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Abstract: This paper presents a novel approach to the modelling of electrical energy demand forecasting, based on the 
Quasi-Moment-Method (QMM). The technique, using historical energy consumption/demand data, essentially calibrates 
nominated ‘base’ models (in this case, nominal Harvey and Autoregressive models) to provide significantly better 
performing models. In addition to the novelty of the use of QMM, the paper identifies hitherto unreported singularities of the 
generic Harvey / logistic model, through which a simple, but remarkably pivotal modification is proposed, prior to the 
model’s use as base model in QMM calibration schemes. The treatment of the ‘Harvey singularities’ informed a similar and 
equally significant modification of the Autoregressive model utilized in the paper. For the purposes of validation and 
performance evaluation, computational results due to the QMM models are compared with corresponding results reported in 
three different journal publications, which utilized the Harvey and Autoregressive models in conventional regression 
schemes. And in terms of the usual model performance metrics (including Mean Absolute Percentage Error (MAPE) and  
Root Mean Square Percentage Error (RMSPE)), the results very clearly demonstrate the superiority of the QMM models for 
both energy demand prediction and forecasting. As representative examples, a QMM-calibrated Harvey model recorded an 
RMSE value of 495.45dB for total energy consumption prediction, as against 618.60dB obtained for the corresponding 
nominal Harvey model: and for the Autoregressive case, RMSE was obtained as 131.35dB for QMM model’s prediction of 
peak load demand, compared with the 173.40dB due to the nominal model.                   
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1. INTRODUCTION 
In a recent, comprehensive, and arguably exhaustive 
review of the literature on energy demand forecasting, 
Verwiebe et al [1], observed that it is a generally held 
position that energy policies are increasingly being 
influenced by a requirement for simultaneously reliable, 
climate-change-aware, and cost-effective energy systems: 
with the consequence that planning processes routinely 
utilize models, for which prediction of future demand is a 
critical input. It is not surprising therefore to find that 
research into energy demand modelling is continuously 
being motivated by the need identified in the foregoing, 
and has produced quite a few approaches; many of which 
are specific to global demand forecasting, [1], some 
others, to demand prediction in regional and national 
settings, [1], [2], and a few others, solely to energy 
planning needs, [3]. These modelling techniques, which 
vary markedly in analytical complexity and forecasting 
accuracy, fall into the five broad categories referred to 
[1], as statistical methods (including regression and time 
series analysis), machine language approaches (typified 
by analysis based on Artificial Neural Network (ANN), 
K-Nearest Neighbour (KNN) and Support Vector 
Machine (SVM) algorithms); metaheuristic methods 
(involving evolutionary algorithms such as Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA), 
and firefly algorithms; stochastic/ fuzzy/ Grey systems 
(with the fuzzy time series, Adaptive Neuro-Fuzzy 
Inference Systems (ANFIS), and Hidden Markov Model 
as common examples): and the engineering based 
techniques, which utilize the laws of physics.  
     Typical implementations of these techniques, in the 
case of the machine learning approaches, are exemplified 
by the contributions of [4], in which the use of random 
forest algorithms to facilitate efficient processing of large 
volumes of data provided a model for the prediction of 
household energy consumption. Another example is 
offered by the two-stage scheme utilized in combination 
with the Long Short-Term Method (LSTM) and a 
variation of the moving average method, for the purposes 
of predicting potential highest demand peaks, Jiménez  et 
al.[5], Chou and Truong [6], in a metaheuristic approach, 
optimized the performance of a time series model through 
the use of non-linear machine learning models involving 
least squares support vector regression; whilst the 
metaheuristic framework developed by Azadeh and 
Faiz [7], for the prediction of household energy 
consumption,  combined multi-layer perception, 
conventional regression, and the ‘Design of Experiments 
(DoE)’ algorithms. For the class of stochastic modelling 
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techniques, a typical implementation example is provided 
by Patidar et al [8], who investigated the effectiveness of 
two stochastic modelling schemes (one, a hybrid of time 
series deseasonalization and a single hidden Markov 
model; and the other, a time series deseasonalized 
Autoregressive Integrated Moving Average (ARIMA) 
model) in the generation of synthetic energy demand 
characteristics. And another is the contribution by 
Ahmadi et al [9], whose stochastic model, utilized for 
long term energy demand forecasting, combined scenario 
analysis with a Bayesian approach. The model proposed 
by Rehfeldt et al [10], which is representative of the 
engineering-based techniques, describes the ‘bottom-up’ 
characteristics of this class, as applied to the solution of 
the problem of disaggregating energy end-use balance of 
interest to industrial heating and cooling processes.  

In the case of the category of statistical techniques, the 
schemes presented by Li [11], for the investigation of the 
relative merits and demerits of conventional regression 
and time series analysis as models for forecasting energy 
consumption, represents a good example. Another is the 
contribution by Ismail et al [12], in which the impact of 
holidays, weather conditions, and monthly seasonality on 
daily and monthly energy demand was evaluated with the 
use of a multiple regression model; and which also 
utilized a time series prediction model, for the purposes 
of model performance comparison. 

An excellent summary of the strengths and weaknesses 
of each of the categories of energy demand modelling 
discussed in the foregoing, as widely held in the 
literature, is provided in a tabular format, in [1]. And 
according to this account, a common advantage shared by 
the machine learning, metaheuristics, and statistical 
categories is that of ease in implementation; with the 
machine learning techniques being assigned the 
additional merits of high prediction accuracy and the 
ability to effectively handle non-linear relationships. 
Also, both the statistical and metaheuristic techniques 
share the advantage of having the ‘white-box’ property, 
in addition to which statistical techniques are credited 
with the merits of low data input requirements and ability 
to efficiently account for uncertainties in input data. 
Other advantages attributed to the metaheuristic methods 
include easy hybridization with other models and ability 
to handle different types of demand forecasting problems. 
The main advantage credited to the engineering based 
techniques is that they are particularly suitable for the 
simulation of energy demand profiles of interest to 
scenarios associated with disruptions for which historical 
records are unavailable.      

On the flip side, machine learning techniques have the 
disadvantage of a ‘black-box’ property, as well as the 
possibilities (which they share with statistical methods) of 
overfitting and getting stuck in local minima. The 
statistical methods are assigned the additional demerits of 
the limitation imposed by correlated independent 
variables and inability to efficiently handle extreme 
events and outliers in historical data. Metaheuristic 
techniques require additional knowledge for 
implementation, and are often plagued with low 
convergence rates. One notable disadvantage of the 
stochastic modelling methods is their outputs are 
typically available as probabilistic or fuzzy expressions, 

and that of the engineering based modelling methods is 
that they are necessarily knowledge- and data-intensive.  

