
VOL. 21, NO. 3, 2022, 69-75
https://elektrika.utm.my
ISSN 0128-4428

69

Modelling, Simulation and Navigation of a Two-
Wheel Mobile Robot using Pure Pursuit Controller

Amr A. A. Abdeltawab*, Sophan Wahyudi Nawawi, Noor Erlia Nasha Samsuria, and
Navein A/L Sirkunan

School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,
Malaysia.

*Corresponding author: amro2500@gmail.com

Abstract: Recently, the field of mobile robotics have witnessed an unprecedented expansion due to their vast applications that
range from surveillance and construction to planetary exploration and emergency rescue operations. Their tasks became more
and more complex that their autonomy became essential in the majority of the applications which means that devising
controllers that suit different scenarios and situations is of importance. In this project, we aim to control the velocity of a
modelled 2-wheel differential drive robot by using a PSO optimized PID controller. In addition to speed control, in order for
a robot to move to specific waypoints by itself, a path planning algorithm has to be implemented. Pure pursuit, a simple yet
efficient path tracking method for nonholonomic ground vehicles is utilized.

Keywords: Autonomous Navigation, Pure Pursuit, PID speed control
© 2022 Penerbit UTM Press. All rights reserved

Article History: received 27 September 2022; accepted 15 December 2022; published 22 December 2022.

1. INTRODUCTION
First introduced in 1955, Automatic Guided Vehicles since
that time has evolved to fulfill many different applications.
Since that time, the guiding system which is the core part
of any AGV has evolved along various stages of
mechanical, optical, inductive, inertial, and laser guidance
resulting in today’s vision-based system. AGVs hence
evolved to become Autonomous Mobile Robots or AMRs.
AGVs can only move in specific path (typically defined by
magnetic tape to be followed) while AMRs can freely
navigate to in any point in a collision-free zone on a given
map. This ability of AMRs caused an increase in
production by reducing the time of inactivity [1]. AMRs
also have the ability to adapt to new environments which
by itself contributes to lowering the economic risk that the
nature of AGVs pose [2].

When dealing with a simulated robot just as presented
in this paper, accurate modelling is an important key in
achieving realistic results. The robot to be simulated in this
project is a 2-wheel non-holonomic differential drive robot
with a caster wheel. A differential drive mobile robot is a
common type that has an application area in the robotic
research often [3]. Although the mathematical model for
this robot can be simple, the existence of non-holonomic
constraints presents a difficult challenge to overcome
when it comes to designing the control system as typically,
time-variant control systems are utilized. Based on the
literature concerned with differential drive mobile robots,
two methods of modelling are adopted, either Lagrangian
approach or the Newton-Euler approach [4].

Along the years, many controllers have been developed
for various dynamic systems. Up until now, Proportional
Integral Derivative (PID) controller is being used in a
multitude of industrial applications. PID controllers deal
with most of the practical issues such as actuator saturation
and integrator wind up. Their practicality and ease of
design has made them quite popular that about 90% of
industrial controllers are PID based according to [5]. As
mentioned earlier, controlling non-holonomic systems
typically requires time-variant controllers which means
that in the case of a PID controller, there has to be a method
that adjust the gains accordingly when needed. There are
multiple algorithms to accomplish that, the most widely
used of which is Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO). PSO is famous for its simple
and easy to implement concept which means that
computationally, PSO is very efficient [6]. Compared to
the rest of heuristic techniques, PSO has a more flexible
with a balanced mechanism to enhance the local and the
global explorations [7].

 An autonomous vehicle’s objective is to be able to self-
drive itself by utilizing its sensory profile which may
contain GPS, IMU, cameras, sensors etc. In order that
accomplish that, the robot has to not only be able to detect
its environment but also estimate its position by the help of
these sensors. Once the robot knows both, it can be
possible then to navigate itself with global and local
planner which provide the robot with a path along which it
needs to control itself to follow [8]. Path-following
operations along with calculating minimal lateral distance
as well as the heading between the vehicle and defined path
is achieved by a path-tracking controller [2].

