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Abstract: As more people become connected to the grid and the energy demand continues to increase, non-renewable energy 
sources are being consumed at a faster rate than they are being replaced.  Microalgae, often referred to as "green gold" have 
shown great potential as a renewable energy source due to their unique characteristics. However, not all microalgae are suitable 
to use as replacements for traditional fossil fuels. Therefore, it is essential for researchers to accurately identify and classify 
microalgae based on their species and energy-producing capabilities. The main objective of this paper is to present a detailed 
summary of the current technologies employed in the classification and detection of microalgae. Both traditional manual 
microscopy and advanced artificial intelligence techniques such as machine learning and deep learning are covered in this 
overview. Furthermore, this paper offers a critical analysis of these technologies and provides suggestions for enhancing their 
effectiveness. Despite deep learning being the most advanced technology for microalgae classification and detection, there is 
still significant potential for future improvements that could further increase the accuracy.  
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1. INTRODUCTION 
The emerging field of microalgae-derived biodiesel offers 
a promising alternative to fossil fuels. Microalgae, 
microscopic photosynthetic organisms found in diverse 
aquatic and terrestrial environments, are dubbed "green 
gold" due to their exceptional productivity, carbon capture 
capabilities, and minimal environmental footprint. They 
represent a renewable resource with potential applications 
in food, bioactive compounds, and notably, biofuels [3]. 

Microalgae stand out as a sustainable biofuel source due 
to their rapid growth rate and ability to convert sunlight 
and CO2 into organic matter through photosynthesis, 
effectively reducing atmospheric carbon dioxide levels [4]. 
However, significant challenges persist in harnessing their 
full potential: 
1. Identification of High-Energy Species: Despite their 

abundance, not all microalgae species possess suitable 
lipid content for efficient biofuel production. Further 
research is essential to identify and characterize species 
with optimal lipid yields across diverse environmental 
conditions [6, 60]. 

2. Environmental and Sustainability Assessments: 
While microalgae are touted as eco-friendly 
alternatives, comprehensive life cycle assessments are 
needed to evaluate their overall environmental impact, 
including land use, water consumption, and nutrient 

requirements [4, 61]. 
3. Technological Advancements in Detection and 

Classification: Current methods for identifying and 
classifying microalgae are limited by their small size 
and morphological similarities. Advancements in 
microscopy, image processing techniques, and 
machine learning algorithms are critical to enhancing 
accuracy and efficiency in species identification [8, 
62]. 

4. Optimization of Cultivation Techniques: To 
maximize biomass and lipid productivity, there is a 
pressing need to optimize cultivation techniques. 
Research should focus on refining nutrient supply, light 
exposure, temperature control, and CO2 utilization 
efficiency [5, 63]. 

5. Integration into Energy Systems: Effective 
integration of microalgae-based biofuels into existing 
energy infrastructures requires further exploration. 
This includes compatibility studies with fuel 
distribution systems, blending strategies with 
conventional fuels, and economic viability assessments 
for scaled production [7, 64]. 

6. Policy and Regulatory Frameworks: Development 
of supportive policies and regulatory frameworks is 
essential to incentivize investment and 
commercialization of microalgae-based biofuels. 
Research can contribute by identifying policy gaps, 
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evaluating economic incentives, and addressing 
barriers to market adoption [5]. 

Addressing these research gaps is crucial for advancing 
microalgae as a sustainable renewable energy source. By 
overcoming technological, environmental, and economic 
challenges, microalgae-based biofuels can play a pivotal 
role in achieving global energy sustainability goals. 

To address all these challenges requires a lot of effort. 
This review paper focuses on one of the challenges 
associated with technology in detection and classification 
of microalgae.  Technological advancements are required 
to facilitate the detection and classification of microalgae 
species, particularly for those samples found in a wild 
environment that have a mixture of impurities and 
microalgae. Researchers have employed several advanced 
methods for microalgae applications that have yielded 
significant results. The focus of this paper is to review the 
current technologies employed by researchers for 
microalgae detection and classification, including manual 
inspection and artificial intelligence techniques such as 
machine learning and deep learning. A brief overview and 
introduction of the technologies utilized by researchers as 
well as the author’s own perspective will be discussed. 

2. TECHNOLOGIES USED IN MICROALGAE 
DETECTION AND CLASSIFICATION  
Visualizing microalgae is the initial step in commencing 
research on them because algae have been estimated to 
include anything from 30,000 to more than 1 million 
species [9]. Microalgae exhibit unique features and distinct 
colors that differentiate one species from another. In most 
cases, when a sample is taken from a given environment, 
such as a pond, it is likely to contain multiple microalgal 
species. Therefore, researchers need to accurately identify 
and classify the specific microalgae that possess the 
desired characteristics for their potential use in renewable 
energy applications. Various methods are available for the 
identification and characterization of microalgae, 
including manual inspection using a light microscope and 
artificial intelligence. These methods are crucial for 
enabling researchers to isolate and study the microalgae 
species that hold the most potential for use as "green gold" 
in renewable energy production. The next session will 
briefly introduce some common technologies use in 
microalgae detection and classification. 

2.1 Microscopy 
The observation of microalgae by researchers typically 
involves the use of a light microscope. Although, with the 
availability of various types of microscopes, each with 
unique features and capabilities, selecting an appropriate 
microscope is crucial for optimal observation. Different 
species of microalgae exhibit diverse sizes and structures, 
thus necessitating careful consideration of the most 
suitable microscope. 

