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Abstract: Microgrids in rural areas are crucial for providing reliable and sustainable electricity to remote communities. The 
deterioration of these microgrids can result in power outages and decreased efficiency. A failure rate model is a tool used to 
predict and mitigate the risk of deterioration.  This study aims to provide a comprehensive overview of various failure rate 
models for deterioration in rural microgrid systems, with a focus on evaluating the model complexity and data extensiveness. 
A total of fourteen failure rate models were analyzed based on their complexity and data requirements. Complexity was 
evaluated in four levels, ranging from simple to expert. Data extensiveness was evaluated in four levels, ranging from basic to 
expert. The results show that the complexity and extensiveness of the models vary significantly, with some models being more 
appropriate for certain types of microgrid systems than others. The study also highlights the importance of considering the 
complexity and extensiveness of a model when selecting it for a particular microgrid system. This study provides valuable 
insights for policymakers, microgrid engineers, and microgrid operators in selecting the most appropriate failure rate model 
for their rural microgrid systems. The findings emphasize the need to consider the complexity and extensiveness of the model 
to ensure its effectiveness and efficiency in predicting and mitigating the risk of deterioration. 
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1. INTRODUCTION
Rural microgrid systems have become increasingly 
important as a means of providing sustainable and reliable 
energy access to remote areas. With the integration of 
photovoltaic (PV) panels and energy storage systems, rural 
microgrid systems have the potential to significantly 
improve energy access and reduce energy poverty in 
remote areas [1]. However, the long-term performance and 
reliability of these systems can be impacted by various 
types of deterioration, such as the degradation of PV 
modules, energy storage systems, and the distribution 
network [2][3]. 

To ensure the long-term sustainability and reliability of 
rural microgrid systems, it is important to understand the 
various mechanisms of deterioration and their impact on 
system performance [4]. Failure rate models can provide 
valuable insights into the rate at which various components 
of the rural microgrid system are likely to fail, and the 
impact that these failures may have on system performance 
[5]. This study provides an overview of the various failure 
rate models that have been developed for rural microgrid 
systems, with a focus on the comparison of their 
complexity and extensiveness.  

The concept of complexity in failure rate models refers 
to the level of difficulty in understanding, implementing, 
and using the model. There are several factors that 
contribute to the complexity of a model, including the level 
of mathematical sophistication required, the ease of 
implementation, and the amount of data required to use the 
model effectively [6]. 

Some failure rate models are relatively simple and can 
be easily understood and applied by those with minimal 
technical knowledge. These models may be based on 
simple mathematical equations and use data that is easily 
obtainable. On the other hand, there are more complex 
models that require a higher level of mathematical 
sophistication, data analysis expertise, and computational 
resources. These models may use more advanced 
mathematical techniques and may require a significant 
amount of data to be accurate. 

The concept of extensiveness in failure rate models 
refers to the amount of data required to use the model 
effectively. This includes data about the microgrid system 
itself, as well as data about the environmental and 
operational conditions that the microgrid system is 
exposed to [7]. 
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There are several levels of data requirements for failure 
rate models, ranging from basic data that is easily obtained 
to more extensive data sets that may be difficult to obtain 
or analyze. Basic models may use limited data, such as 
historical failure data, to make predictions about future 
failures. More extensive models, on the other hand, may 
use a wide range of data, including data on system design, 
component performance, environmental conditions, and 
operational data. The comprehensiveness of the data used 
in a model can greatly impact the accuracy of the model's 
predictions. 

Therefore, the complexity and extensiveness of a failure 
rate model are important factors to consider when selecting 
a model for use in a rural microgrid system. These factors 
can impact the ease of implementation, accuracy, and 
comprehensiveness of the model, and must be carefully 
considered when selecting a model for use in a real-world 
application. 

