracy at 99.3%. Thus, for this 
particular experiment, the MA vibration analysis technique 
was more accurate.  

However, more comparative studies should be done 
regarding these vibration analysis techniques. Perhaps in 
future studies, vibration data can be collected from actual 
industrial fans at companies and the performances of the 
three techniques can be compared once more. This can also 
show which technique is better at dealing with 
inconsistencies as well as interferences in vibration data at 
industrial sites.  
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