Microscopy enables close observation of microalgae's 
morphological structures and colors, which yield 
significant insights into their biological functions such as 
health, lipid content, and adaptation to different 
environmental conditions. To achieve the highest level of 
detail and accuracy, a microscope with advanced 

resolution and magnification capabilities is vital. This 
allows for precise observations of even the smallest 
features of the microalgae's structures, and real-time 
monitoring of their behavior. 

2.2 Artificial Intelligence 
AI, which stands for Artificial Intelligence, is a broad field 
of computer science focused on the development of 
intelligent machines that can perform tasks typically 
requiring human intelligence [10], [11]. AI, is broadly and 
generally used to refer to any sort of machine learning 
program [12]. Computers with artificial intelligence are 
designed to perform various activities, including speech 
recognition, learning, planning, and problem-solving 
which are not programmed in a machine [13],[14]. These 
capabilities allow AI systems to understand and interpret 
human language, improve their performance over time 
through data analysis, create and execute plans to achieve 
specific goals, and solve complex problems by identifying 
patterns and making predictions. AI involves the use of 
various techniques, including Machine Learning (ML), 
Deep Learning (DL), natural language processing, 
robotics, and expert systems. Figure 1 shows the 
relationship between AI, ML, and DL. ML is the subset of 
AI and DL is the subset of ML [15]. The ultimate goal of 
AI is to create intelligent machines that can not only 
perform human-like tasks but also surpass human 
capabilities in areas such as speed, accuracy, and capacity. 

2.2.1 Machine Learning 
Machine Learning (ML) is a subset of artificial intelligence 
that focuses on developing algorithms that can learn from 
data and improve their performance over time. It is used to 
teach machines how to handle the data more efficiently 
[16] and make predictions or decisions based on that 
learning. A framework with many parameters is first built, 
and then the prepared data is fed into the model. The 
parameters are continuously adjusted until they match or 
are close to the correct result [17]. 

There are three common machine learning algorithms, 
which are supervised learning, unsupervised and 
reinforcement learning. Supervised learning is a Machine 
Learning technique that involves training a model using a 

 
Figure 1. The relationship between AI, ML, and DL 
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labeled dataset, where each example is assigned a 
corresponding output value. This enables the model to 
learn from the labeled examples and make predictions on 
new, unseen data. Supervised learning is commonly used 
in applications where historical data predicts likely future 
events [13]. Some common examples of supervised 
learning are decision tree and Support Vector Machine 
(SVM).  

The decision tree is an algorithm used in machine 
learning for addressing classification and regression 
problems, displaying a visual illustration of potential 
outcomes from a decision based on specific conditions. It 
is a tree-like graph which each of them consists of nodes 
and branches. Each node represents attributes in a group 
that is to be classified and each branch represents a value 
that the node can take [16]. The accuracy of a tree model 
is significantly influenced by its complexity, which can be 
managed by adjusting the stopping criteria and selecting an 
appropriate pruning method [18].  

SVM is also a common technique used in classification 
and regression. In classification problems, nonlinear kernel 
functions are frequently utilized to convert input data to a 
high-dimensional feature space. Maximum-margin 
hyperplanes are then established. The model thus produced 
depends on only a subset of the training data near the class 
boundaries [19]. Figure 2 show an example of supervised 
learning model. 

 

 

Figure 3. Framework for reinforcement learning 

 
Figure 4. Common architecture of neural networks 

In contrast, unsupervised learning does not involve 
labeled data. Instead, the model must find patterns or 
structure in the data on its own. The k-means clustering 
algorithm is the common method in this learning. This 
clustering model is either based on centroids or distances, 
and it determines the assignment of data points to each 
cluster by measuring their distances. Initially, a value of K 
is selected, and the data is partitioned into K categories to 
enable better differentiation between data points within the 
same cluster. The main goal of the K-Means algorithm is 
to minimize the sum of the distances between the points 
and their respective cluster centroids, and cluster them in 
an iterative manner [20]. It is best suited for data mining 
because of its efficiency in processing large datasets [21]. 

Reinforcement learning is another type of Machine 
Learning technique where the model learns by interacting 
with an environment and receiving feedback in the form of 
rewards or penalties. Figure 3 shows the basic framework 
for this algorithm. Reinforcement Learning problems are 
related to learning which is the best action to perform, 
situation-by-situation, to maximize the aggregated reward 
[22]. 

2.2.2 Deep Learning 
Deep Learning (DL) is considered a subset of ML and AI, 
and thus DL can be seen as an AI function that mimics the 
human brain’s processing of data [23]. It differs from the 
machine learning model in terms of complexity and data 

 
(a) 

 

 

 
(b) 

 

 

Figure 2. Supervise learning model (a) decision tree; 
(b) SVM 
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training ability. Deep learning operates based on the 
concept of extracting features from raw data using a multi-
layered approach to identify various aspects that are 
pertinent to the input data. Its main objective is to train 
artificial neural networks to detect patterns within data. 
These neural networks are composed of multiple layers of 
interconnected nodes, which enable the network to learn 
more complex features and representations of the data. The 
nodes of neural networks are stacked next to each other in 
three layers, which are the input layer, hidden layers and 
output layer as shown in Figure 4. DL is able to achieve 
higher power and flexibility due to its ability to process a 
large number of features when it deals with unstructured 
data [24], [25]. 