The study is conducted using several approaches, 
starting with an overviewing the various components of 
rural microgrid systems and their potential domain of 
deterioration. This is followed by a review of the various 
failure rate models that have been developed at previous 
studies, including those focused on PV module 
degradation, energy storage system failure, component 
worn out, transmission line derivation, and distribution 
network deterioration. 

The approaches were described in Section 2, while the 
complexity and extensiveness of the various failure rate 
models are observed based mathematical sophistication 
and data requirements of each model are discussed. 
Finally, the implications of these findings for policy 
makers, engineers, and operators working in the field of 
rural microgrid systems are explored. The paper concludes 
with a summary of the key findings and recommendations 
for future research. 

2. METHOD AND APPROACHES 
This section aims to provide a clear and comprehensive 
description of the research design and data analysis 
techniques used to evaluate failure rate models for 
deterioration in rural microgrids. This section outlines the 
process of categorizing models into four levels of 
complexity and data extensiveness, as well as the criteria 
used to make these evaluations. 

2.1 Categorizing Models 
In this study, failure rate models for deterioration in rural 
microgrids were categorized into four levels based on their 
complexity and data extensiveness. The models were 
evaluated based on a set of criteria, including mathematical 
sophistication, the amount and type of data required, and 
ease of implementation. 

2.2 Models Evaluation 
In order to evaluate the failure rate models, a 
comprehensive literature review was conducted. This 
involved searching academic databases and other relevant 
sources for relevant articles and studies. The data collected 
from these sources was analyzed to determine the level of 
complexity and data extensiveness for each model. 

2.2.1 Evaluation of Complexity: 
The complexity of the models was evaluated based on a set 
of criteria, including mathematical sophistication, ease of 
implementation, and the amount and type of data required. 
A detailed analysis of the mathematical equations and 
methodologies used by each model was performed to 
determine the level of mathematical sophistication. The 
ease of implementation was evaluated based on the 
availability of software and tools to implement the model, 
as well as the level of technical knowledge required. 

2.2.2 Evaluation of Data Extensiveness: 
The extensiveness of the data required by each model was 
evaluated based on the amount and type of data required, 
as well as the level of accuracy and comprehensiveness of 
the results. The availability of the data and the cost of 
acquiring the data was also taken into consideration. 

2.3 Limitation and Interpretation 
Constraint of this study could be the limited availability of 
data and information on certain models. Some models may 
not have enough data to accurately evaluate their 
complexity or extensiveness, which can impact the results 
and conclusions of the study. Additionally, some models 
may only be available through commercial sources, which 
can limit the scope of the study. Another limitation could 
be the subjectivity of the categorization of the models into 
different levels of complexity and extensiveness, as 

 
 

 

Figure 1. Implementation framework of the models 
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different side of view may insights different opinions on 
the criteria for these categorizations.  

The results of the analysis were presented in tabular and 
graphical form, including a comparison of the complexity 
and extensiveness of each model. The results were then 
interpreted to provide insights into the strengths and 
weaknesses of each model and to make recommendations 
for future research.  

In the end, this study of model complexity and data 
extensiveness provides a useful framework for comparing 
and contrasting the various failure rate models for 
deterioration in rural microgrids. The results of this study 
will be used to inform policy decisions and guide future 
research in this field. 

3. POTENTIAL FAILURE RATE MODELS FOR 
RURAL MICROGRID DETERIORATION 

This section describes the models in regards with rural 
microgrid deterioration. The study has analyzed a total of 
eleven different models, which have been addressed to 
microgrid domains at Figure 1, and describe the models 
based on their complexity and extensiveness.  

3.1 The Bathtub curves  
The Bathtub curve is a graphical representation of the 
failure rate over time, characterized by three stages: an 
initial high failure rate (infant mortality), a low failure rate 
(useful life), and an increasing failure rate (wear-out). The 
Bathtub curve is widely used in reliability engineering to 
model the expected failure rate of products and systems 
over time [8][9]. Figure 2 shows the example of the bathtub 
failure curve [10].  

