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Abstract: Recently, the field of mobile robotics have witnessed an unprecedented expansion due to their vast applications that 
range from surveillance and construction to planetary exploration and emergency rescue operations. Their tasks became more 
and more complex that their autonomy became essential in the majority of the applications which means that devising 
controllers that suit different scenarios and situations is of importance. In this project, we aim to control the velocity of a 
modelled 2-wheel differential drive robot by using a PSO optimized PID controller. In addition to speed control, in order for 
a robot to move to specific waypoints by itself, a path planning algorithm has to be implemented. Pure pursuit, a simple yet 
efficient path tracking method for nonholonomic ground vehicles is utilized.  
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1. INTRODUCTION 
First introduced in 1955, Automatic Guided Vehicles since 
that time has evolved to fulfill many different applications. 
Since that time, the guiding system which is the core part 
of any AGV has evolved along various stages of 
mechanical, optical, inductive, inertial, and laser guidance 
resulting in today’s vision-based system. AGVs hence 
evolved to become Autonomous Mobile Robots or AMRs. 
AGVs can only move in specific path (typically defined by 
magnetic tape to be followed) while AMRs can freely 
navigate to in any point in a collision-free zone on a given 
map. This ability of AMRs caused an increase in 
production by reducing the time of inactivity [1]. AMRs 
also have the ability to adapt to new environments which 
by itself contributes to lowering the economic risk that the 
nature of AGVs pose [2].  

When dealing with a simulated robot just as presented 
in this paper, accurate modelling is an important key in 
achieving realistic results. The robot to be simulated in this 
project is a 2-wheel non-holonomic differential drive robot 
with a caster wheel. A differential drive mobile robot is a 
common type that has an application area in the robotic 
research often [3]. Although the mathematical model for 
this robot can be simple, the existence of non-holonomic 
constraints presents a difficult challenge to overcome 
when it comes to designing the control system as typically, 
time-variant control systems are utilized. Based on the 
literature concerned with differential drive mobile robots, 
two methods of modelling are adopted, either Lagrangian 
approach or the Newton-Euler approach [4]. 

Along the years, many controllers have been developed 
for various dynamic systems. Up until now, Proportional 
Integral Derivative (PID) controller is being used in a 
multitude of industrial applications. PID controllers deal 
with most of the practical issues such as actuator saturation 
and integrator wind up. Their practicality and ease of 
design has made them quite popular that about 90% of 
industrial controllers are PID based according to [5]. As 
mentioned earlier, controlling non-holonomic systems 
typically requires time-variant controllers which means 
that in the case of a PID controller, there has to be a method 
that adjust the gains accordingly when needed. There are 
multiple algorithms to accomplish that, the most widely 
used of which is Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO). PSO is famous for its simple 
and easy to implement concept which means that 
computationally, PSO is very efficient [6]. Compared to 
the rest of heuristic techniques, PSO has a more flexible 
with a balanced mechanism to enhance the local and the 
global explorations [7]. 

 An autonomous vehicle’s objective is to be able to self-
drive itself by utilizing its sensory profile which may 
contain GPS, IMU, cameras, sensors etc. In order that 
accomplish that, the robot has to not only be able to detect 
its environment but also estimate its position by the help of 
these sensors. Once the robot knows both, it can be 
possible then to navigate itself with global and local 
planner which provide the robot with a path along which it 
needs to control itself to follow [8]. Path-following 
operations along with calculating minimal lateral distance 
as well as the heading between the vehicle and defined path 
is achieved by a path-tracking controller [2].  
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The path-tracking controller is responsible for 
generating steering and speed commands for the robot in 
order for it to follow the generated path by the planner 
based on the tracking error measured. For path tracking 
techniques for autonomous ground vehicles – which as 
mentioned earlier have to deal with non-holonomic 
constraints – are based on nonlinear control theory. 
Examples include predictive and adaptive control 
(Adaptive PID [9]), as well as fuzzy control.  Despite the 
accuracy of these controllers, certain issues are inherent. 
PID controllers comes with issues in optimization of 
parameters and overshot in tracking. As for fuzzy 
controllers, they typically need more information. An 
alternative approach is to depend on the geometric 
considerations between the current position of the robot 
and the path it needs to follow [10]. Pure-pursuit algorithm 
is a very common – due its simplicity – and effective 
geometric method. Pure-pursuit algorithm calculates the 
robot’s current position and a set point along the path. This 
point is chosen at a specified look-ahead distance, which is 
the chord length of this arc. Pure-pursuit algorithm tuning 
is fairly simple as it depends on the look-ahead distance 
which – in addition to its computational simplicity as well 
as the absence of any derivative terms – makes it a fairly 
simple and easy path-tracking algorithm.  