The term "deep" in deep learning refers to the depth of 
the neural network, which can have many layers, 
sometimes up to hundreds or even thousands. The more 
layers there are, the more complex the features that the 
network can learn. Among all types of DL techniques, 
Convolutional Neural Network (CNN), Recurrent Neural 
Network (RNN) and YOLO (You Only Look Once) are the 
most popular to use in image classification and object 
detection.  

CNN techniques are based on the idea of convolution, 
which involves applying a filter or kernel to an image to 
extract features or patterns. A traditional convolutional 
neural network is made up of single or multiple blocks of 
convolution and pooling layers, followed by one or 
multiple fully connected (FC) layers, and an output layer 
[26], [27] as shown in Figure 5. The function of 
convolutional layers is to apply filters to the image and 
identify specific features, while the pooling layers are 
responsible for reducing the output size by down sampling 
the feature maps. The most commonly used pooling 
technique is Max Pooling. Fully connected layers are 
utilized for classification or regression purposes. CNN 
model is mainly used in image processing applications. 
The most common CNN architectures are ZFNet, 
GoogLeNet, VGGNet, AlexNet, and ResNet [28]. 

RNN stands for Recurrent Neural Network, which is a 
type of deep learning algorithm that is commonly used in 
processing natural language, speech recognition, and other 
sequential data analysis tasks. RNNs are a class of 
supervised machine-learning models, made of artificial 
neurons with one or more feedback loops [29]. A basic 
RNN consists of three layers, which are input, recurrent 
hidden, and output layers. An RNN is essentially a neural 
network that has been expanded across time by linking 
edges to the subsequent time step instead of the subsequent 

layer in the same time step [28]. The hidden units of the 
RNN preserve the previous input data in a state vector, 
which is used to calculate the outputs. The nodes in 
different layers of the neural network are compressed to 
form a single layer of recurrent neural networks [30]. 
Figure 6 shows an architecture of a simple RNN. Some 
popular architectures of RNN include Bidirectional RNN, 
Long-Short Term Memory (LSTM) and Gated Recurrent 
Unit (GRU) [29]. 

 

 
Figure 6. Simple RNN architecture 

YOLO (You Only Look Once) is commonly used for 
real-time object detection due to its faster detection speed. 
This algorithm uses a single network for both the 
classification and localization of objects in an image [31].  
It is simple to construct and can train directly on full 
images [32]. YOLO divides the input image into a grid and 
predicts the objectness score and bounding box 
coordinates for each grid cell. This allows YOLO to detect 
multiple objects in a single forward pass, making it 
extremely fast and efficient. Yet, it has limitations in terms 
of accuracy because it cannot detect small objects [33]. 
Currently, the YOLOv7, published in 2022 proved to be 
the fastest and most accurate real-time object detection 
model for computer vision tasks [34] compare to others 
YOLO versions. It used Extended Efficient Layer 
Aggregation Network (E-ELAN) as its backbone which 
enables the framework to learn better [34], [35]. 

3. CRITICAL ANALYSIS OF TECHNOLOGIES 
EMPLOYED FOR MICROAALGAE DETECTION  
In this section, a thorough review and discussion of various 
technologies employed by researchers for microalgae 
detection will be conducted. The method used by the 
researchers and the respective results obtained will be 
discussed. Additionally, a critical analysis of the 
technologies used to identify their strengths, weaknesses, 
and limitations will be done. The purpose is to provide 
valuable insights into the latest advancements in 
microalgae detection technologies, as well as the potential 
for further improvements in this field. Ultimately, the 
information gathered from this section will aid in the 
development of more effective and efficient microalgae 
detection techniques, which can have significant 
implications for microalgae research in renewable energy.  

3.1 Manual Observation Using Microscope 
As microalgae are extremely small in size, they are not able 
to view using the humans’ naked eyes. Consequently, to 
detect their presence, a conventional microscope is utilized 
as an optical instrument to facilitate human observation of 
these microorganisms. Abate Ayele et al. identifies the 

 
Figure 5. CNN model architecture 
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morphological structure of microalgae by using a light 
microscope, (model Labomed USA). From the experiment 
result, they were able to classify the 12 microalgae genera 
into two common groups, which are prokaryotes and 
eukaryotes. Out of the twelve identified genera, 8 belong 
to the category of eukaryotic protist microalgae, while the 
remaining four falls under prokaryotic cyanobacteria, with 
three of them being filamentous algae. Several of the 
identified isolates hold industrial significance, including 
Chlorella, Anabaena, Diatoms, and Scenedesmus [36]. 

The review paper produced by Fuguo Liu et al. stated 
that the microscopic examination technique is a traditional 
way that is commonly used to identify the microalgae 
species which cause Harmful Algae Bloom (HAB) [37]. 
Light microscopy can be utilized to do species 
identification among the various type of HAB [38]. 
Besides, this technique was also used by Rahmadi 
Tambaru et al. to investigate the quality of phytoplankton 
to sustain the health of seafood. The observation of 16 
genera from the Class Bacillariophyceae, one genus from 
the Class Cyanophyceae, and five genera from the Class 
Dinophyceae were successfully conducted using a 
binocular microscope model, specifically the Olympus 
CX21. These genera were accurately identified and 
classified through microscopic examination [39].  