Amr A. A. Abdeltawab et al. / ELEKTRIKA, 21(3), 2022, 69-75

 70

The path-tracking controller is responsible for
generating steering and speed commands for the robot in
order for it to follow the generated path by the planner
based on the tracking error measured. For path tracking
techniques for autonomous ground vehicles – which as
mentioned earlier have to deal with non-holonomic
constraints – are based on nonlinear control theory.
Examples include predictive and adaptive control
(Adaptive PID [9]), as well as fuzzy control. Despite the
accuracy of these controllers, certain issues are inherent.
PID controllers comes with issues in optimization of
parameters and overshot in tracking. As for fuzzy
controllers, they typically need more information. An
alternative approach is to depend on the geometric
considerations between the current position of the robot
and the path it needs to follow [10]. Pure-pursuit algorithm
is a very common – due its simplicity – and effective
geometric method. Pure-pursuit algorithm calculates the
robot’s current position and a set point along the path. This
point is chosen at a specified look-ahead distance, which is
the chord length of this arc. Pure-pursuit algorithm tuning
is fairly simple as it depends on the look-ahead distance
which – in addition to its computational simplicity as well
as the absence of any derivative terms – makes it a fairly
simple and easy path-tracking algorithm.

2. MATHEMATICAL MODELLING
Modelling is the process of expressing real-life problems
in mathematical terms. It is an important stage as it enables
controller design and makes it possible to tune and test
various controllers. For robotics, dynamic and kinematic
models need to be implemented to express the movement
of a robot. Derivation of the dynamic equations is usually
achieved by adopting Lagrangian approach or the Newton-
Euler approach [11]. The following subsections, describe
the derivation of a two-wheel differential drive robot’s
mathematical model using Newton-Euler approach. The
equations are derived and converted into the s-domain as
they are to be used for modelling on Simulink.

2.1 Robot Dynamic Model
The first step in Newton-Euler dynamic modeling is to
draw the free body diagram of the system which helps in
analyze the forces acting on it. This is a very crucial step
as the accuracy of the model derived depends upon
whether all forces are considered or not.

Figure 1. Robot FBD [4].

The free body diagram of the two-wheel differential
drive robot (with a caster wheel) is shown in Figure 1.
Using the robot local frame {𝑥#, 𝑦#}, the following
notations are introduced. (𝑣), 𝑣*) represents the velocity
of the vehicle center of mass 𝐶 in the local frame; 𝑣) is the
longitudinal velocity and 𝑣* is the lateral velocity;
(𝑎), 𝑎*) represent the acceleration of the vehicle's center
of mass C; 𝐹)/, 𝐹)0 	are the longitudinal forces exerted on

the vehicle by the left and right wheels; 𝐹*/, 𝐹*0 	are the
lateral forces exerted on the vehicle by the left and right
wheels; 𝜃 is the orientation of the robot; 𝜔 is the angular
velocity; and 𝑚 is the mass of the robot [4].

By assuming the robot to be a rigid body, we can derive
its radial and tangential velocity as well as acceleration
from the differential equations created by correlating the
polar position vector with the robot’s inertial frame.

𝑣) = 	 𝑟 (1)

𝑣* = 	𝑟𝜃 (2)

𝑎) = 	 𝑟 − 𝑟𝜃8 (3)

𝑎* = 	2𝑟𝜃 + 𝑟	𝜃 (4)

Then by using Newton’s second law of motion in the
robot’s frame of reference, the relationship between the
forces and torques are derived. The robot exhibits two
types of motion, which are translations in radial and
tangential directions, and rotation around its Z-axis at 𝐶.
Assuming 𝑀 is the total mass of the robot, and 𝐽 as the
moment of inertial with respect to 𝐶. By also assuming the
absence of any slipping as any sliding, the dynamic
equations for translational velocity as well as rotational
acceleration can be represented by

𝑣) = 	𝑑𝜃8 + 	 >
?
(𝐹)@ + 	𝐹)A) (5)

𝜃 = 	 @
?BCDE

𝐹)@ + 	𝐹)A − ?BFG
?BCDE

𝜃 (6)

By using the Lagrangian approach, actuator torques can be
considered as well in (5) and (6).