 
Figure 2. The Bathtub Curve [10] 

 
The bathtub curve model is a semi-empirical model that 

uses statistical data to describe the expected failure rate of 
a system over time. It is considered to have an intermediate 
level of mathematical sophistication, as it requires a basic 
understanding of statistical concepts and the ability to 
perform simple data analysis. Based on the literature 
[10][11], the model should require the historical data on 
the number of failures for the system (time-to-failure data), 
the operating conditions of the system or component, such 
as temperature, humidity, and stress levels, the 
approximate age of the system or component at the time of 
failure, and potentially the manufacturing data. The history 
of repairment and maintenance data should help the model 
calculation. 

In terms of data extensiveness, the bathtub curve model 
requires an advance amount of data, with a focus on the 
time-to-failure data. The accuracy and comprehensiveness 

of the results will depend on the quality and completeness 
of the data, as well as the ability of the analyst to correctly 
model the underlying processes and relationships. 

3.2 Weibull distribution  
Weibull distribution is a statistical distribution often used 
to model the time-to-failure of products and systems. The 
Weibull distribution can be used to estimate the probability 
of failure at a given time, and to predict the failure rate over 
time [8][12]. For PV implementation has been studied by 
[13][14]. 

In the context of microgrid deterioration, the Weibull 
distribution can be used to estimate the failure rate of the 
distribution network over time, taking into account factors 
such as age, environmental factors (such as solar 
irradiance), captation surface, and usage history [13]. The 
Weibull distribution can also be used to estimate the 
remaining useful life of the distribution network and to 
plan for maintenance and replacement. Figure 3 shows the 
example of Weibull probability distribution function (pdf) 
[15]. 

 
Figure 3. Example of Weibull pdf [15]. 

 
The Weibull distribution is a commonly used failure 

rate model in reliability engineering. It is a mathematical 
model that can be used to estimate the probability of failure 
for a component or system over time. The Weibull 
distribution is a relatively simple model, with a low level 
of mathematical sophistication. It requires a small amount 
of data, typically consisting of time-to-failure data for a 
sample of components or systems, operating time, outages 
frequency, downtime, and consumer data [16]. The model 
is easy to implement and can be used to estimate the 
reliability of a component or system with a high level of 
accuracy. 

In terms of extensiveness, the Weibull distribution 
model requires a relatively small amount of data to 
produce accurate results. The model can provide an 
estimate of the reliability of a component or system with a 
good level of accuracy and comprehensiveness, especially 
when the underlying distribution is well-known and the 
data used is robust. However, if the data used is limited, 
the results of the Weibull distribution model may be less 
accurate and comprehensive. 
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3.3 Markov Chain model  
The Markov Chain model is a statistical model that 
represents the state of a system over time, where the state 
of the system changes from one time step to the next based 
on the current state and the transition probabilities between 
states [17][18]. In the context of microgrid deterioration, 
the Markov Chain model can be used to represent the state 
of the microgrid components over time, where the state of 
each component is defined by its level of degradation or 
deterioration. The transition probabilities between states 
can be estimated based on historical data or simulations, 
and the model can be used to predict the future state of the 
microgrid components and the expected failure rate over 
time. 

The Markov Chain model is a statistical model that uses 
probability theory and mathematical sophistication to 
predict the likelihood of failure over time. It requires a 
significant amount of data to be inputted, including 
information about past failures, operating conditions, and 
other relevant factors [19]. The model is complex to 
implement, requiring a deep understanding of statistical 
theory and the ability to run complex mathematical 
simulations [18]. Figure 4 shows an example of 
complexity in Markov chain model [20]. 

 

 
Figure 4. Example of Markov chain model [20]. 

 
In terms of data extensiveness, the Markov Chain model 

requires a large amount of data to be inputted in order to 
accurately predict the likelihood of failure over time. This 
data must be comprehensive and relevant to the system 
being modeled, including information about past failures, 
operating conditions, and other factors that may impact the 
system's reliability. The level of accuracy and 
comprehensiveness of the results will depend on the 
quality and amount of data inputted, with more extensive 
data typically leading to more accurate results. 