The use of the microscopy method for identifying 
microalgae based on their morphological features is 
limited in its effectiveness. This method is suitable only for 
the determination of small numbers of microalgae under 
specific conditions, for example, microalgae species with 
totally different sizes and structures. However, it is 
essential to note that microscopic examination is a time-
consuming and labor-intensive process that requires 
specialized training and expertise [40],[41],[42]. The 
accuracy of microalgae identification is heavily relied on 
the knowledge and experience of trained professionals, 
emphasizing the need for expertise in this field. Given the 
vast diversity of microalgae species across the globe, it is 
impractical for an individual to possess comprehensive 
knowledge of every species. Slight variations in the 
morphology of the same microalgae species can occur due 
to various factors such as environmental changes, genetic 
mutations, and other factors. These changes can affect the 
accuracy of results obtained through morphological 
identification. Furthermore, it is important to consider the 
cost-effectiveness of different microscopy methods for 
microalgae detection in renewable energy applications. 
One key factor to consider is the resolution of the 
microscope, as higher resolutions typically come with 
higher costs. In the specific context of microalgae 
detection, manual microscopy may not be the most suitable 
option due to its limitations and higher potential for error. 
Therefore, it is crucial to carefully evaluate and select the 
most appropriate light microscope model based on its 
capabilities, accuracy, and cost-effectiveness. 

3.2 Machine Learning for Microalgae Detection and 
Classification 

The process of machine learning for microalgae 
classification and detection typically involves several 
stages, beginning with data collection. Researchers will 

gather a large quantity of microalgae datasets either from 
microscopic observations or online data repositories. An 
online dataset can use to prove the accuracy of the model 
however it is advised to use primary data instead of online 
data when training the model because sometime the real 
microalgae input image might have slightly different in 
morphological structure, size and color due to different 
environments. The size of the dataset require is based on 
the model complexity. Some of the models will need a 
longer time to process the datasets, especially for color 
images. Next, the collected data must undergo 
preprocessing to eliminate unwanted noise or background 
from the images. The presence of impurities in the data can 
negatively affect the accuracy of the trained model.  

Following data preprocessing, the most relevant 
features are selected from the dataset. The unique features 
of the microalgae sample in terms of physical 
characteristics such as color, shape, and size, should be 
able to extract by the model. Comparison and modification 
of available machine learning models can be done to 
produce an appropriate machine learning algorithm based 
on the research objectives. Testing and validation of the 
potential models should be done using the same dataset. 
After the training of the model, evaluation and 
optimization is then performed to further enhance the 
accuracy of the results. 

Promdaen et al. developed a method to accurately 
segment and compute texture descriptors of 12 types of 
microalgae from image backgrounds by categorizing them 
into two shape groups and using single and multi-
resolution edge detection [43]. The authors applied a 
feature combination approach to handle the variation in 
algae shapes within the same genus. The proposed method 
averaged texture descriptors extracted from an input image 
with different levels of edge enhancement, yielding better 
classification accuracy. They used the Sequential Minimal 
Optimization (SMO) algorithm to train a support vector 
classifier for image classification and achieved a high 
accuracy of 97.22%. The authors of the study faced several 
challenges in their research, including the fact that some 
microalgae from different genera have almost identical 
shapes which made it difficult to differentiate. As a result, 
the authors had to rely on texture features to distinguish 
between microalgae. Additionally, some algae in the 
microscopic images did not have clear boundaries, which 
made it difficult to accurately segment them. 

A generalized segmentation algorithm (GSA) 
combining a convolution filter (Kirsch) and pixel 
clustering algorithm (Otsu) is proposed by Anaahat 
Dhindsa et al. to accurately extract microorganisms. 25 
features are identified and mutual information-based 
models are used for feature selection [44]. After evaluating 
five ML algorithms, which are multi-layer perceptron 
(MLP), K-Nearest Neighbors (KNN), Quadratic 
Discriminant Analysis (QDA), Logistic Regression (LR) 
and Support Vector Machine (SVM), the authors select 
SVM as their ML model due to its good performance 
compare to others model. Despite that, to further 
improvisation the SVM model, an improvised SVM 
(ISVM) model was proposed by modifying its radial basis 
function (rbf) Kernel, in which first inter quartile range 
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(IQR) is computed for each feature, and then the rbf 
equation is applied. The rbf kernel was chosen because it 
is most frequently used by contemporary researchers [45], 
[46]. This results in better accuracy (98.2%), precision, 
recall, and F1 score than the traditional SVM, achieving 
2% higher accuracy as compared to the SVM radial. The 
advantage of ISVM is that it removes outliers and extreme 
values by computing the difference between the first and 
third quartiles. 

Zhan Peng Xu et al. introduced a transmission 
hyperspectral microscopic imager (THMI) that uses 
machine learning algorithms to detect microalgae through 
hyperspectral analysis [40]. The researchers utilized 
Principal Component Analysis (PCA) and peak ratio 
algorithms for feature extraction and dimensionality 
reduction of transmission spectra. The classification was 
done using a SVM model. The study compared the 
classification outcomes of two methods: PCA-SVM and 
peak ratio-SVM. The results showed that the two methods 
were nearly identical, achieving an average accuracy, 
sensitivity, and specificity of 94.4%, 94.4%, and 97.2%, 
respectively. The THMI system has a significant limitation 
in that it is very complex to build.  

