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Abstract: Driving has become essential in transporting people from one place to another. However, prolonged driving could 
cause muscle fatigue, leading to drowsiness and microsleep. Electromyography (EMG) is an important type of electro-
psychological signal that is used to measure electrical activity in muscles. The current study attempted to use machine learning 
algorithms to classify EMG signals recorded from the trapezius muscle of 10 healthy subjects in non-fatigue and fatigue 
conditions. The EMG signals and the time when muscle fatigue was experienced by the subjects were recorded. The mean 
frequency (MNF) and median frequency (MDF) of the EMG signals were extracted as dataset features. Six machine learning 
models were used for the classification: Logistic Regression, Support Vector Machine, Naïve Bayes, k-nearest Neighbour, 
Decision Tree and Random Forest. The results show that both the MNF and MDF are lower when fatigue conditions exist. In 
term of the classification performance, the Random Forest, Decision Tree and k-nearest Neighbour classifiers produced the 
accuracy levels of 85.00%, 83.75% and 81.25% respectively. Thus, the highest accuracy for classifying muscle fatigue due to 
prolonged driving was obtained by the Random Forest classifier, using both the MNF and MDF of the EMG signals. This 
method of using the MNF and MDF will be useful in classifying driver’s non-fatigue and fatigue conditions during prolonged 
driving. 

Keywords: Classification, Electromyography, Median Frequency, Mean Frequency, Muscle fatigue 
© 2022 Penerbit UTM Press. All rights reserved 

Article History: received 15 May 2022; accepted 17 October 2022; published 22 December 2022.  

1. INTRODUCTION 
Road transportation is one of the major modes of transport 
used by Malaysians. Driving necessity because it is fast, 
cheap and practical way of moving people from one place 
to another [1]. According to a Ministry of Transport 
Malaysia (MOTM) report, in 2020, the number of 
registered vehicles recorded was 32.38 million. This 
number had increased to 33.57 million by 2021. In 
addition, cars have been recorded as the type of vehicle 
used most frequently by Malaysians with a rate of 47.10% 
followed by motorcycle at a rate of 46.19% in 2021 [2] 

As a developing country, Malaysia gains income from 
greater productivity, which at the same time requires 
people to move faster and further [3]. Therefore, the 
transportation system of roads and highways should be 
greatly improved, which will enable Malaysians to 
experience better infrastructure, facilities and comfort [4]. 
However, while the increase in driving activity has offered 
major benefits, it has also had negative effects due to the 
increasing number of road accidents.  

Malaysia has one of the highest rates of road accidents 
worldwide in relation to its population. Since 2012 to 
2018, Malaysia has been ranked as the seventh-highest 
country in the world for the overall number of traffic 
accidents. Additionally, Malaysia has had the greatest 
global mortality per 100,000 people since 1996 [5]. In 
2019, the Road Safety Department of Malaysia recorded 

5764 cases of fatal accidents [6]. The three main causes of 
traffic accidents are human, environmental, and technical 
factors [7]. According to Malaysian Institute of Road 
Safety Research (MIROS) reported that the main 
contributor to road accident is human factor as much as 
80% [8]. Mahat et al. (2020) categorized human factor into 
subfactor and according to their finding, the first ranking 
is drunk driving while drowsiness or microsleep rank as 
second factor contributing to road accident [6].  

Microsleep or drowsiness is extremely dangerous when 
driving. It is defined as a sleep in a short period of time [9]. 
Fatigue is one of the factors leading to microsleep or 
drowsiness of the drivers besides prolonged driving, road 
condition, environment and health[10]. 

Thus, in this work, an experiment was conducted to 
classify the fatigue and non-fatigue condition of the driver 
during prolonged driving. Subjects were asked to drive a 
car on a monotonous highway, where the speed limit is 
restricted to 90km/h. Driving on the highway involves a 
monotonous driving environment because of the wide and 
flat pavement, fewer spatial references and high volume of 
traffic [11]. Prolonged driving in this type of environment 
requires drivers to sustain attention over long a period 
which decreases their alertness performance and lead to 
fatigue.  