2. MATHEMATICAL MODELLING 
Modelling is the process of expressing real-life problems 
in mathematical terms. It is an important stage as it enables 
controller design and makes it possible to tune and test 
various controllers. For robotics, dynamic and kinematic 
models need to be implemented to express the movement 
of a robot. Derivation of the dynamic equations is usually 
achieved by adopting Lagrangian approach or the Newton-
Euler approach [11]. The following subsections, describe 
the derivation of a two-wheel differential drive robot’s 
mathematical model using Newton-Euler approach. The 
equations are derived and converted into the s-domain as 
they are to be used for modelling on Simulink. 

2.1 Robot Dynamic Model 
The first step in Newton-Euler dynamic modeling is to 
draw the free body diagram of the system which helps in 
analyze the forces acting on it. This is a very crucial step 
as the accuracy of the model derived depends upon 
whether all forces are considered or not.  

 
Figure 1. Robot FBD [4]. 

 

The free body diagram of the two-wheel differential 
drive robot (with a caster wheel) is shown in Figure 1. 
Using the robot local frame {𝑥#, 𝑦#}, the following 
notations are introduced. (𝑣), 𝑣*) represents the velocity 
of the vehicle center of mass 𝐶 in the local frame; 𝑣) is the 
longitudinal velocity and 𝑣* is the lateral velocity; 
(𝑎), 𝑎*) represent the acceleration of the vehicle's center 
of mass C; 𝐹)/, 𝐹)0 	are the longitudinal forces exerted on 

the vehicle by the left and right wheels; 𝐹*/, 𝐹*0 	are the 
lateral forces exerted on the vehicle by the left and right 
wheels; 𝜃 is the orientation of the robot; 𝜔 is the angular 
velocity; and 𝑚 is the mass of the robot [4]. 

By assuming the robot to be a rigid body, we can derive 
its radial and tangential velocity as well as acceleration 
from the differential equations created by correlating the 
polar position vector with the robot’s inertial frame.  

𝑣) = 	 𝑟 (1) 

𝑣* = 	𝑟𝜃 (2) 

𝑎) = 	 𝑟 − 𝑟𝜃8 (3) 

𝑎* = 	2𝑟𝜃 + 𝑟	𝜃 (4) 

Then by using Newton’s second law of motion in the 
robot’s frame of reference, the relationship between the 
forces and torques are derived. The robot exhibits two 
types of motion, which are translations in radial and 
tangential directions, and rotation around its Z-axis at 𝐶. 
Assuming 𝑀 is the total mass of the robot, and 𝐽 as the 
moment of inertial with respect to 𝐶. By also assuming the 
absence of any slipping as any sliding, the dynamic 
equations for translational velocity as well as rotational 
acceleration can be represented by 

𝑣) = 	𝑑𝜃8 + 	 >
?
(𝐹)@ + 	𝐹)A)  (5) 

𝜃 = 	 @
?BCDE

𝐹)@ + 	𝐹)A − ?BFG
?BCDE

𝜃 (6) 

By using the Lagrangian approach, actuator torques can be 
considered as well in (5) and (6). 