Of these modelling techniques, the statistical 
techniques are widely regarded as the simplest and next 
only to the computational intelligence methods in 
prediction accuracy, [1], [12]. Furthermore, in the class of 
statistical techniques, the time series analysis has been 
demonstrated in several comparative investigations, [11], 
[13], to be better performing than the regression 
approach. Although these investigations also reported 
results that indicated that the ARIMA model is the best of 
the Time Series Analysis (TSA) models, they pointed out 
that the method is analytically relatively demanding and 
is not applicable in all cases, because the model’s validity 
requires several decades of historical data concerning 
some explanatory variables, Mohammed and Mohamed 
[14]. A few other comparative studies [15], [16],  
concluded that in the class of time series analysis 
techniques, the Harvey models perform better than the 
others; and in particular, the results published by 
Mohamed and Bodger [17], [18], very clearly suggest that 
the Harvey model has better performance metrics than the 
ARIMA model. 

It is the main objective of this paper, to introduce the 
Quasi-Moment-Method (QMM) [19] as a simple, very 
easy to implement, and remarkably efficient tool for 
energy demand forecasting modelling. To this end, and 
for reasons described in the foregoing review of the 
literature, the generic Harvey model is selected as main 
candidate for investigations. Analysis presented in the 
paper reveals, for the first time to the best of our 
knowledge, that the Harvey model is characterized by an 
inherent singularity (here referred to as the ‘Harvey 
singularity’), which when accounted for by the QMM 
modelling process, leads to a QMM model, whose 
performance metrics are much better than those of the 
base models from which it derives. The validity of the 
QMM energy demand forecasting modelling process is 
established through a performance comparison of its 
metrics (including Mean Absolute Percentage Error 
(MAPE), Mean Absolute Error (MAE), and Root Mean 
Square Percentage Error (RMSPE)) with corresponding 
metrics due to three other time series modelling processes 
(utilizing least squares regression) reported in the 
literature, [15], [16], [18]. Another novelty introduced in 
the paper is that two alternatives for specifying time 
(denoted by ‘t’) were considered in the paper. One 
alternative utilized t = 1, 2, . . .,T, as in [14] and [15], and 
the other, t = 1943, 1944, . . . , 1999, as utilized in 
Mohamed and Bodger [18].  Computational results 
suggest that either alternative gives about the same 
outcome, and in each case, the QMM model consistently 
outperformed the other models. 

Details of the theoretical basis for the QMM modelling 
are presented section 2 of the paper, and the 
computational results due to the QMM models are 
discussed in section 3, which also discusses the outcomes 
of the comparisons of the performance metrics. The main 
conclusions due to findings in the paper are highlighted in 
section 4, the paper’s concluding section.                                          

                                                                                              

2. ANALYSIS 
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The Quasi-Moment-Method is an empirical modelling 
technique originally introduced by Adekola et al [19] as a 
tool for the modelling of radiowave propagation path loss 
in wireless communications, whose basic properties and 
ubiquity in that connection have since been firmly 
established through a number of publications, including 
[20], [21], and [22].   

For the description of QMM modelling of energy 
demand forecasting of interest here, a good starting point 
is the generic Harvey model given (Mohamed and Bodger 
[17], [18]), as 

( ) ( )1log loge t tey Y tρ δ γ−= + + ,                             (1) 

in which the parameter denoted by ' 'ρ   (and here 
referred to as the ‘Harvey model exponent)  defines 
different forms of the Harvey model according to 

1,   Harvey Logistic model,
 
0,    simple exponential model; 

ρ

−⎧
⎪

= ⎨
⎪
⎩

                  (1a) 

and for all other values of ρ , the Harvey model. The 
variable  1tY −  appearing in Equation (1) represents the 
actual consumption (demand) data recorded for the year 
immediately preceding the year represented by ‘t’, and 

1t t ty Y Y −= − is the difference between the two, 

 and δ γ are constants conventionally determined 

through the regression of 
1

log t
e

t

y
Y ρ

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 on t, when 

Equation (1) is recast in the form given [17], as  

1

log t
e

t

y
t

Y ρ δ γ
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
.                                                 (2) 

Because the natural logarithmic function is undefined 
for arguments less than or equal to zero, and since cases 
of 1t tY Y −<  (for some values of ‘t’) are common with 
historical electrical energy consumption records, it 
follows that the generic Harvey model, as defined by 
Equations (1) and (2), is characterized by a singularity 
(the ‘Harvey singularity’), which is here being explicitly 
identified for the first time, to the best of our knowledge. 
The other singularity due to yt = 0 is treated by perturbing 
the affected data to make yt very slightly different from 
zero.      

    Towards a QMM solution and in order to account 
for the Harvey singularity, Equation (2) is modified to 
read 

 
1

log ,t
e

t

y
t

Y ρ δ γ
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                               (3) 

from which it follows that 
( )( )

( )( )
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           (4) 

An interesting possibility is offered by Equation (4)  
when  and δ γ are so specified that  

                1;Tδ γ+ <<                                             (5) 
for then, Equation (4) assumes an approximate form 

according to  
( )

( )

1 1

1 1

1 , 0
      or 2,..., ,
1 , 0

t t t
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t t t

Y Y t y
Y t T

Y Y t y

ρ
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δ γ

δ γ

− −

− −

⎧ − + + <
⎪

=⎨
⎪ + + + >⎩

!            (6) 

a series approximation particularly suitable for QMM 
modelling, and which derives from Equation (4) through 
the use of the well-known fact that when 

1,   e 1 .xx x<< +!     
    It is also a matter of interest to remark that the 
treatment of the Harvey singularity as described by 
Equation (6) informed a modification of the classical 
autoregressive (AR) time series model, prior to QMM 
modelling. In this case, it is first noted that the AR model 
is conventionally specified [15], [16], as  

0 1 1t tY Yβ β −= + ,                                                             (7) 

which inherently assumes that 0,ty t> ∀ . The 
associated remedy proposed in this paper is to first define

1 1β σ= + , such that Equation (7) modifies to  

 

0 1 ,t ty Yβ σ −= +                                                           (8) 
or, equivalently,  

( )
( )

1 0 1

1 0 1

1 ,
, 2,  . . ., T

1 ,
t t t

t
t t t

Y Y Y
Y t

Y Y Y

σ β

σ β
− −

− −

− − <⎧⎪
= =⎨

+ + >⎪⎩
         (8a)                

 The QMM solution described in the section 2.1 uses 
historical energy demand data to calibrate models defined 
by Equations (3) (and its series approximation) and (8), to 
develop demand forecast models according to 
correspondingly calibrated versions of Equations (4), (6), 
and (8). 