The car seat inclination angle was set to 10 degrees 
throughout the experiment. Majid et al. (2013) proposed 



Noor Azlyn Ab Ghafar et al. / ELEKTRIKA, 21(3), 2022, 40-46 

 41 

that the optimal adjustment for a car seat was a seat 
inclination of 10° and a seat pan inclination from 0° to 5° 
[12]. Li et al. (2015) stated that a slight backward 
inclination angle of the backrest (approximately 10°) may 
reduce a driver’s muscle fatigue [13]. 

Electromyography (EMG) is an experimental technique 
concerned with the development, recording and analysis of 
myoelectric signals. Myoelectric signals are formed by 
physiological variations in the state of the muscle fibre 
membranes [14]. Two types of EMG muscle sensors are 
available in the market: intramuscular EMG and surface 
EMG [15]. The former is also called the invasive electrode 
approach as it uses needle electrodes that penetrate the 
skin. This type of EMG was not suitable for this study 
because only certified personnel can perform these tests 
while this type of EMG will also make the subject feel 
uncomfortable. Meanwhile, surface EMG, often called the 
non-invasive electrode approach, measures muscle activity 
on the surface of the skin. Surface EMG electrodes are 
fairly inexpensive and can be easily placed on various 
muscles, making them suitable for numerous purposes 
[16]. More than two electrodes are needed to measure the 
EMG signals because the sensor records the potential 
difference (voltage difference) between the two separate 
electrodes. In this work, surface EMG was used to measure 
EMG signals of the muscle. 

The position and orientation of the EMG sensor’s 
electrodes have a vast effect on the signal strength. The 
electrodes should be placed in the middle of the muscle 
body and align with the orientation of the muscle fibres 
[17]. The placement of these electrodes should be based on 
the SENIAM standard. The European SENIAM (Surface 
EMG for the Non-Invasive Assessment of Muscles) 
project which aims to standardize the placement procedure 
of EMG sensor, processing the EMG signal and modeling 
the signal [18]. This work has followed this protocol.  

Muscle fatigue has been defined as a reduction in the 
maximum capacity available to generate force or power 
output [19]. In previous research, the median frequency 
(MNF) and mean frequency (MDF), based on the Fourier 
Transform of the EMG signals have been used for muscle 
fatigue assessment [20][21]. When muscle fatigue occurs, 
the blood flow to the muscle decreases because the 
muscles contract intensely, reducing the blood flow and 
thus the availability of oxygen. Otherwise the muscle is 
simply working so intensely that there is literally not 
enough oxygen to meet the demand [4]. The energy 
reserves (sugar and phosphorous) are depleted, while lactic 
acid and carbon dioxide levels increase and the muscular 
tissue becomes acidic [22]. This results in the decreasing 
conduction velocity of the motor action potential on the 
muscle membrane. Thus, the power spectrum of the EMG 
signals recorded from the muscle shifts towards lower 
frequencies when muscles are in a fatigue condition. As a 
result, both the MNF and MDF values in non-fatigue 
conditions are higher than those obtained in fatigue 
condition [23]. 

The main objective of this work was to classify non-
fatigue and fatigue conditions using the MNF and MDF of 
EMG signals recorded from the trapezius muscles of 
drivers during prolonged driving, based on subjective user 

reports using Machine Learning Classifier. Machine 
learning classifiers, namely Logistic Regression, Support 
Vector Machine, Naïve Bayes, k-nearest Neighbours, 
Decision Tree and Random Forest were used in this work.  

To date, Machine Learning classification of muscle 
fatigue using EMG has mainly focused on the areas of 
rehabilitation, sports science, human-computer interaction 
and medical research. However, no research has been 
conducted in the field of driving. Although this is an 
important topic as driving fatigue leads to accidents and 
the loss of life.  

2. METHODOLOGY 

2.1 Subjects 
Five healthy male subjects and five healthy female subjects 
(mean age 30.8 ± 5.77 years, height 164.4 ± 6.06 cm and 
body mass 64.2 ± 12.7 kg) with no history of sleep related 
problem participated in this study. The nature of the study 
and the procedure of the experiment were fully explained 
to the subjects and consent form were obtained prior to the 
experiment. This study was approved by the International 
Islamic University Malaysia Research Ethics Committee 
(ID No: IREC 2020-069). 