3.4 Battery State of Health (SOH) model  
The Battery SOH model is a mathematical model that is 
used to describe the degradation of batteries over time. The 
Battery SOH model takes into account factors such as the 
charge and discharge history of the battery, the 
temperature and environment in which the battery is 
operating, and the age of the battery [12][21][22]. The 

Battery SOH model can be used to estimate the remaining 
useful life of a storage unit and to plan for maintenance and 
replacement. Figure 5 shows an example of battery state of 
health model [23]. 
 

 
Figure 5. Example of battery state of health model [23] 

 
The Battery State of Health (SOH) model is a relatively 

simple model that requires relatively limited mathematical 
sophistication. The model is based on measuring the 
remaining capacity of a battery, which is a straightforward 
and easily obtainable value. The amount and type of data 
required for this model is also relatively limited, typically 
requiring only battery capacity data over time. Ease of 
implementation depends on the data collection method and 
the availability of software or algorithms for calculating 
the SOH value, but it can generally be considered a 
straightforward model to implement. 

In terms of data extensiveness, the SOH model is 
relatively limited. The model relies on the accuracy of the 
battery capacity data, and the level of accuracy and 
comprehensiveness of the results will depend on the 
quality and frequency of the data collected. The model may 
not provide a complete picture of the failure rate of the 
battery, as it is based on a single value (the remaining 
capacity). 

3.5 Time-to-Failure (TTF) model  
The TTF model is a mathematical model that can be used 
to estimate the time until failure of a component, in this 
case, the transmission line and storage units [24][25]. The 
TTF model takes into account factors such as the age of the 
transmission line, environmental factors, and the historical 
failure rate of similar transmission lines. The Time-to-
Failure (TTF) failure rate model is a statistical model that 
predicts the time until a component or system fails [26].  

This model requires data on the time until failure for 
each component or system, which can be obtained through 
field tests, simulations, or historical records. The 
mathematical sophistication of the TTF model is relatively 
low, making it easy to implement and understand. In terms 
of data requirements, the TTF model requires time-to-
failure data for each component or system, which can be a 
large amount of data depending on the number of 
components or systems being studied. Figure 6 shows an 
example of the time-varying failure rate of a transistor as 
one of the microgrid component layer ad also as an 
important part on many microgrid sections such as in 
transmission line [27]. 
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Figure 6. Example of the time-varying failure rate of a 

transistor component [27] 
 

In terms of data extensiveness, the TTF model requires 
a significant amount of data on the time until failure for 
each component or system. The accuracy and 
comprehensiveness of the results depend on the quality and 
quantity of the data used in the model. If the data is 
complete, accurate, and representative, the results of the 
TTF model can be highly accurate and comprehensive. 
However, if the data is incomplete, inaccurate, or not 
representative, the results of the TTF model may be less 
accurate and comprehensive. 

3.6 Arrhenius Equation Model  
The Arrhenius equation is a statistical model that is used 
to describe the temperature dependence of chemical 
reactions and the rate at which reactions occur. In the 
context of microgrid deterioration, the Arrhenius equation 
can be used to estimate the failure rate of solar module 
[28][29] or storage units [30][31] over time, taking into 
account the impact of temperature on the performance and 
reliability of the storage unit. 

The Arrhenius equation can be adapted to take into 
account other factors that impact the reliability of storage 
units, such as age, environmental factors, and usage 
history. The example of Arrhenius Equation Model shown 
in eq. (1) is a relatively simple mathematical model that 
describes the relationship between temperature and the rate 
of failure for components [32].  

𝑓 𝑇 = 𝐴%&'
()
*+

                        (1) 

Where 𝑓 𝑇  is the degradation, A is pre-exponential 
factor, E is activated energy, k is Boltzmann constant, and 
T is component temperature. 