The accuracy of Linear Discrimination Analysis (LDA), 
linear and non-linear SVM are compared to classify 
polarized light scattering data of 35 categories of marine 
microalgae by Zepeng Zhuo et al. in their research. The 
result shows that non-linear SVM achieves higher 
accuracy, more than 80% as compared to others [47]. 

Hui Huang et al. introduced a micro-hyperspectral 
imaging (MHSI) approach to differentiate between 
spherical engineered microplastics (polyethylene) and 
microalgae (Isochrysis galbana) [48]. The VNIR MHSI 
system (Hyperspec VNIR-A, Headwall Photonics Inc, 
USA, spectral resolution 3 nm) and a microscope 
(OLYMPUS, magnification 40×) were used to measure the 
MHSI of the samples.  The researchers employed several 
classifiers, including Support Vector Machine with Radial 
Basis Function (SVM-RBF), Least Squares Support 
Vector Machine, k-Nearest Neighbors, and others, which 
the performance was then compared with the MHSI 
system. However, the findings suggest that SVM (RBF) is 
the most effective classifier for identifying microplastic 
and microalgae, with a recall and precision of over 0.86. 
The lower accuracy of the result decreased due to the 
model not being able to detect the smaller size of 
microalgae and the imbalanced data set used while 
training. 

From the review, Support Vector Machine (SVM) is 
one of the most widely used machine learning models in 
microalgae detection and classification due to its ability to 
handle high-dimensional data and nonlinear relationships 
between features. However, it is recommended to 
thoroughly test and compare various models to determine 
the most effective approach for microalgae classification. 
By doing so, researchers can ensure that the selected model 
provides the most accurate and reliable results, and can 
help to advance the field of microalgae detection for 
renewable energy production. SVM has limitations in 
processing a large dataset which will increase the model 
complexity. Modification of the model can also be done to 

further improve the accuracy of the result. One possible 
approach to improve SVM's performance is by optimizing 
the kernel function [44], [49], [50]. The accuracy of results 
can also be tested by combining multiple machine-learning 
techniques. Besides, the clearer image should be used as 
input data for easier feature extraction.  

3.3 Deep Learning for Microalgae Detection and 
Classification 

Even though machine learning and deep learning are a 
subset of AI, deep learning have some differences 
compared to machine learning in term of data 
representation, feature extraction, and model complexity. 
Deep learning is more complex and requires more input 
data for training. Deep learning is able to extract features 
from raw, unstructured data making it more convenient to 
use in several industries. The following section 
summarized several deep learning models proposed and 
used by the researchers to perform the classification and 
detection of microalgae. 

Two Artificial Neural Network (ANN) models were 
developed by P. Otálora et al. to classify two well-known 
species of microalgae, Scenedesmus almeriensis and 
Chlorella vulgari, using feature variables and images as 
inputs. FlowCAM device is used to capture images [51]–
[53]. The study employed the AlexNet architecture, which 
consists of 25 convolutional layers and an input layer size 
of 227x227x3 for color images, and an output layer size of 
two. The training dataset comprised 80% of the images, 
with the remaining 20% being used for validation purposes 
and no testing set to reduce the required training time. 
MATLAB’s “Deep Learning Toolbox” has been used for 
the training and validation of both ANNs models. The 
research discovered that the ANN model using color 
images as input attained higher accuracy levels compare to 
feature variables as input but necessitated additional time 
for training and classification due to the complexity of the 
data and the denser network [53]. Besides, the accuracy of 
the result is also affected by the clustering of unwanted 
particles in the sample.  

Mesut Ersin Sonmez et al. conducted data augmentation 
on microalgae images captured by a Nikon Eclipse TS100 
inverted microscope. These images were classified using 
seven different CNN models including AlexNet, 
ResNet18, MobileNet, ResNet50, GoogleNet, DenseNet, 
and Inceptionv3, with a maximum of five epochs, an initial 
learning rate of 0.001, a 0.1 learning rate drop factor, and 
learning rate drop period of 20. The mini-batch size was 
set at 32, and the Stochastic Gradient Descent (SGDM) 
optimizer was used. Results showed that AlexNet had the 
lowest classification accuracy of 98.81%, while 
Inceptionv3 was among the models with the highest 
accuracy of 99.66%. In the second method, the researchers 
used SVM to improve the classification accuracy of 
AlexNet. The deep features extracted from the AlexNet 
model were classified with SVM using four different 
kernel functions: Gaussian, Linear, Cubic, and Quadratic. 
The result showed that the accuracy of AlexNet, which was 
initially 98.81%, increased to 99.66% [54]. This approach 
requires knowledge or expertise in culturing the 
microalgae sample.   
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Iago Corrêa et al. proposed an eight-layer deep learning 
model consisting of five convolutional and three fully 
connected layers, with the first layer comprising 16 
convolutions of size 7×7 [51]. They aimed to minimize 
image preprocessing steps and maintain the accuracy of 
microalgae classification results. Because of the low 
resolution of the FlowCAM images due to the small size 
of the microalgae samples (1um), 64 x 64-pixel images 
were used to maintain the aspect ratio. Data augmentation 
techniques were used to increase the amount of data 
available for model training, resulting in an approximately 
17% improvement in accuracy. The model achieved a 
classification accuracy of 88.59%, indicating its success.  