2.2 Experimental procedure 
Two Ag-AgCl disc type disposable electrodes were placed 
on the left trapezius muscle according to the  SENIAM 
standard [24]. The reference electrode was placed on the 
bony surface of the C7 vertebra as shown in Figure 1. In 
the figure below, the headrest was removed for ease of 
visualization. Before positioning the electrodes over the 
muscle, an alcohol swab (Isopropyl, approximately 70%) 
was applied to the skin surface in order to remove dirt and 
dried skin. The EMG signals were recorded using a 
BITalino biosignal acquisition board and acquired at a 
sampling rate of 1000Hz. 
 

 
Figure 1. Location of EMG electrodes 

The subjects needed to drive for two hours using a 
highway route on the East Coast Expressway phase 2, 
Malaysia. The driving duration was chosen for two hours 
based on the pilot study by El Falou et al, (2003) where the 
subjects reported experiencing muscle pain after two hours 

EMG 
electrodes 

Reference 
electrode 
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in sitting position [25]. The highway route was a 
monotonous environment with straight feature but also 
with some slanted ramps, unexpected downhills and 
bumpy features. The same car model, the Perodua Axia 
with automatic transmission was used as the test vehicle. 
The seat inclination angle was set to 10 degrees. All the 
subjects are needed to maintain a driving speed of 90km/h. 

When driving, the researcher verbally asked questions 
from a questionnaire every 5 minutes. The subjects were 
asked if they felt drowsy or sleepy or were experiencing 
any muscle pain. Wang et al, (2017) asked a 10 minute 
interval questionnaire to the subject during the simulation 
driving to minimize the fluctuation and difference between 
subject [26]. In this work, it is assumed that 5 minutes 
interval is more accurate to detect muscle fatigue perceived 
by the subjects. The muscle fatigue perceived by the driver 
is known as the subjective measure and the time of muscle 
fatigue occurred will be recorded. The EMG signals before 
and after the time of the subjective muscle fatigue were 
considered as non-fatigue and fatigue conditions, 
respectively. 

2.3 Data Processing 
Having been collected using MATLAB software, the EMG 
signals were filtered using a fourth-order Butterworth band 
pass filter with a range of 20-500Hz to remove noise at the 
high-end cut-off and motion artefacts at the low-end cut-
off. The MNF and MDF of the EMG signals were then 
computed using the sliding window technique, as 
simplified in Figure 2 [27]. The window size was 250 
samples and the increments of 125 samples were used to 
segment the data. The window size was selected as 
suggested by Thongpanja et al. (2013) [28]. For each 
segment, the MNF and MDF were obtained.  

MNF is defined as the average frequency and calculated 
as the sum of the product of the EMG power spectrum and 
the frequency divided by the total sum of the power 
spectrum [29]. The MNF equation is given as follows: 

 

     𝑀𝑁𝐹 = 	
&'('

)
'*+

(')
'*+

                           (1) 

 
    MDF is obtained by dividing the EMG total power 

spectrum into two equal halves. The MDF equation is 
given as follows: 

 
 
            𝑃- = 	 𝑃-.

-/.01 = 2
3

𝑃-.
-/2

.01
-/2 						         (2) 

 
Where fj is the frequency value of the EMG power 

spectrum at the frequency bin j, Pj is the EMG power 
spectrum at the frequency bin j, and M is the length of the 
frequency bin for both the MNF snd MDF. 

Based on the time of the subjective muscle fatigue for 
every subject, the MNF and MDF were extracted five 
times before and after the subjective fatigue time. The time 
gap between the subjective measure and the data taken 
occurred because, according to Sahayadhas et al. (2013), 
subjective measures do not fully coincide with 
physiological measures [30].  

The MNF and MDF values before the time of the 
subjective muscle fatigue were considered non-fatigue 
conditions, whereas the values after the time of the 
subjective muscle fatigue were considered fatigue 
conditions. Hence, for every subject, five MNF values for 
non-fatigue data and another five values for fatigue data 
were collected. Same method applied to MDF values, All 
the dataset were normalised so that the differences in data 
range between the subjects would be eliminated [31].  