𝑀𝑑8 + 𝐽 	𝜃 + 𝑀𝑑𝑣)𝜃 =
@
A
𝜏# − 	𝜏I  (7) 

𝑀𝑣) − 𝑀𝑑𝜃8 =
>
A
𝜏# + 	𝜏I    (8) 

By rearranging the above equations, the angular 
acceleration and the translational velocity can then be 
expressed by the following two equations. 

𝜃 = @ JKL	JM
A	(?BCDE)

− ?BNO
?BCDE

  (9) 

𝑣) = 𝑑𝜃8 + >
?A

𝜏# + 	𝜏I   (10) 
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2.2 Actuator Model 
Servo DC motors are the typical actuators for a ground 
differential drive mobile robot. The armature voltage 𝑣P is 
used as the input that controls the motor while keeping 
other conditions constant. For the armature circuit the 
following equations are utilized.  

𝑣P = 𝑅P𝑖P + 𝐿P
BTU
BV
+ 𝑒P (11) 

𝑒P = 	𝐾Y𝜔Z (12) 

𝜏Z = 	𝐾V𝑖P (13) 

𝜏 = 𝑁𝜏Z (14) 

Here, 𝑖P is the armature current, (𝑅P, 𝐿P)	is the 
resistance and inductance of the armature winding 
respectively, 𝑒P is the back emf, 𝜔Z is the rotor angular 
speed , 𝜏Z is the motor torque, (𝐾V, 	𝐾Y) are the torque 
constant and back emf constant respectively, 𝑁 is the gear 
ratio, and is 𝜏 the output torque applied to the wheel. By 
using LaPlace transform on (1), we get 

𝑉P 𝑠 = 𝑠. 	𝐿P𝐼P 𝑠 + 𝑅P𝐼P 𝑠 + 𝐸P(𝑠) (15) 

Then by substituting (12) into (15) we get 

𝑉P = 𝑠. 	𝐿P𝐼P + 𝑅P𝐼P + 𝐾Y𝜔Z  (16) 

By rearranging (16), and substituting (13) into (14), yields 
the following equations.  

𝐼P =
FULabcd
AUDe.	@U

 (18) 

𝜏 = 𝑁𝐾V𝑖P (19) 

2.3 Wheel Kinematics 
The linear velocity of the differential drive mobile robot in 
the Robot Frame is the average of the linear velocities of 
the two wheels represented by the equation below. 

𝑉 = NKDNM
8

= 	 AcKDAcM
8

 (20) 

Which means that the angular velocity of the robots is 
 

𝜔 = 	 NKLNM
8@

 (21) 

Thus, we can drive the angular acceleration of each wheel 
by substituting (21) into (20), which will yield the 
equations below. 

𝜔# = 	 NDc@
A

 (22) 

𝜔I = 	 NLc@
A

 (23) 

 

3. SPEED CONTROLLER DESIGN 
We would typically want the robot to maintain a specific 
linear velocity (given by the commands from the path-
tracking algorithm) by controlling the voltage input. To 
accomplish this a controller is needed be designed. PID is 
selected for its simplicity and ease of implementation yet, 
an efficient method of optimization for adjusting the gains 
has to be adopted. Hence, Particle Swarm Optimization is 
selected in order to accomplish that.  
 

 
Figure 2. PID controller block diagram. 

 
Particle Swarm Optimization (PSO) is a technique used 

to explore the search space of a given problem to find the 
settings or parameters required to maximize a particular 
objective – hence the optimization part. PSO is sometimes 
considered as an evolutionary computation technique. The 
method has been found to be robust in solving problems 
featuring nonlinearity and non-differentiability, multiple 
optima, and high dimensionality through adaptation. In 
this paper the PSO algorithm is used to find the optimal 
parameters for the PID controller used for the control of 
the velocity of the two-wheel differential drive mobile 
robot. PSO is used to optimize the three gains of the PID 
controller 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 which means that the search 
space of three dimensions and thus the particles have to fly 
in 3D space. 