𝑀𝑑8 + 𝐽 	𝜃 + 𝑀𝑑𝑣)𝜃 =
@
A
𝜏# − 	𝜏I (7)

𝑀𝑣) − 𝑀𝑑𝜃8 =
>
A
𝜏# + 	𝜏I (8)

By rearranging the above equations, the angular
acceleration and the translational velocity can then be
expressed by the following two equations.

𝜃 = @ JKL	JM
A	(?BCDE)

− ?BNO
?BCDE

 (9)

𝑣) = 𝑑𝜃8 + >
?A

𝜏# + 	𝜏I (10)

Amr A. A. Abdeltawab et al. / ELEKTRIKA, 21(3), 2022, 69-75

 71

2.2 Actuator Model
Servo DC motors are the typical actuators for a ground
differential drive mobile robot. The armature voltage 𝑣P is
used as the input that controls the motor while keeping
other conditions constant. For the armature circuit the
following equations are utilized.

𝑣P = 𝑅P𝑖P + 𝐿P
BTU
BV
+ 𝑒P (11)

𝑒P = 	𝐾Y𝜔Z (12)

𝜏Z = 	𝐾V𝑖P (13)

𝜏 = 𝑁𝜏Z (14)

Here, 𝑖P is the armature current, (𝑅P, 𝐿P)	is the
resistance and inductance of the armature winding
respectively, 𝑒P is the back emf, 𝜔Z is the rotor angular
speed , 𝜏Z is the motor torque, (𝐾V, 	𝐾Y) are the torque
constant and back emf constant respectively, 𝑁 is the gear
ratio, and is 𝜏 the output torque applied to the wheel. By
using LaPlace transform on (1), we get

𝑉P 𝑠 = 𝑠. 	𝐿P𝐼P 𝑠 + 𝑅P𝐼P 𝑠 + 𝐸P(𝑠) (15)

Then by substituting (12) into (15) we get

𝑉P = 𝑠. 	𝐿P𝐼P + 𝑅P𝐼P + 𝐾Y𝜔Z (16)

By rearranging (16), and substituting (13) into (14), yields
the following equations.

𝐼P =
FULabcd
AUDe.	@U

 (18)

𝜏 = 𝑁𝐾V𝑖P (19)

2.3 Wheel Kinematics
The linear velocity of the differential drive mobile robot in
the Robot Frame is the average of the linear velocities of
the two wheels represented by the equation below.

𝑉 = NKDNM
8

= 	 AcKDAcM
8

 (20)

Which means that the angular velocity of the robots is

𝜔 = 	 NKLNM
8@

 (21)

Thus, we can drive the angular acceleration of each wheel
by substituting (21) into (20), which will yield the
equations below.

𝜔# = 	 NDc@
A

 (22)

𝜔I = 	 NLc@
A

 (23)

3. SPEED CONTROLLER DESIGN
We would typically want the robot to maintain a specific
linear velocity (given by the commands from the path-
tracking algorithm) by controlling the voltage input. To
accomplish this a controller is needed be designed. PID is
selected for its simplicity and ease of implementation yet,
an efficient method of optimization for adjusting the gains
has to be adopted. Hence, Particle Swarm Optimization is
selected in order to accomplish that.

Figure 2. PID controller block diagram.