2.1 Quasi-Moment-Method Models 
The first step in the implementation of the QMM 
algorithm in the case of the generic Harvey model is, with 
reference to Equation (3), to make the following 
definitions:  

1

log t
e

t

y
X

Y ρ
−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,                                                         (9)  

1ϕ δ= ,                                                                         (9a) 
and  

2 ;tϕ γ=                                                                        (9b) 
so that the desired QMM model emerges in this case, as  

1 1 2 2X α ϕ α ϕ= +  .                                                       (10)     
The unknown calibration coefficients are then obtained 
through the simple matrix processes of inversion and 
multiplication prescribed as  

1
1 1 1 1 2 1

2 1 2 2 22

, , ,
, , ,

X
X

α ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕα

−⎡ ⎤ ⎛ ⎞⎛ ⎞
= ⎜ ⎟⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦ ⎝ ⎠
.              (11) 

The inner product quantity denoted by ,• • , is given 

Adekola et al (2021), for two functions  and m nϕ ϕ , by  

( ) ( )
2

, ,
T

m n nm
t

t tϕ ϕ ϕ ϕ
=

=∑                                      (12)  

and in particular, with respect to Equation (11),  
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( )
2

, .
T

m m
t

X t Xϕ ϕ
=

=∑                                             (13) 

With the calibration coefficients available from 
Equation(11), the QMM model derived from the generic 
Harvey model gives the demand prediction for year ‘t’ 
(denoted by tY! ) as  

( )( )

( )( )
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1 1
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, 0

      or 2,...,
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t
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 A similar procedure for the series approximation ‘base’ 
model defined by Equations (5) and (6) yields 
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provided, in this case, that  
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with 
{ } { }3

1 1, , ,k k tϕ δ γ= =                                             (17)  
and 

1

t

t

y
X

Y ρ
−

=                                                            (18)   

 
Finally, when the AR model prescribed by Equations (8) 
and (8a) is subjected to QMM calibration, the response is 
obtained as 
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        (19) 
 

The calibration coefficients in this case derive from 
expressions similar to those of Equations (11) and (12), 
with 1 2.  ,  and Xo t tyϕ β ϕ σ= = = . 

3. RESULTS AND DISCUSSION 
In order to establish the validity of the QMM models 
developed in the foregoing section, historical fit and 
forecasting results are compared with those due to the 
classical Harvey and autoregressive models as available 
from three different publications; one concerning energy 
consumption in New Zealand, [18], and the others, 
energy demand scenarios in Nigeria, (Okakwu et al [15]; 
and Ogungbemi et al [16].   

3.1. QMM Performance Evaluation 
Three different energy consumption scenarios, namely, 
‘domestic’, ‘non-domestic’, and ‘total’, were considered 
in [18], for the purposes of evaluating the forecasting 
abilities of the Harvey models. Using data available from 
[18] for QMM modelling as described in section 2, 
corresponding historical fits and forecasting profiles were 
obtained, and their performance metrics compared with 

those reported in [18] , for the classical Harvey models. 
In each case, three variations of the generic Harvey model 
were considered as base models: first is the ‘series 
approximation’ model defined by  

1

1 0.001 0.0001 , 2,   . .,Tt

t

y
t t

Y ρ
−

= + + = ,           (20) 

                        
in  which 0.001 and =0.0001δ γ=  have been so selected 
as to ensure that the series approximation to the 
associated exponential function applies. Others are the 
Harvey logistic and Harvey models specified, in the case 
of domestic consumption, through Equations (11)  and 
(14) of [18]  as 

2
1
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e
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y
t
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and 

0.60
1
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                              (22)  

 
respectively. Corresponding expressions for the non-
domestic consumption case are   

 

2
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and  

1.29
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as prescribed for the Harvey logistic and Harvey models, 
respectively, by Equations (12) and (15) of Mohamed and 
Bodger [18]. The Harvey logistic and Harvey base 
models for total consumption are specified by Equations 
(13) and (16) of [18] as  

 

 2
1
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e

t
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and  

1.08
1
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e
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y
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Y −
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respectively. 
 

3.1.1. Calibration with Domestic Consumption Data     
           from [18]     
Outcomes of the calibration of the base models given by 
Equations (20), (21), and (22) with the domestic 
consumption data of Mohamed and Bodger [18] resulted 
in the QMM models defined by the calibration 
coefficients displayed in Table 1. 

Examples of the QMM models defined by the 
parameters of Table 1 include                                                                 

( )
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Table 1. Parameters of QMM Prediction Models due to 
calibration with Domestic Consumption Data [18] 

Model/ 
Parameter 

ρ  
1α  2α  3α  

 

 

Series Approx. 

0.75 0.0219 685.3531 -112.4310 

0.80 0.0202 441.9118 -74.6676 

0.85 0.0190 281.8347 -49.3052 

0.90 0.0175 177.7896 -32.3889 

1.02 0.0118 56.5990 -11.6046 

Harvey 
Logistics 

2.00 -0.0682 0.8763 N/A 

Harvey 0.60 0.0069 0.7173 N/A 

 
for the series approximation base model of Equation (6), 
when 0.8ρ = ,  and 0.001 and 0.0001, respectively; δ γ =  
with the calibration coefficients identified by the 
numerals in magenta colored fonts. Another is the QMM-
Harvey logistic model, which according to the parameters 
of the third row of Table 1 and Equation (14), is given  

 
( )( )

( )( )
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-0.0682 0 3

2
1 1

2
1
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1
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δ γ

+
− −

+
− −

⎧ − <
⎪
⎪

= =⎨
⎪

+ >⎪⎩

!              

(28) 
 
For Equation (28) the values of  and  δ γ  are 150.86 and 
-0.083, respectively. 

Profiles of the domestic consumption predicted by the 
QMM models defined by the parameters of Table 1 are 
displayed in Fig. (1), from which, it is readily observed 
that all the QMM models have similar historical fit 
profiles.  