2.4 Classification 
The computed MNF and MDF values were used as the 
features dataset for classification. The data was divided: 
twenty-five percent used as the test set, while the 
remaining data became the training set. Six machine 
learning classifiers namely Logistic Regression, Support 
Vector Machine, Naïve Bayes, k-nearest Neighbours, 
Decision Tree and Random Forest were used to classify 
non-fatigue and fatigue conditions. A ten-fold cross 

Figure 2. A concept of the sliding window technique to compute the mean frequency and median frequency of EMG signals using 
consecutive overlapping FFTs with a window size (L) and a window increment (I). 
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validation method was implemented to evaluate the 
performance (accuracy) of the classifiers. 

3. RESULTS AND DISCUSSION 
An EMG filtered signal is shown in Figure 3(a). The 
original EMG signal was filtered with the band pass filter 
to remove noise and motion artefacts. Next the median 
frequency (Figure 3(b)) and mean frequency (Figure 3(c)) 
were computed using the sliding window technique. 
 
 

 
Figure 3(a). Filtered EMG signal for a representative subject. 

 

 
Figure 3(b). Graph of MNF for representative subject. 

 

 
Figure 3(c). Graph of MDF for representative subject. 

Figures 3 above show the EMG signal, MNF and MDF 
for a representative subject.  According to the subjective 
muscle fatigue, which had been recorded by verbally 
questioning the subject, the time that muscle fatigue was 
experienced by the subject was in the 45th minutes of 
driving, that is after 2,700s. From Figure 3(a), it can be 
concluded that, after 2,700s, the MNF and MDF of the 
EMG signal decreased and fluctuated. This was because, 
as outlined in the literature, the association of the MNF and 
MDF values with fatigue decreases due to the reduction in 
the propagation velocity of the muscle’s action potential 
[32].  

Based on the time of the subjective muscle fatigue, the 
MNF and MDF values were extracted five times before 
and another five times after the time of the subjective 
muscle fatigue. A total of 50 non-fatigue and fatigue 
datasets obtained from the 10 subjects overall were used as 
the features of the machine learning model. Figures 4 and 
5 show the MDF and MNF value respectively. 

Based on Figure 4 and 5, both the MNF and MDF values 
were higher in non-fatigue conditions. The characteristic 
of spectral shift towards a lower frequency region was used 
to evaluate the fatigued muscle. The results indicate that 
the MNF and MDF values could be used as the input or 
features in muscle fatigue classification. 

 

 
Figure 4. MDF for all subjects during non-fatigue and fatigue 

conditions 

 

 
Figure 5. MNF for all subjects during non-fatigue and fatigue 

conditions 

 
Next, the MNF and MDF data were used to classify 

muscle fatigue using Machine Learning classifier. The 
performance result of the classification of non-fatigue and 
fatigue condition was evaluated using ten-fold cross-
validation. The results are summarised in Table 1 below. 
The most accurate classifier for MDF was obtained using 
the Random Forest classifier, 81.96%. On the other hand, 
when only using the MNF dataset, the best accuracy was 
obtained by the Logistic Regression classifier, 77.68%. 
Lastly, when both the MDF and MNF were used as 
features in machine learning model, the Random Forest 
classifier was the most accurate, improving the accuracy to 
85.00%.  

    Based on the result, the accuracy of the Random 
Forest classifier when using MDF dataset was only 
81.96%, while using the MNF dataset only produced the 
rate of 73.57%. However, when both the MDF and MNF 
were used as the dataset of the model, the accuracy 
improved to 85.00%. Thus, it can be concluded that using 
more features in classification dataset yields higher 
classification accuracy in most of the classifier.   
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Table 1. Cross validation accuracy result for MDF and MNF 

Classifier 
MDF 

Accuracy 
(%) 

MNF 
Accuracy 

(%) 

MDF and 
MNF 

Accuracy 
(%) 

Support Vector 
Machine (SVM) 

80.36 76.25 77.86 

Random Forest 81.96 73.57 85.00 

Naïve Bayes 79.29 76.25 76.43 
Logistic 
Regression 79.11 77.68 79.11 

k-Nearest 
Neighbours 79.46 73.21 81.25 

Decision Tree 79.46 74.64 83.75 
 
Thus, the most accurate form of muscle fatigue 

classification for prolonged driving was obtained by the 
Random Forest classifier using both the MDF and MNF 
values of EMG signals. This classifier is powerful and 
widely used because of the stability and robustness of the 
data, which features only slight variations. This classifier 
is constructed using multiple distinct decision trees and the 
final decision is predicted by most of the trees. Each 
decision tree is trained with different subsets of the training 
data using random sample from the original training set 
[32].  