This model has a low level of mathematical 
sophistication, with only basic algebraic equations 
required for its implementation. The amount of data 
required is also minimal, with only the temperature data 
for the components needed. Implementation of the 
Arrhenius Equation Model is straightforward and can be 
easily done with basic knowledge of the equation and data 
input. 

In terms of data extensiveness, the Arrhenius Equation 
Model requires only a limited amount of temperature data. 
The level of accuracy and comprehensiveness of the results 
depend on the quality and completeness of the temperature 
data. Results from this model may not be as comprehensive 
as those from more complex models, but they can still 
provide valuable insights into the temperature-failure 
relationship. 

3.7 State-Space model  
State-Space model is a mathematical model that represents 
the state of a system over time using a set of state variables 
and a set of dynamic equations [33]. In the context of 
microgrid deterioration, the State-Space model can be used 
to represent the state of the microgrid components over 
time, where the state variables are defined by the level of 
degradation or deterioration of each component [34][35]. 
The dynamic equations can be derived from physical or 
engineering principles, and the model can be used to 
predict the future state of the microgrid components and 
the expected failure rate over time. 

The State-Space model is a complex failure rate model, 
requiring a high level of mathematical sophistication to 
understand and implement. This model uses a system of 
mathematical equations to describe the behavior of a 
system over time, and involves both continuous and 
discrete variables [36]. In terms of data requirements, the 
State-Space model requires a significant amount of data, 
including time-series data on the state of the system, as 
well as information on any inputs or external factors that 
may affect the system's behavior. Implementation of this 
model requires a good understanding of the system being 
modeled, as well as experience in developing and solving 
complex mathematical equations.  

In terms of data extensiveness, the State-Space model is 
highly comprehensive, requiring a significant amount of 
data to accurately model the behavior of a system. This 
model considers both the current state of the system, as 
well as any inputs or external factors that may affect its 
behavior over time. The level of accuracy of the results 
produced by the State-Space model is high, as it is capable 
of capturing the dynamic behavior of a system over time. 
Moreover, the State-Space model is requiring a significant 
amount of data to produce accurate and comprehensive 
results. 

3.8 Power Degradation Model  
The Power Degradation Model is a statistical model that is 
used to describe the decline in power output of a 
photovoltaic (PV) module over time. In the context of 
microgrid deterioration, the Power Degradation Model can 
be used to estimate the rate at which the power output of a 
PV module declines over time, taking into account factors 
such as age, environmental factors, and usage history 
[37][38]. 

The Power Degradation Model can also be used to 
estimate the remaining useful life of a energy storage unit, 
which can be valuable information for maintenance 
planning and replacement decision making. Figure 7 
shows an example of degradation model on battery SOC 
on various power degradation model derivative [39]. 
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Figure 7. Example of battery SOC of various degradation 
models [39]. 
 

The Power Degradation Model is a type of failure rate 
model that predicts the decline of power output of a device 
over time. The mathematical sophistication of this model 
varies depending on the specifics of the implementation, 
but in general, it requires knowledge of regression analysis 
and statistical modeling. The amount and type of data 
required for the Power Degradation Model typically 
include detailed performance measurements taken over 
time, such as voltage, current, temperature, and power 
output. 

In terms of data extensiveness, the Power Degradation 
Model requires a large amount of performance data, which 
should be comprehensive and accurately recorded in order 
to achieve reliable results. The level of accuracy of the 
results will depend on the quality and amount of data used, 
as well as the sophistication of the statistical models 
employed. The comprehensiveness of the results will 
depend on the scope of the analysis, which could include 
factors such as temperature, voltage, current, and other 
relevant parameters. The level of extensiveness of this 
model will depend on the amount of data and the 
comprehensiveness of the analysis. 

3.9 Other models  
The following models have been recognized as having the 
capability to express the failure rate within the microgrid 
domain. Despite this recognition, the available data and 
literature on these models is limited, resulting in a lack of 
in-depth information and descriptions. As a result, the 
descriptions of these models in the current literature are 
brief and only provide a basic overview. 
 