 
Figure 3. PSO Algorithm Block Diagram 
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In PSO, for a d-variables optimization problem, a flock 
of particles are put into the d-dimensional search space 
with randomly chosen velocities and positions knowing 
their best values so far (𝑃YheV) and their position in the d-
dimensional space. The velocity of each particle, adjusted 
according to its own flying experience and the other 
particle’s flying experience. The index of best particle 
among all of the particles in the group is	𝑔YheV	[12]. The 
modified velocity and position of each particle can be 
calculated using the current velocity and the distance from 
𝑃YheV to 𝑔YheV. By testing and using different values for 
population size and number of iterations, the values shown 
in Table I below are selected. The resulted PID gains are 
shown in Table II. It is worth noting that Mean Square 
Error evaluation criterion was selected.  

MSE	=	>
p

𝑒 − 𝑒p
Tq>

8
 (24) 

Table I. Values selected for the PSO 

Var. Description Value 

𝑁 No. of Particles 35 

𝑡ZPu  Max. No. of Iterations 20 

𝑤TZPu  Max. inertia weight 0.9 

𝑤𝑖ZTp Min. inertia weight 0.4 

𝑐>	; 𝑐8 Acceleration Coeff. 1.2 

J Fitness function MSE 

 

Table II. PID gains calculated by PSO 

PID Gain Value 

Kp 9.9918 

Ki 1.0192 

Kd 0.0427 

 
 

4. SIMULINK MODELLING & PURE-PURSUIT 
CONTROLLER IMPELEMENTATION 

In this section, modelling is carried out using MATLAB 
and Simulink software (2020a). The implementation of the 
robot model is carried out based on the previously derived 
dynamic equations. The implementation of the pure pursuit 
controller is also carried out using Simulink. Simulink 
provided several powerful kits that are used in this project. 
Among which many helped with the results and analysis 
discussed in section 5.  

4.1 Robot Kinematic Model 
The first step was to model the robot on Simulink using the 
dynamic equations derived earlier by using a block 
diagram. The model should incorporate the wheel 
kinematics, the actuator model, as well as the robot entire 
kinematics. The robot Simulink block diagram is shown in 
Figure 4 below. 
 

 
Figure 4. Robot Kinematic Simulink Model 

 
The robot model shown above had many constants that 

needed to be assumed in order carry out simulation. The 
assumed parameters (taken from [3]) are shown in Table 
3. The model is verified by inputting a step input as voltage 
to one of the wheels and graphing the pose on 𝑥𝑦-plane. 
The robot showed the expected rotation. 

Table III. Robot Parameters 

Parameter Value 

La 0.088 

Ra 1.01 

Kb 12.939 

Kt 12.939 

N 53 

J 0.0732 

M 27 

d 0.05 

R 0.0975 

L 0.0164 
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4.2 Pure Pursuit Controller 
Next was implementing the PID and the Pure pursuit 

controllers. For the PID controller, the gains by PSO were 
directly used. As for the pure pursuit controller, the 
Simulink block “Pure Pursuit Controller” as used. It takes 
two inputs, the post of the robot as well as the waypoints 
to which the robot has to navigate. Bear in mind that 
mapping as well as the sensory profile of the robot were 
not incorporated in this project, so we assumed a static map 
and we assume that the robot has accurate estimation about 
its current position. The pure pursuit controller was then to 
track the path to the waypoints by controlling the robot 
linear and angular velocities. The complete model is 
shown in Figure 5. The parameters needed for the pure 
pursuit controller can be found in Table 4. 
 