Particle Swarm Optimization (PSO) is a technique used

to explore the search space of a given problem to find the
settings or parameters required to maximize a particular
objective – hence the optimization part. PSO is sometimes
considered as an evolutionary computation technique. The
method has been found to be robust in solving problems
featuring nonlinearity and non-differentiability, multiple
optima, and high dimensionality through adaptation. In
this paper the PSO algorithm is used to find the optimal
parameters for the PID controller used for the control of
the velocity of the two-wheel differential drive mobile
robot. PSO is used to optimize the three gains of the PID
controller 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 which means that the search
space of three dimensions and thus the particles have to fly
in 3D space.

Figure 3. PSO Algorithm Block Diagram

Amr A. A. Abdeltawab et al. / ELEKTRIKA, 21(3), 2022, 69-75

 72

In PSO, for a d-variables optimization problem, a flock
of particles are put into the d-dimensional search space
with randomly chosen velocities and positions knowing
their best values so far (𝑃YheV) and their position in the d-
dimensional space. The velocity of each particle, adjusted
according to its own flying experience and the other
particle’s flying experience. The index of best particle
among all of the particles in the group is	𝑔YheV	[12]. The
modified velocity and position of each particle can be
calculated using the current velocity and the distance from
𝑃YheV to 𝑔YheV. By testing and using different values for
population size and number of iterations, the values shown
in Table I below are selected. The resulted PID gains are
shown in Table II. It is worth noting that Mean Square
Error evaluation criterion was selected.

MSE	=	>
p

𝑒 − 𝑒p
Tq>

8
 (24)

Table I. Values selected for the PSO

Var. Description Value

𝑁 No. of Particles 35

𝑡ZPu Max. No. of Iterations 20

𝑤TZPu Max. inertia weight 0.9

𝑤𝑖ZTp Min. inertia weight 0.4

𝑐>	; 𝑐8 Acceleration Coeff. 1.2

J Fitness function MSE

Table II. PID gains calculated by PSO

PID Gain Value

Kp 9.9918

Ki 1.0192

Kd 0.0427

4. SIMULINK MODELLING & PURE-PURSUIT
CONTROLLER IMPELEMENTATION

In this section, modelling is carried out using MATLAB
and Simulink software (2020a). The implementation of the
robot model is carried out based on the previously derived
dynamic equations. The implementation of the pure pursuit
controller is also carried out using Simulink. Simulink
provided several powerful kits that are used in this project.
Among which many helped with the results and analysis
discussed in section 5.

4.1 Robot Kinematic Model
The first step was to model the robot on Simulink using the
dynamic equations derived earlier by using a block
diagram. The model should incorporate the wheel
kinematics, the actuator model, as well as the robot entire
kinematics. The robot Simulink block diagram is shown in
Figure 4 below.

Figure 4. Robot Kinematic Simulink Model

The robot model shown above had many constants that

needed to be assumed in order carry out simulation. The
assumed parameters (taken from [3]) are shown in Table
3. The model is verified by inputting a step input as voltage
to one of the wheels and graphing the pose on 𝑥𝑦-plane.
The robot showed the expected rotation.

Table III. Robot Parameters

Parameter Value

La 0.088

Ra 1.01

Kb 12.939

Kt 12.939

N 53

J 0.0732

M 27

d 0.05

R 0.0975

L 0.0164

Amr A. A. Abdeltawab et al. / ELEKTRIKA, 21(3), 2022, 69-75

 73

4.2 Pure Pursuit Controller
Next was implementing the PID and the Pure pursuit

controllers. For the PID controller, the gains by PSO were
directly used. As for the pure pursuit controller, the
Simulink block “Pure Pursuit Controller” as used. It takes
two inputs, the post of the robot as well as the waypoints
to which the robot has to navigate. Bear in mind that
mapping as well as the sensory profile of the robot were
not incorporated in this project, so we assumed a static map
and we assume that the robot has accurate estimation about
its current position. The pure pursuit controller was then to
track the path to the waypoints by controlling the robot
linear and angular velocities. The complete model is
shown in Figure 5. The parameters needed for the pure
pursuit controller can be found in Table 4.