The prediction (historical fit) performances of the 
QMM models are described by the metrics displayed in 
Table 2. And as can be seen from the profiles of Fig. (1) 
and the metrics of Table 2, all the QMM models have 
about the same prediction accuracy characteristics, 
though with the series-approximation-based models 
generally performing better than those that derived from 
the conventional forms of the Harvey models. The 
metrics also suggest that MPE, MAE, and RMSE increase 
slightly with increasing values of ρ ; though both MAPE 
and RMSPE (widely regarded as prediction accuracy 
measures of preference, Verwiebe et al [1] improved with 
increasing ρ up to 0.85ρ = , after which their values 
increased slightly.   

 
Figure 1. Profiles of historical domestic energy 
consumption and corresponding predictions due  

to the QMM models of Table 1. 

Table 2. Prediction performance metrics for the QMM 
models defined by  Table 1 

METRIC/ 
MODEL 

MPE MAE MAPE RMSE RMSPE 

Series 
Approx. 

ρ  = 0.75 
36.53 150.12 2.93 186.67 3.92 

Series 
Approx. 
ρ  = 0.80 

37.90 150.59 2.92 187.71 3.89 

Series 
Approx. 
ρ  = 0.85 

39.56 151.05 2.91 188.85 3.88 

Series 
Approx. 
ρ  = 0.90 

41.30 151.87 2.92 190.07 3.88 

Series 
Approx. 
ρ  = 1.02 

46.28 153.72 2.94 193.27 3.93 

Harvey 96.35 152.82 3.01 204.58 4.31 
Harvey. 
Logistic 84.83 157.61 3.04 206.45 4.45 

 

3.1.2. Calibration with Non Domestic Consumption Data 
from [18] 
The calibration of the models defined by Equations (20), 
(21), and (22) with the non-domestic consumption data of 
Mohamed and Bodger [18] yielded the QMM models 
defined by  the calibration coefficients of Table 3.  
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Table 3. Parameters of QMM Prediction Models due to 
calibration with Non-Domestic Consumption Data, [18] 

Model/ 
Parameter 

ρ  
1α  2α  3α  

Series Approx. 

0. 75 0.9482 71.6525 -124.7126 

0.80 0.3027 370.7160 -86.0235 

0.85 0.1625 278.7993 -58.3690 

0.90 -0.2026 489.8477 -39.0758 

1.02 0.0567 43.4935 -142.2956 

Harvey 
Logistics 

2.00 -0.0598 1.2223 N/A 

Harvey 0.60 -0.0737 1.4491 N/A 

 
These parameters define QMM energy consumption 
models in the same manner as described through the 
examples of Equation (28) and (29). Profiles of the non-
domestic energy consumption predicted by the models 
are displayed in Fig. (2) and their associated prediction 
accuracy metrics are shown in Table 4. 
 

 
Figure 2. Comparison of energy consumption 
predicted by QMM models of Table 3 with  

actual consumption records [M B4] 
 

Table 4. Prediction performance metrics for the QMM 
models defined by  Table 3 

METRIC/ 
MODEL MPE MAE MAPE RMSE RMSP

E 
Series Approx. 
ρ  = 0.75 

83.56 242.58 5.00 339.27 8.57 

Series Approx. 
ρ  = 0.80 

84.48 242.03 4.86 340.45 8.38 

Series Approx. 
ρ  = 0.85 

85.82 242.46 4.82 341.87 8.25 

Series Approx. 
ρ  = 0.90 

87.49 243.48 4.81 343.53 8.19 

Series Approx. 
ρ  = 1.02 

92.09 247.91 4.91 348.36 8.57 

Harvey 182.40 254.83 5.41 374.09 8.38 
Harvey. 
Logistic 172.3 254.92 5.29 376.70 8.25 

The model historical fit accuracy metrics of Table 4 
clearly follow the same trends as described for the 
corresponding metrics of  Table 2; though in this case all 
the metrics are significantly poorer than to those due to 
domestic consumption prediction. This is probably due to 
the relatively very low levels of non-domestic 
consumption in the World War II years between 1943 and 
1945.     

3.1.3.Calibration with Total Consumption Data from [18] 
The model calibration coefficients obtained from the 
calibration of the base models of section 2 with the total 
energy consumption data available from Mohamed and 
Bodger [18], are displayed in Table 5. 

Table 5. Parameters of QMM Prediction Models due to    
calibration with Total Consumption Data, [18]  

Model/ 
Parameter 

ρ  
1α  2α  3α  

 

 

 

Series Approx. 

0. 75 -0.0482 142.2470 -12.2470 

0.80 0.0107 81.5169 -11.5169 

0.85 0.1361- -42.5034 -12.1528 

0.90 0.0204 74.1870 -12.6736 

1,02 0.0571 37.9303 -13.4946 

Harvey 
Logistics 

2.00 -0.0086 0.9124 N/A 

Harvey 0.60 -0.0549 0.7488 N/A 

 

 
Figure 3. Energy consumption predicted by QMM 
models of Table 5 compared with actual total 

consumption records of [M B4] 
 
And with the corresponding QMM models defined 

according to Equation (28) and (29) as earlier described 
in section 2, the associated historical fit curves are 
displayed in Fig. (3). It is apparent from the profiles of 
Fig. (3) that the QMM models developed with the use of 
total energy consumption in the calibration process have 
significantly better prediction accuracy metrics than those 
due to calibration with domestic and non-domestic energy 
consumption data.    
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Table 6. Prediction performance metrics for the QMM 
models defined by Table 5 

METRIC/ 
MODEL MPE MAE MAPE RMSE RMSPE 

Series Approx. 
ρ  = 0.75 

20.09 245.70 2.42 362.56 3.62 

Series Approx. 
ρ  = 0.80 

-0.04 246.04 2.38 360.04
8 3.52 

Series Approx. 
ρ  = 0.85 

3.18 247.21 2.37 361.06 3.49 

Series Approx. 
ρ  = 0.90 

6.16 249.18 2.40 362.30 3.48 

Series Approx. 
ρ  = 1.02 

17.61 254.98 2.52 366.61 3.56 

Harvey 173.39 302.86 3.28 412.20 4.40 
Harvey. 
Logistic 160.28 309.93 3.36 410.67 4.52 

 
Nonetheless, the variations with ρ , of all the metrics of 
Table 6 follow the trend described earlier for the 
domestic and non-domestic consumption cases, though 
there is the notable instance of MPE being close to zero 
for the series approximation model, when 0.8ρ = . 