Peisheng Qian et al. has introduced a new deep-learning 
approach for detecting and classifying algae using a 
modified version of the Faster R-CNN model [55]. This 
modified framework includes an additional classification 
branch for multi-task learning, where the first branch 
predicts the genus of the algae, the second branch detects 
and localizes the algae, and the third branch predicts the 
class of the algae. To train this framework, a ResNet-50-
based FPN network that was pre-trained on ImageNet was 
used, with a batch size of 32 and a gradient descent 
optimizer with a momentum of 0.9. The initial learning 
rate was set to 0.02, which was reduced by a factor of 10 
at steps 6000 and 7000. Cross-entropy loss function was 
used for algal classification at both genus and class levels. 
The proposed framework achieved a mean Average 
Precision (mAP) of 74.64% and 81.17% for algal detection 
based on genera and classes, respectively. This model is 
unable to detect some microalgae that are transparent and 
overlap each other. 

In addition to the commonly used CNN model, the 
YOLO model is also frequently employed for the 
classification and detection of microalgae. One major 
advantage of the YOLO model is its ability to perform 
high-speed detection while maintaining reasonable 
accuracy. The real-time analysis capability is one of the 
key features of YOLO. Despite having multiple available 
models, YOLO technology is continuously being 
improved to develop the most efficient model for object 
detection. However, the available YOLO model has 
certain limitations when it comes to detecting microalgae 
that are very small in size. Hence. to enhance the accuracy 
of the YOLO model, researchers have implemented 
various modifications such as incorporating machine 
learning or CNN models, as well as adjusting the backbone 
of the YOLO network. Effective image preprocessing 
methods are also crucial for maximizing the model's ability 
to identify relevant features for classification. The 
upcoming section will discuss the research work carried 
out by the researchers and the specific parameters used by 
them for training the model. 

Abdullah et al. used YOLOv3, YOLOv4, and YOLOv5 
to detect and classify harmful algae bloom (HAB) on a 
custom microscopic image dataset [56]. A deep-learning-
based data augmentation technique called DC-GAN, 
which is an advanced version of the GAN model, increases 
the number of images in the dataset. The Adam optimizer 
was used to train YOLOv3 and YOLOv4 on 80% of the 
dataset with 100 epochs and a batch size of 32, while the 

stochastic gradient descent (SGD) optimizer was used to 
train YOLOv5 on the same percentage of the dataset with 
100 epochs and a batch size of 16. The learning rate was 
set to 0.01 for all three models. YOLOv5 shows better 
classification results compared with others YOLO models 
with a mAP score of 90.1%. The model proposed by the 
authors outperformed the regular YOLO model due to the 
use of DC-GAN based generated data for training. 
However, one of the biggest disadvantages in this model is 
the lack of real environmental data.  

Mengying Cao et al. replace the Darknet-53 backbone 
network with a lightweight network called MobileNet in 
order to reduce the model's parameter requirements [57]. 
They also present an improved Spatial Pyramid Pooling 
(SPP) technique for pooling and concatenating multi-scale 
region features, reducing position error during small object 
detection. The Complete Intersection over Union (CIoU) 
algorithm is used to optimize the YOLOv3 model's loss 
function by taking into account the overlap area of the 
bounding box, central point distance, and aspect ratio. 
When the authors compared the improved YOLOv3 to the 
standard YOLOv3, they discovered that the improved 
model achieved an average accuracy of 98.90% and a 
detection efficiency that was 8.59% higher than the 
original model. Besides, it can detect small microalgae 
accurately as compared to other models. 

The YOLOv3 algae image detection model was 
developed using a total of 1,114 microscope-generated 
images of 30 genera of algae by Jungsu Park et al [8]. Their 
study aimed to compare the performance of YOLOv3 with 
different input image types, namely, color and grayscale. 
The algae images were divided into four groups with 5, 10, 
20, and 30 genera for training and testing the model. 
Darknet-53 was used as the primary YOLOv3 network, 
with a batch size of 64 and a learning rate of 0.001. After 
comparing the mAP and precision, the authors concluded 
that grayscale images are suitable for detecting a small 
number of genera, while color images are more appropriate 
for detecting a large number of genera, as they provide 
more useful information for microalgae detection. This 
model may likely encounter classification errors because 
of the presence of overlapping microalgae images, as well 
as the similarities in the morphological structures of 
different microalgae species, particularly in the case of 
small and densely packed microalgae. 

Jesús Salido et al. developed an automated microscope 
that integrates an algorithm for stage and focuses control, 
image acquisition, and diatom detection and classification 
[58]. To detect and classify microalgae, they used a 
combination of YOLO and AlexNet, where YOLO 
perform live detection of microalgae and AlexNet 
classified it. AlexNet was pre-trained with ImageNet data, 
and a learning rate of 0.001 was used, decreasing by a 
factor of 0.1 every eight epochs. The SGD optimizer with 
L2-regularization of 0.004 was selected to avoid 
overfitting. The microalgae identification using YOLO 
achieved a maximum precision of 86%, while microalgae 
classification using AlexNet achieved an accuracy of 
99.51% for the combination of the normalized and original 
datasets. 