Figure 5. Entire Robot Simulink Model

Table IV. Values selected for the PSO

Var. Description Value

Desired Linear
Velocity, (𝑚𝑠L>)

Desired Linear Velocity for
the robot to move to a
designated waypoint

0.3

Desired Angular
Velocity,
(𝑟𝑎𝑑𝑠L>)

Desired Angular Velocity for
the robot to move to a
designated waypoint

2.5

R, (m) Radius of the wheel 0.0975

L, (m)
Distance between the
midpoint and centers of two
wheels

0.164

Lookahead
distance, (m)

Distance of how far along
the path the robot should
look from current location to
compute angular velocity

0.1

5. SIMULATION AND RESULTS
Although many DC servo motors (which are used for the
majority of ground mobile robots) has their embedded
speed controller, the PID controller designed seemed to
completely smoothen out fluctuations noticed in the
actuators’ behavior. Additionally, the response time
drastically improved which can be of a great importance
especially for advanced navigation tasks where the robot is
assumed to stream its pose in real-time. Figure 6 shows the
difference between the output in actuator velocity for a
12V input for both wheels with and without the controller.

Figure 6. Linear velocity for both wheels with and
without the controller

The same kind of improvement (shown in Figure 7) can

be seen when the waypoints were entered into the system
and the robot started to follow them accordingly. No noisy
signal observed; a good control of DC motor is maintained
and secured

Figure 7. Controller effect on linear velocity while
navigating.

For the pure-pursuit simulation, the “robot visualizer”

tool in Simulink was utilized. As shown in Figure 8, the
robot visualizer takes in the current po and the desired
waypoints and drive the robot within an environment of
design as desired.

Figure 8. Robot Visualizer block diagram

Amr A. A. Abdeltawab et al. / ELEKTRIKA, 21(3), 2022, 69-75

 74

The flowchart shown in Figure 9 resembles the entire
navigation process for the robot. First, the robot has its
initial post, upon which it will use the pure pursuit to set
out the commands for the actuator to move towards the
first waypoint in the matrix provided. Then, it will update
the pose accordingly until all waypoints are achieved.

Figure 9. Flowchart of the mobile robot navigation

The robot visualizer (shown in Figure 10) helps

visualize the robot as well as its look-ahead / foresight
distance which is crucial to the efficiency of the trajectory
tracking. If it is large the robot will move along a small arc
and the path will not have large oscillation, which although
might sound great, will significantly lower the tracking
accuracy. Similarly a small foresight distance will cause
the robot to be too sensitive to the curvature of the path and
the robot will experience sudden and acute rotation [13].

Figure 10. Robot visualizer output

Figure 11. Linear Velocity of both wheels along the test

Studies as early as 2001 [14] had suggested that since

too large or too small foresight distance will affect the
accuracy of the robot’s trajectory tracking, the actual pose
and speed of the robot had to be taken into account instead
of simply considering a single factor. In [13], and
improved pure pursuit trajectory tracking approach was
introduced by using fuzzy controllers to determine the
foresight dynamically.

6. CONCLUSION
Mobile robotics have a growing attention due to its ability
to revolutionize many applications, ranging from
surveillance and construction to planetary exploration and
emergency rescue operations. As autonomy became
essential in the majority of the applications, designing
different control systems and improving them became vital
to many of the robot’s tasks’ efficiency. In this project A
dynamic model of a two-wheel robot has been
implemented and validated. A PSO optimized PID
controller has been implemented for the robot model after
the tuning process was carried out it accordingly. Point to
point navigation has been done using a pure pursuit
controller to move the robot autonomously to the desired
waypoints. The speed control implemented using the PID
controller proved to drastically improve the linear velocity
output as a smooth and fast response is achieved. An
improvement for this project can include the simulation of
multiple sensors and fusing them accordingly in order
achieve the most accurate position estimation possible.
Pure pursuit path tracking although simple in application,
can be improved and tuned by adding another layer of
optimizers concerned with the lookahead or the foresight
distance.