3.2. Forecasting Accuracy 
In order to evaluate the forecasting accuracy of the QMM 
models, the base models of section 2 were first calibrated 
with total consumption data covering 1970 to 1990. The 
QMM models so obtained were then utilized for 
forecasting total energy consumption from 1991 to 1999, 
according to the schemes described as follows.  

( )( )1 2
1 1

ˆ ˆ ˆ , 2,..., ,t
t t tY Y Y e t Tα δ α γρ +

− −= + =                      (29) 

 
for the Harvey models, and 

( )1 1 1 2 3
ˆ ˆ ˆ ,t t tY Y Y tρ α α δ α γ− −= + + +                               (30) 

 
in the case of the series approximation models. The 
quantities denoted by kα (k = 1, 2, 3) in Equations (29) 
and (30) are coefficients determined from the calibration 
process, whilst ˆ nY (n = 2, 3, . . . T) represent  total 
consumption predicted for the nth  year.  The calibration 
coefficients are shown in Table 7, for various values of 
ρ , for the two sets of  models. 
 

Table 7. Parameters of QMM utilized for total energy 
consumption forecasting 

Model/ 
Parameter 

ρ  1α  2α  3α  

Series Approx. 

0.007 0.0464 60.0000 -21.5109 

0.008 0.0845 21.8926 -21.5210 

0.025 0.1528 -47.1875 -21.6893 

0.700 0.0455 33.0269 -23.4053 

0.850 0.1801 -107.0417 -22.8855 

Harvey 
Logistics 2.00 -0.0239 0.9306 N/A 

Harvey 1.08 -0.0652 1.3735 N/A 

 

Thus, using the series approximation model defined by 
0.025ρ = , and the Harvey model as examples, total 

energy consumption is forecasted according to  
( )0.025

1 1 0.15 ,ˆ 28 47ˆ ˆ  - -.1875 21.6893t t tY Y Y tδ γ− −= +         (31) 
 
and  

( )( )0.0652 1.373. 51 08
1 1

ˆ ˆ ˆ ,t
t t tY Y Y e δ γ+

− −
−= +                              (32) 

respectively: provided that ( ),δ γ =(0.001, 0.0001) in 
Equation (31) and (50.27, -0.028), in Equation (32). In 
both equations, t =  2, . . . , 9.   Profiles of the total 
consumption forecasted by the models defined through 
the parameters of Table 7 and Equation (31) and (32) are 
displayed in Fig. (4), which also includes the profiles of 
the corresponding historical fits and actual total energy 
consumption. 

 
Figure 4. Comparison of energy consumption forecasted 

by the models defined by Table 7 with actual  
energy consumption. 

Forecasting accuracy, for each of the models is 
specified by the representative metrics of Table 8, and it 
is readily observed from both Fig. (4) and Table (8) that 
all the QMM models very closely track the actual energy 
consumption for each year, with excellent forecasting 
accuracies. 

 
Table 8. Parameters of QMM utilized for total energy 

consumption forecasting   

METRIC/ 
MODEL 

MPE MAE MAPE RMSE RMSPE 

Series Approx. 

ρ  = 0.007 -5.30 513.2 1.68 647.18 2.16 

Series Approx. 
ρ  = 0.008 27.70 526.9 1.72 663.26 2.20 

Series Approx. 
ρ  =0.010 -13.30 510.3 1.67 644.35 2.16 

Series Approx. 
ρ  = 0.700 12.20 525.2 2.52 1050.2 3.29 
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Series Approx. 
ρ  = 0.850 422.9 795.3 2.85 1197.5 3.71 

Harvey 551.1 903.5 2.00 790.44 2.52 
Harvey. 
Logistic 295.1 625.3 2.53 1008.1 3.15 

 
The metrics (using MAPE as a typical example) indicate 
that for values of ρ  less than 0.70, the forecasting 
accuracies of the series approximation models are 
significantly better than those for the Harveyy / Harvey 
logistic models. However, for higher values of ρ , the 
Harvey (in particular) and Harvey logistic models 
perform slightly better than the series approximation 
models.                                                                                     

3.3. Alternative QMM Models 
When instead of the indices (t = 1, 2, , , , ) utilized in the 
QMM models of the foregoing sections, actual values of 
year (t = 1944, 1945, . . . ) are utilized as in Mohamed 
and Bodger [18], alternative QMM models become 
available.  For these alternative models the base models 
of choice are those given by Equations (11) to (16) of 
[18], for which Equations (21) and (25) of this paper 
represent modifications that account for the Harvey 
singularities.  
      In this section, the prediction performances of the 
models of [18]  are compared with those of their 
corresponding QMM models, in each case, with t = 1944, 
1945, . . . , 1999. Outcomes of the QMM calibration of 
these alternative models are defined by the parameters of 
Table 9. 
Accordingly, the QMM model derived from the 
calibration of  Equation (24) with non-domestic energy 
consumption data, for example, emerges as  
   

( )

( )

1.29
1 1

1.29
1 1 1

*57.46 - *0.032 , 0
      or 1944,...,1999,
1.4387 1.4404

1.4387 1.440*57.46 - *0 24 .03 , 0

t t t

t

t t t t

Y Y t y
Y t

Y Y Y t y

− −

− − −

⎧ − <
⎪

=⎨
⎪ + + >⎩

! "

                                                                                      (33) 
 

Table 9. Calibration Coefficients for the QMM 
Alternative Models 

DOMESTIC CONSUMPTION CASES 

Model/ Parameters Harvey Harvey logistics 

1α  0.7013 0.8323 

2α  0.7018 0.8405 

NON-DOMESTIC CONSUMPTION CASES 

1α  1.4837 1.2096 

2α  1.4404 1.1919 

TOTAL CONSUMPTION CASES 

1α  0.7647 0.8845 

2α  0.7710 0.8856 

In addition to the models defined by the calibration 
coefficients of Table 9, alternative series approximation 
models were developed through the choices of 
( ) ( ), 0.0001, 0.000001δ γ = , which ensure that for t = 1999, 
the argument of the exponential function of the Harvey 
model remains much less than 1, so that the two-term 
series approximation also remains applicable.  The 
consequent QMM models developed are typified by that 
which derived from calibration with total energy 
consumption, and given as  

( )

( )

0.85
1 1

0.8
1 1

- , 0
      or 1944,...,1999,
8.62 8404.50 46825.14

8.62 8404.50 46825 1- , 0. 4

t t t

t

t t t

Y Y t y
Y t

Y Y t y

δ γ

δ γ

− −

− −

⎧ − + <
⎪

=⎨
⎪ + + >⎩

! "

                                                                                      (34) 
As before, all numerals with magenta colored fonts in 

Equations (31)–(34) identify model calibration 
coefficients. 