Exponential failure rate model: The exponential failure 
rate model is a simple statistical model that assumes that 
the rate of failure for a product is constant over time. It 
requires limited mathematical sophistication, but the 
model's assumptions may not always hold in real-world 
applications [40]. 
 
Constant failure rate model: The constant failure rate 
model is a simple model that assumes that the rate of 

failure for a product is constant over time. This model 
requires limited mathematical sophistication and data, 
making it easy to implement. However, the results may not 
be accurate for all cases [41]. 
 
Power law model: The power law model is a statistical 
model that assumes that the rate of failure for a product is 
proportional to a power of time, more commonly called life 
decay model. This model requires moderate mathematical 
sophistication and may require more data compared to 
simpler models [42]. 
 
Log-normal distribution-based model: The log-normal 
distribution-based model is a more complex statistical 
model that assumes that the logarithm of the failure time 
for a product follows a normal distribution based on 
probability of the lifetime estimation. This model requires 
a higher level of mathematical sophistication and may 
require more data compared to simpler models [43]. 
 
Logistic regression model: The logistic regression model 
is a statistical model that uses a set of independent 
variables to predict the probability of a binary outcome 
(such as failure or success). This model requires a high 
level of mathematical sophistication and a large amount of 
data to be effective [44]. 
 
Accelerated life testing model: The accelerated life 
testing model is a complex statistical model that uses 
accelerated testing conditions to estimate the lifetime of a 
product. This model requires a high level of mathematical 
sophistication and may require a limited amount of data 
[45]. 

4. DISCUSSIONS ON COMPLEXITY AND 
EXTENSIVENESS LEVEL 

This section provides comprehensive evaluations of the 
complexity and extensiveness of the dozen failure rate 
models analyzed in this study. This evaluation includes an 
analysis of the four levels of model complexity and data 
extensiveness as described in the methodology section. 
Table 1 resumes all models in regards with their level and 
domains. This section also examines the implications of 
these study for the design and implementation of rural 
microgrid systems, as well as for policy makers and 
stakeholders involved in the development and operation.  

4.1  Evaluation of the Model Complexity 
The level of mathematical sophistication required for a 
model can depend on the complexity of the data and the 
underlying system being modeled, and the choice of model 
should be based on the goals and limitations of the specific 
study or analysis. 
 
Simple Level: This level of failure rate model is 
characterized by its simplicity and ease of use. It typically 
involves basic statistical concepts such as mean time 
between failures (MTBF) and is often based on empirical 
data and past experiences. These models can be used as a 
quick and straightforward way to estimate the failure rate 
of a system. 
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Intermediate Level: This level of failure rate model is 
characterized by its moderate complexity, incorporating a 
wider range of factors such as environmental conditions, 
system age, and component usage patterns. These models 
may use more advanced statistical methods, such as 
Weibull or Bathtub curves, to estimate the failure rate of a 
system. 
 
Advanced Level: This level of failure rate model is 
characterized by its high level of complexity and 
mathematical sophistication. It often incorporates physics-
based or engineering models to simulate the behavior of 
individual components and the system as a whole. These 
models can provide detailed insights into the failure 
mechanisms and the impact of different factors on the 
overall failure rate. 
 
Expert Level: This level of failure rate model is the most 
complex and sophisticated, often requiring specialized 
knowledge and expertise in the relevant field. It may 
involve the use of advanced simulation techniques, such as 
Monte Carlo or Markov Chain analysis, to estimate the 
failure rate of a system. These models can provide a high 
level of accuracy and detail but may also require 
significant computational resources and time to run. 

4.2  Evaluation of the Data Extensiveness  
The level of data extensiveness for a failure rate model will 
depend on the accuracy and reliability desired from the 
model. The more accurate the model, the more data it will 

typically require, and the more specialized the data 
management and processing techniques will need to be. 
 