Based on the literature review, it has been found that 
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many researchers collect microalgae samples and culture 
them prior to conducting classification and detection of the 
microalgae. Microalgae cultivation requires specialized 
knowledge and expertise as each type of microalgae has its 
own specific living requirements. The culture medium 
used must provide the necessary conditions for the 
microalgae to thrive. Furthermore, it is important to note 
that results obtained from cultured microalgae samples 
may not necessarily reflect the conditions found in their 
natural environment during detection. The presence of 
unwanted impurities or particles may affect the detection 
result. Besides, classification errors will occur due to the 
behavior of some microalgae that have a high potential to 
overlap each other.   

In the context of microalgae classification, it is 
suggested that the use of CNN may be more suitable due 
to its demonstrated ability to achieve high levels of 
accuracy. YOLO is a suitable option for real-time 
microalgae analysis and detection due to its high speed, 
although its accuracy may be less stable compared to other 
models like CNNs. In real-time microalgae monitoring, 
YOLO faced more challenges due to the microalgae 
characteristic and impurities in the sample. The YOLO 
model has limitations in detecting the small-size 

microalgae. 
The utilization of FlowCAM for capturing microalgae 

images can be comparatively costly [59] and may result in 
images with reduced clarity when dealing with smaller 
microalgae sizes. Low-resolution cameras can also result 
in blurry training datasets, further impacting the accuracy 
of the classification model. It is important to note that 
increasing the number of training epochs does not 
necessarily lead to improved classification outcomes, as 
overfitting might be occurred. Additionally, the accuracy 
of the model can be influenced by the size and behavior of 
the microalgae, such as their tendency to cluster together, 
as well as the morphological similarities between some 
microalgae species. Combining machine learning and deep 
learning models can improve the accuracy of the 
classification and identification process. The use of YOLO 
combined with CNN models has also shown promise in  
further enhancing the accuracy of the result.  

Table 1 presents a summary of the author's perspectives 
on the limitations of manual microscopy and its associated 
findings. In contrast, Tables 2 and 3 provide a summary of 
the use of AI technologies for microalgae detection and 
classification, which include machine learning and deep 
learning techniques.

Table 1. Usage of microscopy in microalgae detection and classification with its limitations 

Year Application Microscope model Result Reference 
2022 Harmful Algae Bloom detection - 

 
Able to obtained some unique 
morphological microalgae 
cells accurately using light 
microscope for further 
analysis 

[37], [38] 
 

2021 Quality of phytoplankton to sustain 
the health of seafood 

Binocular microscope 
model- Olympus 
CX21. 
 

[39] 

2019 Isolate and identify the potential 
native microalgae for local 
application 
 

Labomed US [36] 

Limitations: 
1. Manual microscopy requires an expert to identify some specific microalgae. 
2. The accuracy of the result is highly affected by the expertise and experience of the researchers. 
3.  Time-consuming  
4. To obtain a good result, a high-performance light microscope is needed which is costly. 
5. Only suitable to investigate a small number of morphologically different microalgae species. 

Table 2. Machine Learning techniques for microalgae detection and classification with their limitation 

Year Method Result Limitation Reference 
2022 Compare the performance of 

LDA and SVM in microalgae 
classification. 

Non-linear SVM 
achieves higher 
accuracy, 80%. 

The measurement of polarized light 
scattering of individual microalgae 
may not be applicable for each 
condition and time-consuming. 

[47] 

2021 Generalized segmentation 
mechanism (Kirsch + Otsu) 
 
Proposed ISVM model which 
modifies the rbf kernel of SVM 
with IQR 

2% higher 
performance compare 
to the original SVM 
radial. 

The proposed segmentation 
mechanism may not work well for 
images with low contrast or high 
noise levels. 
 

[44] 
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2021 Micro-hyperspectral imaging 
(MHSI) 
 
Compare ML classifier  

SVM RBF achieves 
recall and precision of 
over 0.86. 

Microplastic and microalgae have too 
many shapes and size.  
 
The smaller size of microalgae and 
imbalance data set cause decease in 
accuracy. 
 
Expensive hardware is needed. 
 

[48] 

2020 Introduce transmission 
hyperspectral microscopic 
imager (THMI) 
 
Compare PCA-SVM and peak 
ratio-SVM 

PCA-SVM and peak 
ratio SSVM achieve 
the almost same result 
of 94.4% accuracy. 

Complex hardware.  
 
Only 3 microalgae species are used to 
train the model so the accuracy might 
differ when handling more data. 

[40] 

2014 Feature combination approach 
uses to handle different algae 
shape 
 
Proposed single-resolution edge 
detection for segmenting images 
 
Use the Sequential Minimal 
Optimization (SMO) algorithm 
to train a support vector 

Accuracy of 97.22%. 
 
Able to get clear 
microalgae image 
boundary and 
minimize noise. 
 

Fewer microalgae image dataset is 
used which might affect the accuracy 
of the result. 
 
The paper does not compare the 
proposed method with other existing 
methods for microalgae recognition. 
 

[43] 

Table 3. Limitations of Deep Learning techniques for microalgae detection and classification 

Year Model use Result Limitations Reference 
2022 YOLOs with DC-

GAN  
The mAP score of YOLOv5 is 
the highest, 90.1%. 