Figure 5 displays the profiles of energy consumption 
predicted by various alternative QMM models compared 
with predictions by corresponding models of [18], as well 
as the actual energy consumptions, with which the QMM 
base models were calibrated. The prediction accuracies of 
these alternative models are described by the performance 
metrics shown in Table 10 , from which a number of 
important conclusions are indicated.   

 
Figure 5. Profiles of energy consumption predicted by the 

alternative QMM models of Table 9. 

Table 10. Prediction Performance Metrics for the 
Alternative Models Defined by Table 9 

DOMESTIC CONSUMPTION CASES 

Model/Metric MPE MAE MAPE RMSE RMSP
E 

Harvey Mohamed 
and Bodger [18]  

35.92 194.87 3.66 268.58 5.46 

Harvey-
logMohamed and 
Bodger(2005)  

119.96 215.54 4.03 268.58 5.46 
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QMM- 
HarveyMohamed 
and Bodger [18]  

96.29 152.70 3.01 204.49 4.30 

QMM-Harvey-
logMohamed and 
Bodger [18]  

86.18 156.24 3.01 205.78 4.42 

NON-DOMESTIC CONSUMPTION CASES 

HarveyMohamed 
and Bodger[18]  

89.57 285.82 6.49 404.88 10.40 

Harvey-
logMohamed and 
Bodger [18] 

151.51 288.64 6.57 404.88 10.40 

QMM- 
HarveyMohamed 
and Bodger [18]  

185.11 255.70 5.44 375.67 8.84 

QMM-Harvey-
logMohamed and 
Bodger[18]  

176.23 256.69 5.39 378.39 8.96 

TOTAL CONSUMPTION CASES 

HarveyMohamed 
and Bodger(2005)  

387.23 462.81 4.53 657.31 6.32 

Harvey-
logMohamed and 
Bodger[18]  

469.28 525.09 5.00 57.31 6.32 

QMM- Harvey 
Mohamed and 
Bodger [18]  

-
187.47 

350.96 2.80 474.51 3.70 

QMM-Harvey-
logMohamed and 
Bodger [18]  

166.31 312.29 3.41 413.17 4.59 

SERIES APP. 1.83 247.84 2.38 361.10 3.48 

 
First, the MAPE metrics of Table 10 indicate that the 

alternative (‘t’ expressed as ‘year’) QMM models 
perform better in prediction than the base models from 
which they derive. And for both the base and QMM 
models, the Harvey models have better MAPE metrics 
than the Harvey logistic models, though the series 
approximation model’s  MAPE is better than those of 
either of them. This is also generally true of all the other 
metrics in the table.  Second, a comparison of the metrics 
of Table 10 with corresponding metrics of Tables 2, 4, 
and 6 also very clearly reveal that metrics due to  the 
choice of t = 1, 2, 3, . . .,in general, define better 
performing QMM models than obtains with the use of t = 
1944, 1945, . . . . It is worth noting, nonetheless, that 
these differences are most likely due to the effects of 
computational round offs, which can be expected to be 
significant on account of the larger magnitudes of the 
variable ‘t’  in the alternative models. 

 

3.4. Further QMM Performance Evaluation 
Towards providing further validation for the QMM model 

calibration process as a tool for the prediction of energy 
demand (consumption), two additional examples from the 
literature, Okakwu et al [15], Ogungbemi et al [16], are 
considered in this section. In both examples, outcomes of 
the QMM calibration of base Harvey and Autoregressive 
models are compared with corresponding results reported 
in [15] and [16].  

3.4.1 Calibration with Annual Peak and Average Demand 
Data from [15]  
Parameters of the QMM models due to the calibration of 
the base models of Equations (14) and (15), (for the 
Harvey and series approximation models, respectively) 
with annual peak demand data, are displayed in Table 11. 
 
Table 11. Parameters of QMM models utilized for annual 

peak energy demand prediction 

Model/ 
Parameter 

ρ  
1α  2α  3α  

 

 

 

Series Approx. 

0.007 22.16 124880.87 22632.74 

0.010 343.65 -200000.00 21904.68 

0.015 -25.72 - 163909.11 20739.82 

0.020 419.63 -286704.12 19633.33 

0.025 162.83 -34965.27 18582.61 

Harvey 
Logistics 

2.00 0.03 2.17 N/A 

Harvey 0.010 -0.08 -1.41 N/A 

 
Corresponding profiles of peak annual energy demand 
predicted by the models are presented by Fig. 6, which 
includes the energy prediction curves due to 
autoregressive-based QMM models. The QMM-
autoregressive models derive from Equation (9), with 
base model parameters given as ( ) ( )0 , 1.05,  0.083β σ = , 
and calibration coefficients obtained as 
( ) ( )1 2, 163.3811,  0.0347α α = .  
 

Prediction accuracies for the models are specified by 
the performance metrics of Table 12 from which is 
readily observed that the predictions by the QMM models 
very closely track the actual peak demand and are 
comparable, as suggested by Fig. (6).  
     These performance metrics should ordinarily be 
compared with corresponding metrics (for the Harvey and 
autoregressive models) reported in [15]. However, 
because [15] did not provide parameters of the models 
(which should have represented the main basis for any 
claims in the paper) it is not possible to verify the validity 
of the results reported (Table 3 and Figure 2 of [15] in 
this particular case) in the paper. As a matter of fact, the 
metrics reported in Table 2 of [15] for MAPE and MAE 
are easily shown to be either misprints or due to 
typographical errors. 
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Figure 6. Peak annual energy demand predicted by the 

QMM models, compared with actual annual  
peak demand of Okakwu et al [15].  

Table 12. Prediction performance metrics for the QMM 
models defined by Table 11 

METRIC/ 

MODEL 
MPE MAE MAPE RMSE RMSPE 

Series Approx. 