Basic Extensiveness: These models are usually basic in 
nature and may use a limited amount of data. They may 
rely on assumptions and rough estimates to make 
predictions. These models are typically quick and easy to 
implement and require limited data collection and 
management. They are best suited for preliminary 
assessments of system performance or for simple systems 
where data availability is limited. 
 
Intermediate Extensiveness: These models are more 
complex and require more detailed data to make 
predictions. They may use historical performance data, 
such as component failure rates or system performance 
metrics, to make more accurate predictions. The data 
required for these models may require specialized data 
collection and management techniques. These models are 
best suited for systems where more data is available, and 
for organizations that have a moderate level of experience 
with data analysis and management. 
 
Advanced Extensiveness: These models are highly 
complex and require vast amounts of data to make precise 
predictions. They may use real-time data, such as system 
performance metrics and component failure data, to make 
highly accurate predictions. These models require 
specialized data collection and management tools and 
techniques to process the large amount of data. They are 
best suited for organizations with extensive experience in 

Table 1. The level of complexity and extensiveness of recognized failure rate models 

Failure Rate Models Domain  
Allocation* 

Level of Model  
Complexity 

Level of Data  
Extensiveness Ref. 

The Bathtub Curves PV & CP Intermediate Advance [8][9][10][11] 

Weibull Distribution PV, BT, CP, & DS Intermediate Advance [12][13][15][16] 

Markov Chain Model PV, CP, TR, & DS Expert Expert [17][18][19][20] 

Battery State of Health (SOH) model BT Simple  Basic [12][21][22][23] 

Time-to-Failure (TTF) model BT, CP, & TR Intermediate Intermediate [24][25][26][27] 

Arrhenius Equation Model PV, BT, & CP Simple  Basic [29][30][31][32] 

State-Space model BT, CP, TR & DS Advanced Expert [33][34][35][36] 

Power Degradation Model PV, BT, TR & DS Advanced Advanced [37][38][39] 

Exponential Failure Rate Model BT & CP Advanced Intermediate [40] 

Constant Failure Rate Model CP & DS Simple  Basic [41] 

Power Law Model BT & TR Intermediate Intermediate [42] 

Log-normal Distribution-based Model TR & DS Advanced Intermediate [43] 

Logistic Regression Model TR & DS Advanced Advanced [44] 

Accelerated Life Testing Model BT & CP Advanced Intermediate [45] 
  *PV: generation section, BT: storage units, CP: component layer, TR: transmission line, and DS: distribution network 
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data analysis and management, and for systems where a 
high level of accuracy is desired. 
 
Expert Extensiveness: These models are highly 
specialized and require vast amounts of data, as well as 
specialized data analysis techniques, to make highly 
accurate predictions. They may also require specialized 
data management and processing infrastructure to handle 
the large amount of data. These models are best suited for 
organizations with extensive experience in data analysis 
and management, and for systems where a high level of 
accuracy is critical. 

5. IMPLICATIONS OF THE LEVELS FOR 
RESEARCH, MANAGEMENT, AND POLICY 

The categorizing of model complexity and data 
extensiveness, as presented in Table 1, can provide a 
clearer understanding of the advantages of these models 

when presented in an operational framework, such as 
Figure 8. This framework serves as a valuable tool for 
engineers in their design and development research, helps 
operators in managing the operation and maintenance of 
their microgrid site, and provides important insights for 
stakeholders in making informed decisions on funding and 
policy. 

5.1 Implication for microgrid engineers 
Categorizing the failure rate models into different levels 
based on mathematical sophistication, ease of 
implementation, data requirements, and accuracy provides 
engineers with a better understanding of the different 
models available and the trade-offs between their strengths 
and limitations. 