The second highest accuracy in this work was obtained 
using the Decision Tree classifier, which yielded 83.75%. 
This classifier performs well with an enormous volume of 
information, while unrelated features do not influence its 
results. However, the drawback is over-fitting as it is 
sensitive to information [33]. This is because when the 
result will extremely change to huge degree when the 
information changes. Lastly, the k-Nearest Neighbours 
classifier produced an accuracy rate of 81.25%, making it 
the third-best classifier. With training data, the k-Nearest 
Neighbours algorithm sets a group of k objects closest to 
the test object. It then assigns a class to the test object based 
on the neighbours. The three main stages of the k-Nearest 
Neighbours algorithm are initialising dataset and k-Nearest 
Neighbours, computing the distance between neighbors, 
and classifying the  test data based on the majority of the 
neighbouring class data [31]. The value of k was iterated 
and set as five in this study based on the highest 
classification accuracy obtained when tested with MDF 
classification. The result is shown in Table 2 below where 
k=5 produces the highest classification accuracy. The 
usage of k=5 also been used in the research by Marri et al. 
(2016) in classifying muscle fatigue [34]. 
 

Table 2. Selection of k value for kNN classifier 

 k-Nearest Neighbours classifier 
 k=3 k=4 k=5 k=6 k=7 

Classifier 
Accuracy 
(%) 

79.29 75.54 79.46 74.46 73.04 

 
    For the selection of k-value for k-fold cross validation, 
the same method applied as the selection of k value for 
kNN classifier. The accuracy result for ten-fold cross 
validation is highest as compared to other value. Table 

below summarized the result of different k-fold cross 
validation tested. The ten-fold cross validation was also 
used by previous researcher to classify muscle fatigue 
[35][33][36].  
 

Table 3. Selection of k value for k-fold cross validation 

 k-fold cross validation value 
 k=3 k=5 k=10 k=15 

Classifier 
Accuracy 
(%) 

73.33 77.33 79.46 78.67 

 
    This study has limitation. The number of samples is 
small. However, this pilot study managed to show that the 
classification of muscle fatigue for prolonged driving 
especially by the Random Forest classifier using both the 
MDF and MNF values of EMG signals. 

4. CONCLUSION 
Due to the increasing use of road transportation and 
accident rates in Malaysia, this study focused on the 
classification of non-fatigue and fatigue conditions in 
drivers during prolonged driving. EMG signals from the 
trapezius muscle were recorded and the MNF and MDF 
were computed. The MNF and MDF dataset were trained 
and tested using six machine learning models, the Logistic 
Regression, Support Vector Machine, Naïve Bayes, k-
Nearest Neighbours, Decision Tree and Random Forest 
classifiers. The results show that both the MNF and MDF 
value were lower in fatigue conditions compared to non-
fatigue conditions. In addition, the Random Forest, 
Decision Tree and k-nearest Neighbour classifiers 
performed with the accuracy levels of 85%, 83.75% and 
81.25% respectively.  
    It is suggested that in the future, further research is 
conducted on detecting and classifying muscle fatigue 
during driving, while other psychophysical signals like 
electrocardiogram (ECG), electrooculogram (EoG) and 
electroencephalogram (EEG) signals could be used to 
improve the classification accuracy. The outcomes of this 
work form important guidelines that could be used when 
studying driver’s muscle fatigue and to detect muscle 
fatigue when driving. Early detection of muscle fatigue of 
the driver is important to reduce fatigue, avoid 
musculoskeletal disorders, prevent accidents and loss of 
life.    
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