ρ  = 0.007 56.30 115.95 3.26 130.94 3.83 

Series Approx. 
ρ  = 0.010 56.31 115.96 3.26 0.95 3.83 

Series Approx. 
ρ  =0.015 56.34 115.97 3.26 130.96 3.83 

Series Approx. 
ρ  = 0.020 56.36 115.99 3.26 130.98 3.83 

Series Approx. 
ρ  = 0.025 56.39 116.00 3.26 130.99 3.83 

Harvey 80.65 111.86 3.06 143.51 4.09 
Harvey. 
Logistic 86.27 116.41 3.16 147.10 4.18 

Autoregressive 56.87 116.94 3.30 131.55 3.87 

  
    The demand forecasting capabilities of the QMM 
models were further evaluated with the calibration of the 
base models with peak demand data covering 2002 to 
2012, and using the resulting QMM models to forecast 
peak demand for the years extending from 2013 to 2017.  
An example of QMM demand forecasting models is 
given below as  

( )0.01
1 1 243.02 ,ˆ 123777.47 59443.6ˆ ˆ - 7t t tY Y Y tδ γ− −= + +   (34)                                                   

a series approximation model for which 0.010ρ = , with 

model parameters ( ) ( ), 0.001,0.0001 ,δ γ = and whose 
associated model calibration coefficients are displayed in 
magenta colored fonts. The curves displayed in Fig. (7) 
describe the forecasting performances of the models, and 
the metrics of Table 13 quantify their forecasting 

capabilities. It is clear from the curves of Fig. (7) that the 
forecasts by the series approximation models are virtually 
the same for all values of ρ , and are significantly better 
than the forecast due to the Harvey model.  This 
observation is solidly supported by the performance 
metrics of Table 13.  
 

 
Figure 7. Comparison of annual peak demands forecasted 

(2013-2017) by QMM models with actual  
peak demand 

Table 13. Forecasting performance metrics for the QMM 
models described by Fig. (7) 

METRIC/ 
MODEL MPE MAE MAPE RMSE 

Series Approx. 
ρ  = 0.007 87.8060 87.8060 1.8286 2.3103 

Series Approx. 
ρ  = 0.010 -88.0340 88.0340 1.8331 2.3143 

Series Approx. 
ρ  = 0.025 -89.1320 89.1320 1.8549 2.3331 

Harvey. 
ρ  = 0.010 60.0880 106.0480 2.1432 2.5192 

 
      Using the same base autoregressive and other models 
defined by the values of  ( as well as corresponding 
values of  ) in Table 11, QMM prediction models were 
developed through calibration with the annual average 
demand data of Okakwu et al [15]. Parameters of the 
QMM models are as presented in Table 14. 
 
Table 14. Parameters of QMM models utilized for annual 

average energy demand prediction 

Model/ 
Parameter 

ρ  
1α  2α  3α  

 

 

0.007 -55.84 185022.45 45626.06 

0.010 297.64 -171463.52 44415.96 
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Series Approx. 
0.015 57.07 64267.13 42469.19 

0.020 92.73 23945.31 40607.37 

0.025 -75.00 187194.54 38826.67 

Harvey 
Logistics 

2.00 -0.07456 -1.8291 N/A 

Harvey 0.010 0.0277 1.6736 N/A 

 
Annual average demands predicted by these models are 
described by the profiles of Fig. (8), which also include 
the distribution of actual annual average demand. And 
The metrics of Table 15 represent the quantitative 
measures of the accuracies of the predictions due to the 
profiles of Fig. (8).  
     In general, the annual average demand prediction 
performances of the models are similar to those described 
for annual peak demand prediction. An important 
difference between the two is typified by the MAPE 
metrics of Table15, which indicates that unlike what 
obtained with peak demand prediction, the autoregressive 
model is better performing than the Harvey models. 
 

 
Figure 8. Comparison of actual average demand with 

annual average demands forecasted  
by QMM models. 

Table 15. Prediction performance metrics for the QMM 
models defined by Table 14 

METRIC/ 
MODEL 

MPE MAE MAPE RMSE RMSPE 

Series Approx. 

ρ  = 0.007 25.37 99.57 2.98 139.71 4.29 

Series Approx. 
ρ  = 0.010 25.38 99.56 2.98 139.72 4.29 

Series Approx. 
ρ  =0.015 25.40 99.56 2.98 139.74 4.30 

Series Approx. 
ρ  = 0.020 25.42 99.56 2.98 139.76 4.30 

Series Approx. 
ρ  = 0.025 25.43 99.55 2.98 139.78 4.30 

Harvey 66.53 114.46 3.36 163.68 4.95 

Harvey. Logistic 68.03 115.68 3.41 169.13 5.13 

Autoregressive 40.82 103.49 3.04 144.44 4.35 

3.4.2. Calibration with Annual Industrial Sector   
          Consumption Data from [16] 
Annual energy demand by the industrial sector in Nigeria, 
[16] is, unlike those in [15] and [18], characterized by 
quite a few instances of very sharply alternating 
variations in demand recorded for consecutive years. In 
this section therefore, the responses of the base models of 
the previous sections to QMM calibration are investigated 
for possible additional information about the algorithm’s 
properties. 
     QMM models developed through the calibration of 
various base models are defined by the parameters of 
Table 16. 

Table 16. Parameters of QMM models utilized for annual 
industrial energy demand prediction 

Model/ Parameter ρ  
1α  2α  3α  

Series Approx. 

1.08 0.0086 85.7829 2.8752 

1.32 0.0124 14.1483 0.8847 

185 0.0011 0.4184   
- -0.1965 

2.00 -0.0019 2.5406 -0.0996 

Harvey Logistics 2.00 -0.3034 -0.2226 N/A 

Harvey 1.32 -0.1481 0.0930 N/A 

Autoregressive N/A 2.5723 0.0059 N/A 

 
And the profiles of predictions by the models are 
displayed in Fig. (9). 

 
Figure 9. Profiles of annual industrial energy demand 

forecasted by the QMM models defined  
by Table 16 
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These curves suggest that the series approximation-
based models have virtually the same prediction profiles, 
which differ slightly from those due to the Harvey / 
Harvey logistic and autoregressive models.  

A clearer picture of the relative performances of the 
models is offered by the prediction accuracy metrics of 
Table 17. According to the metrics, MPE and RMSE, for 
the models follow the same general pattern in that for the 
series approximation models, the metrics improve with 
decreasing values of ρ  with the exception of the metrics 
of  MPE and RMSE for the Harvey model, which are 
better than those recorded for the series approximation 
models, with the autoregressive model recording the best 
metrics. 

Table 17. Performance metrics for the QMM models 
defined by Table 16. 

METRIC/ 
MODEL 

MPE MAE MAPE RMSE RMSPE 

Series Approx. 