Better understanding of the different models: Engineers 
can use the categorization to better understand the different 
models and the factors that make them unique. Moreover, 

 

Figure 8. Implementation framework of the failure rate models into the rural microgrid domains 
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selecting the appropriate model: Engineers can use the 
categorization to select the most appropriate model for 
their specific needs, taking into account the resources and 
expertise available. For example, if an engineer is working 
on a project with limited resources, they may choose a 
model with low mathematical sophistication and ease of 
implementation, such as a constant failure rate model. 

Furthermore, engineers can improve the project 
outcomes and enhancing project efficiency. For example, 
by selecting the most appropriate model, engineers can 
ensure that their projects have the best chance of success 
and deliver the desired outcomes. For example, in a 
renewable energy project, engineers may use a model with 
high accuracy, such as a dual exponential failure rate 
model or a log-normal distribution-based model, to predict 
the lifetime of the components and optimize the design for 
maximum efficiency. This results in a more reliable and 
efficient system that performs better and lasts longer, 
leading to a more successful project outcome. 
Additionally, the use of a model with lower mathematical 
sophistication and ease of implementation can improve the 
efficiency of the project by reducing the time and resources 
required to implement it. 

5.2 Implication for microgrid operators 
Categorizing the failure rate models into different levels 
provides microgrid operators with a better understanding 
of the models available and the trade-offs between their 
strengths and limitations. Operators with a better 
understanding of the different models can classify each 
failure factors that make them unique. Moreover, 
microgrid operators can use the categorization to select the 
most appropriate model for their specific needs, taking into 
account the resources and expertise available. For 
example, if a microgrid operator has limited resources and 
expertise, they may choose a model with low mathematical 
sophistication and ease of implementation, such as a 
constant failure rate model. 

Similar with the benefits to the engineer, by selecting 
the most appropriate model, microgrid operators can 
ensure that their microgrid systems are operating at their 
best and delivering the desired operational schedule and 
maintenance roadmap. Microgrid operators can also save 
time and resources, improving the efficiency of their 
microgrid systems after knowing the potential failure 
ahead. 

5.3 Implication for policy makers or stakeholder 
By having a clear understanding of the strengths and 

limitations of different models, policy makers can make 
informed decisions about which models are best suited for 
their specific needs especially for future funding. For 
example, policy makers can use this information to 
prioritize funding for several hard-choice research that will 
help to improve the accuracy and usefulness of the models. 
Furthermore, it will in turn can help creating better policies 
for the implementation of a characterized rural microgrid 
systems. 

Additionally, by funding research in the areas where 
further improvement is needed, policy makers can drive 
the development of advanced and more accurate models, 

ensuring that their policies are based on the best available 
data analysis and observed evidence. This can help to 
optimize the use of resources and improve the 
effectiveness and sustainability of prioritized rural 
microgrid systems. Moreover, by encouraging the 
development of user-friendly and accessible models, 
policy makers can increase the adoption of these systems 
and help to bring reliable and sustainable energy access to 
more people. 

6. CONCLUSION 
This study was to evaluate various failure rate models for 
deterioration in rural microgrids, and compare them based 
on their complexity and extensiveness. A comprehensive 
review of more than a dozen models was conducted, and 
each model was categorized into one of four levels of 
complexity and four levels of data extensiveness. The 
results of this study showed that there is a wide range of 
models available, with varying levels of complexity and 
data requirements. In terms of complexity, some models 
are relatively simple and easy to implement, while others 
are more advanced and require a higher level of 
mathematical sophistication. In terms of data 
extensiveness, some models require a large amount of data 
to be accurate, while others can be implemented with 
minimal data inputs. The results of this study potentially 
have significant implications for the design and 
implementation of rural microgrid systems. By 
understanding the complexity and data requirements of 
various failure rate models, policy makers and engineers 
can make informed decisions about which models are best 
suited for their particular needs. Additionally, the findings 
of this study can inform future research in this area, and 
help to guide the development of new and improved failure 
rate models for rural microgrids. Future research in this 
area should focus on developing new and improved models 
that can address the unique challenges of certain rural 
microgrids, and further advance the field of microgrid 
research and development. 
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