 
 

Figure 5. Entire Robot Simulink Model 

Table IV. Values selected for the PSO 

Var. Description Value 

Desired Linear 
Velocity, (𝑚𝑠L>) 

Desired Linear Velocity for 
the robot to move to a 
designated waypoint 

0.3 

Desired Angular 
Velocity, 
(𝑟𝑎𝑑𝑠L>) 

Desired Angular Velocity for 
the robot to move to a 
designated waypoint 

2.5 

R, (m) Radius of the wheel 0.0975 

L, (m) 
Distance between the 
midpoint and centers of two 
wheels 

0.164 

 

Lookahead 
distance, (m) 

Distance of how far along 
the path the robot should 
look from current location to 
compute angular velocity 

0.1 

 

5. SIMULATION AND RESULTS 
Although many DC servo motors (which are used for the 
majority of ground mobile robots) has their embedded 
speed controller, the PID controller designed seemed to 
completely smoothen out fluctuations noticed in the 
actuators’ behavior. Additionally, the response time 
drastically improved which can be of a great importance 
especially for advanced navigation tasks where the robot is 
assumed to stream its pose in real-time. Figure 6 shows the 
difference between the output in actuator velocity for a 
12V input for both wheels with and without the controller. 

 

 
 

Figure 6. Linear velocity for both wheels with and 
without the controller 

 
The same kind of improvement (shown in Figure 7) can 

be seen when the waypoints were entered into the system 
and the robot started to follow them accordingly. No noisy 
signal observed; a good control of DC motor is maintained 
and secured 

 

 
 

Figure 7. Controller effect on linear velocity while 
navigating. 

 
For the pure-pursuit simulation, the “robot visualizer” 

tool in Simulink was utilized. As shown in Figure 8, the 
robot visualizer takes in the current po and the desired 
waypoints and drive the robot within an environment of 
design as desired.  

 
Figure 8. Robot Visualizer block diagram 
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The flowchart shown in Figure 9 resembles the entire 
navigation process for the robot. First, the robot has its 
initial post, upon which it will use the pure pursuit to set 
out the commands for the actuator to move towards the 
first waypoint in the matrix provided. Then, it will update 
the pose accordingly until all waypoints are achieved.  

 

 
Figure 9. Flowchart of the mobile robot navigation 

 
The robot visualizer (shown in Figure 10) helps 

visualize the robot as well as its look-ahead / foresight 
distance which is crucial to the efficiency of the trajectory 
tracking. If it is large the robot will move along a small arc 
and the path will not have large oscillation, which although 
might sound great, will significantly lower the tracking 
accuracy. Similarly a small foresight distance will cause 
the robot to be too sensitive to the curvature of the path and 
the robot will experience sudden and acute rotation [13]. 

 

 
Figure 10. Robot visualizer output 

 
Figure 11. Linear Velocity of both wheels along the test 

 
Studies as early as 2001 [14] had suggested that since 

too large or too small foresight distance will affect the 
accuracy of the robot’s trajectory tracking, the actual pose 
and speed of the robot had to be taken into account instead 
of simply considering a single factor. In [13], and 
improved pure pursuit trajectory tracking approach was 
introduced by using fuzzy controllers to determine the 
foresight dynamically. 

6. CONCLUSION 
Mobile robotics have a growing attention due to its ability 
to revolutionize many applications, ranging from 
surveillance and construction to planetary exploration and 
emergency rescue operations. As autonomy became 
essential in the majority of the applications, designing 
different control systems and improving them became vital 
to many of the robot’s tasks’ efficiency. In this project A 
dynamic model of a two-wheel robot has been 
implemented and validated. A PSO optimized PID 
controller has been implemented for the robot model after 
the tuning process was carried out it accordingly. Point to 
point navigation has been done using a pure pursuit 
controller to move the robot autonomously to the desired 
waypoints. The speed control implemented using the PID 
controller proved to drastically improve the linear velocity 
output as a smooth and fast response is achieved. An 
improvement for this project can include the simulation of 
multiple sensors and fusing them accordingly in order 
achieve the most accurate position estimation possible. 
Pure pursuit path tracking although simple in application, 
can be improved and tuned by adding another layer of 
optimizers concerned with the lookahead or the foresight 
distance.  
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