REFERENCES
[1] G. Fragapane, R. de Koster, F. Sgarbossa, and J. O.

Strandhagen, “Planning and control of autonomous
mobile robots for intralogistics: Literature review and
research agenda,” Eur. J. Oper. Res., vol. 294, no. 2,
pp. 405–426, 2021, doi: 10.1016/j.ejor.2021.01.019.

[2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza,
Introduction to autonomous mobile robots, Second.
MIT Press, 2011.

[3] M. KALYONCU and F. DEMİRBAŞ, “Differential
Drive Mobile Robot Trajectory Tracking With Using
Pid and Kinematic Based Backstepping Controller,”
Selcuk Univ. J. Eng. ,Science Technol., vol. 5, no. 1,
pp. 1–15, 2017, doi: 10.15317/scitech.2017.65.

[4] R. D. Ahmad Abu Hatab, “Dynamic Modelling of

Amr A. A. Abdeltawab et al. / ELEKTRIKA, 21(3), 2022, 69-75

 75

Differential-Drive Mobile Robots using Lagrange
and Newton-Euler Methodologies: A Unified
Framework,” Adv. Robot. Autom., vol. 02, no. 02,
2013, doi: 10.4172/2168-9695.1000107.

[5] L. A. Aguirre, “The historical development of texts
for teaching classical control of linear systems,”
Annu. Rev. Control, vol. 39, no. October, pp. 1–11,
2015, doi: 10.1016/j.arcontrol.2015.03.002.

[6] M. A. Abido, “Optimal design of power-system
stabilizers using particle swarm optimization,” IEEE
Trans. Energy Convers., vol. 17, no. 3, pp. 406–413,
2002, doi: 10.1109/TEC.2002.801992.

[7] T. Y.Abdalla and A. A. A, “PSO-based Optimum
Design of PID Controller for Mobile Robot
Trajectory Tracking,” Int. J. Comput. Appl., vol. 47,
no. 23, pp. 30–35, 2012, doi: 10.5120/7497-0601.

[8] N. Buniyamin, W. W. Ngah, W. a J. Wan Ngah, N.
Sariff, and Z. Mohamad, “A simple local path
planning algorithm for autonomous mobile robots,”
Int. J. Syst. Appl. Eng. Dev., vol. 5, no. 2, pp. 151–
159, 2011, [Online]. Available:
http://www.naun.org/main/UPress/saed/19-
671.pdf%5Cnfiles/1177/19-671.pdf.

[9] P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, and T. Mei,
“Design of a control system for an autonomous

vehicle based on adaptive-PID,” Int. J. Adv. Robot.
Syst., vol. 9, pp. 1–11, 2012, doi: 10.5772/51314.

[10] M. Samuel, M. Hussein, and M. Binti, “A Review of
some Pure-Pursuit based Path Tracking Techniques
for Control of Autonomous Vehicle,” Int. J. Comput.
Appl., vol. 135, no. 1, pp. 35–38, 2016, doi:
10.5120/ijca2016908314.

[11] A. M. Bloch, Nonholonomic Mechanics and Control,
vol. 24. New York, NY: Springer New York, 2003.

[12] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Proceedings of ICNN’95 -
International Conference on Neural Networks, 1995,
vol. 4, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[13] H. Wang, X. Chen, Y. Chen, B. Li, and Z. Miao,
“Trajectory tracking and speed control of cleaning
vehicle based on improved pure pursuit algorithm,”
Chinese Control Conf. CCC, vol. 2019-July, pp.
4348–4353, 2019, doi:
10.23919/ChiCC.2019.8865255.

[14] C. S. Tseng, B. Sen Chen, and H. J. Uang, “Fuzzy
tracking control design for nonlinear dynamic
systems via T-S fuzzy model,” IEEE Trans. Fuzzy
Syst., vol. 9, no. 3, pp. 381–392, 2001, doi:
10.1109/91.928735.