ρ  = 1.08 8.45 39.30 14.79 58.98 22.72 

Series Approx. 
ρ  = 1.32 9.27 39.38 14.84 59.89 23.03 

Series Approx. 
ρ  = 1.85 10.94 39.03 14.86 61.50 23.74 

Series Approx. 
ρ  = 2.00 11.62 37.47 14.52 62.01 24.21 

Harvey 9.18 35.24 13.81 60.78 24.35 
Harvey. 
Logistic 9.96 37.83 14.47 62.15 24.35 

Autoregressive 7.77 41.02 15.65 56.15 22.31 
 
The MAE metrics for the series approximation models 

also display the same trend, except that MAE for   
(incidentally about the same as that for the Harvey 
logistic model) is the best among them. The Harvey 
model recorded the best MAE, and the autoregressive 
model, the worst. The QMM-Harvey model recorded the 
best value of MAPE, and the QMM-autoregressive 
model, the worst. On the other hand, RMSPE recorded 
for the autoregressive model is slightly better than for all 
the other models, with those for the series approximation 
models being better than the metrics for the Harvey / 
Harvey logistic models. 

The foregoing observations compared with similar 
assessments in the previous sections underscore the 
remark in [1] that whereas MAPE (on account of its 
simplicity and transparency) is generally regarded as the 
best metric for prediction performance comparisons, the 
suitability of a model for any scenario depends 
significantly on the dataset. Indeed, the fact that MAPE 
values recorded in this case are all greater than the Lewis 
benchmark of 10% [1] for high prediction accuracy does 
not suggest poor prediction accuracy: but may be 
indicative of excellent performance for the dataset of this 
variety.  

Again, the QMM models’ performances should 

ordinarily be compared with corresponding results in 
[16]. Unfortunately, the paper, which like [15]. appear not 
to have enjoyed the benefits of a competent peer review 
process, includes a number of inaccuracies, which 
seriously question the veracity of its claims. First, [15]’s 
Equation (5), which incorrectly equates 

( )1
1

log  to log t
t t ee

t

Y
Y Y

Y−
−

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
  does not represent a 

Harvey model. And second, MATLAB implementations 
of [15]’s Equation (31) (for the purported ‘Harvey 
model’) and Equation (32) (for the autoregressive model) 
yielded RMSE values far in excess of those reported in 
the paper.   

Alternative models of the types described in section 
3.3 (with t = 1979, 1980, in place of t = 1, 2,) were also 
developed with the industrial energy demand data. Model 
parameters for the alternative models are displayed in 
Table 18, as well as  for the series approximation models, 
and  for the Harvey models. 

Table 18. Parameters of alternative QMM models utilized 
for annual industrial energy demand 

prediction 

Model/ 
Parameter 

ρ  
1α  2α  3α  

 

Series Approx. 

1.08 -0.1613 -3101.6 286.09 

1.32 -0.05 2499.50 -89.23 

185 0.0633 -232.3816 -19.4829 

2.00 0.0209 -5.0000 -9.9826 

Harvey 
Logistics 

2.00 0.5678 -0.2202 N/A 

Harvey 1.32 -0.4115 0.0629 N/A 

Autoregressive N/A 2.5723 0.0059 N/A 

 
Profiles of demand predicted by the alternative models 

are displayed in Fig. (10). A cursory comparison of Fig. 
(9) and (10) will suggest that the models developed using 
t = 1, 2, . . . are, in this case, equivalent in performance 
with those developed with the use, in this case,  of t = 
1978, 1979, . . . . 

This, as earlier remarked, is not surprising, because the 
QMM algorithm, being a calibration process, can be 
expected to adjust the model calibration coefficients to 
suit whichever form of ‘t’ may be preferred. 

Because the metrics of Table 19 very closely match the 
corresponding metrics of Table 17, discussions and 
associated conclusions concerning the latter also apply in 
this case. The differences between the two sets of metrics 
of this section are smaller than those of section 3.3 
because the effects of computational round off are more 
pronounced in the latter, on account of the relatively large 
magnitudes of data involved. 
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Figure 10. Profiles of annual industrial energy demand 

forecasted by the alternative QMM models  
defined by Table 18. 

 
Table 19. Performance metrics for the QMM models 

defined by Table 18 

METRIC/ 
MODEL 

MPE MAE MAPE RMSE RMSPE 

Series Approx. 

ρ  = 1.08 8.46 39.29 14.79 58.98 22.72 

Series Approx. 
ρ  = 1.32 9.69 36.73 14.18 60.18 23.62 

Series Approx. 
ρ  = 1.85 10.88 39.24 14.91 61.50 23.70 

Series Approx. 
ρ  = 2.00 11.51 38.12 14.68 61.93 24.07 

Harvey 9.27 35.30 13.83 60.91 24.36 
Harvey. Logistic 9.94 37.92 14.49 62.14 24.33 
Autoregressive 7.77 41.02 15.65 56.15 22.31 
  

4. CONCLUSION 
This paper, using the Harvey, Harvey logistic, and 
Autoregressive models as candidate ‘base models’, has 
introduced the Quasi-Moment-Method (QMM) as a  
novel approach to the development of high performance 
models for the prediction of electric energy demand. 
      For the purposes of formulation validation as well as 
performance evaluation and in order to facilitate easy 
verification, energy demand / consumption data from 
three different publications were utilized for the 
calibration of the base models, to develop corresponding 
QMM models. And as may be expected, the 
computational results revealed that the QMM models 
generally performed better than the corresponding 
classical (nominal) Harvey and autoregressive models. A 
number of interesting attributes were revealed by the 
results. First, the performance metrics due to the series 
approximation QMM models were generally better than 
the corresponding metrics for Harvey models, evidently 
on account of computational round-offs associated with 
exponential and logarithmic functions. Second, when the 

time variable denoted by ‘t’ is taken as 1, 2, 3, . . . , (as 
against 1940, 1941, 1942 . . . , for example) significantly 
improved performance metrics are in general, recorded, 
again, on account of the computational round-off 
involved with the use of larger numbers. And third, the 
results confirm that RMSE represents a better model 
performance metric than MAPE or RMSPE, because 
these latter relative error measures tend to suggest that the 
prediction errors due to different models are much closer 
than they actually are. It should be remarked nonetheless, 
that it is probable that when the inevitable influence of 
computational round off is discounted, the QMM models 
may be considered as being essentially equivalent: or put 
in other words, that when the components of the base 
model satisfy the linearity requirement, the QMM 
solution is unique. 
   Future investigations should examine the uniqueness 
property indicated by the results of this paper for the 
QMM solution, as well as explore the possibility of 
hybridization with machine learning algorithms, 
particularly the metaheuristic methods.        
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