Lack of real environment microalgae data 
set. 

[56] 

2022 AlexNet and SVM Improve the classification 
accuracy of AlexNet from 
98.81% to 99.66%. 

Need knowledge in culturing the microalgae 
sample.  
 
Limited microalgae training data.  
 

[54] 

2021 YOLOv3 with SPP 
and CIoU algorithm 

Improved YOLOv3 model 
achieve 98.90% accuracy. 
 
Fast detection speed. 

The performance of the model may vary on 
other datasets 

[57] 

2021 ANN model with 
AlexNet architecture 

ANN model using color 
images as input attained higher 
accuracy levels compare to 
feature variables. 

Longer training time for color image 
 
Clustering of unwanted particles affects the 
accuracy 

[53] 

2021  YOLOv3 Greyscale image is suitable for 
a small number of genera 
whereas the color image is for 
a large number of genera. 

Classification error due to overlap images, 
same morphological structure of 
microalgae, small and crowded microalgae 

[8] 

2020 Modified Faster R-
CNN 

Average mAP of 74.64% and 
81.17% for algal detection 
based on genera and classes. 

Not able to detect transparent algae, 
overlapping algae and algae with almost 
similar structure  
 

[55] 

2020 YOLO and AlexNet YOLO achieved a maximum 
precision of 86%, while 
microalgae classification using 
AlexNet achieved an accuracy 
of 99.51%. 

Complex hardware  
 
Using online datasets for model training 
which sometimes does not reflect a real 
condition 

[58] 
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2017 8-layer deep learning 

model consisting of 
5 convolutional and 
3 fully connected 
layers 

Achieve 88.59 % accuracy 
with fewer image 
preprocessing steps needed. 
 
Fully automatic system  
 
No need for expert  
 

Less resolution input image from FlowCAM [51] 

4. FUTURE PERSPECTIVE 
As a microalgae researcher, it is important to acknowledge 
that there are still a number of challenges associated with 
identifying microalgae. Given the small size of these 
organisms, there is a risk of detection errors arising from 
their behavior under a microscope. Some microalgae 
species may overlap, change color or shape due to 
environmental factors and transparent will lead to 
detection error. While deep learning is the most advanced 
technology available for microalgae detection and 
classification, there is still room for improvement. To 
obtain a deep learning model that is both accurate and 
efficient, researchers can explore the option of generating 
a lighter-weight model. Having a model that can achieve 
high accuracy with limited data and also has a high 
detection speed would be more convenient. Sometimes it 
is almost impossible to obtain a large scale of raw data for 
model training purposes. However, less amount of training 
data will lead to the decrease in accuracy. Thus, achieving 
high classification accuracy with a small amount of data is 
only possible if the training data is both clear and highly 
representative of the problem domain. Additionally, the 
proposed model architecture must be capable of capturing 
relevant microalgae features from the input data during 
training.  

Researchers are advised to generate their own 
microalgae datasets from the cultivation tank or 
microalgae sample to make sure that the training dataset 
reflects the real morphological structure in that particular 
environment. While secondary data may be useful in 
verifying model accuracy, primary data sources are 
typically preferred.  

Image preprocessing is an essential step in analyzing 
images of microalgae. The decision to convert the image 
to greyscale or remain in color is based on the dataset and 
the characteristics of the microalgae being studied. If the 
microalgae are all green in color, a color image may 
introduce noise and affect the accuracy of the detection 
algorithm. Therefore, converting the image to greyscale 
can reduce the likelihood of detection errors and improve 
the accuracy of the algorithm. Greyscale images contain 
only shades of gray, ranging from black to white, and can 
reduce the complexity of the image, making it easier to 
detect and analyze features. On the other hand, color 
images can contain more information, but can also 
introduce unnecessary complexity that can negatively 
impact the analysis.  

Granted that technology can aid in detecting 
microalgae, there is no necessity to rely on a specific 
approach. As a researcher, it is important to consider the 
various technological approaches available for detecting 

microalgae, and to carefully select the most suitable model 
for a given purpose. The choice of model will depend on 
the specific needs of the application, such as whether high 
precision or rapid detection capabilities are required. 
Employing a suitable detection model can significantly 
enhance the effectiveness of identifying the most suitable 
microalgae for energy production purposes.  

5. CONCLUSION 
This paper presents an overview and analysis of recent 
techniques used for detecting and classifying microalgae. 
The literature review identified three common methods for 
microalgae detection and classification, namely manual 
microscopy, machine learning, and deep learning. 
However, manual microscopy techniques are not very 
effective as they require skilled experts and are time-
consuming. The study suggests that SVM is the most 
effective machine learning classification model for 
microalgae classification compared to other algorithms. 
Although deep learning is considered more advanced than 
machine learning and can perform more complex 
classification tasks, it requires more training data. While 
normal CNN models can achieve high classification 
accuracy, they require more computation time. In contrast, 
YOLO is a faster detection model but with lower accuracy. 
It is essential to note that relying solely on manual 
classification methods can lead to classification errors, 
which can be reduced by using automatic classification 
models such as machine learning or deep learning. By 
implementing these models, researchers can improve the 
accuracy and reliability of microalgae detection for 
renewable energy production. 
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