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Abstract: The scheduling genuinely a complex process, aimed at optimizing operational activities in pursuit of one or more 
objectives by leveraging production data which may include previous schedules. The scheduling problem in Flexible 
Manufacturing System (FMS) is commonly categorized as Nondeterministic Polynomial (NP)-hard combinatorial 
optimization problems and it remains as an endure problem to industrial practitioners and researchers. As part of real 
production scheduling, once one task is finished processing on a machine, transportation equipment such as mobile robot 
transports the completed task to the next machine. The problem of scheduling mobile robot in FMS pertains to the task 
allocation process for the robots, considering the transportation costs and the time spent to complete all operations. In recent 
years, Genetic Algorithm (GA) has been a remarkably effective search algorithm for solving a wide range of scheduling 
problems in a manner that achieves near-optimal solutions. This paper presents the metaheuristic techniques, specifically 
genetic algorithm, to address the NP-hard scheduling problem of two identical mobile robots in Job-Shop FMS environment. 
The algorithm is developed with the aim of finding feasible solutions to the integrated problem by minimizing the amount of 
time it takes to finish all tasks, commonly referred to as makespan. The performance of GA is evaluated with some numerical 
experiments which is executed via Matlab software. The scheduling results shows that the developed GA able to obtained the 
near-optimal solution of minimal makespan and converge within a short period of time.   
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1. INTRODUCTION 
The Flexible Manufacturing System (FMS) has been 
prominently recognized in recent years as one of the major 
themes that have promising characteristics such as some 
sort of responsiveness and ability to change more promptly 
and effectively than in the past [1]. In general, the FMS is 
customary to be highly automated production system that 
has a capable of producing a wide variety of parts by 
utilizing the same equipment and control system. An 
optimal utilization and scheduling of the available 
resources and equipment are essential for exploiting the 
automation to the fullest potential. Scheduling is basically 
the allocation of resources, i.e., machines, robots and 
processing units, over the specified time to execute a 
predetermined collection of tasks [2].  

In general, jobs or machines scheduling is generally the 
only topic covered in scheduling literature, i.e., parallel 
machine [3], single machine  [4], [5], and job shop [6]. It 
is typically assumed in conventional machine scheduling 
models that material handling systems are always available 
and ready to move parts at any time should a need arise [7], 
and therefore, no consideration is given to the material 
handling or transportation times in the scheduling process. 

Real-world production environments, however, require the 
transportation of tasks between machines. Mobile robots 
are often implemented and tested as their transport vehicles 
that begins with a few or even just one mobile robot, 
commonly for small to large-sized manufacturing 
facilities.  

 In conjunction with real production scheduling, once 
one task is finished processing on a machine, material 
handling devices such as mobile robot, transports the 
completed task to the next machine. Indeed, any parts or 
tasks in a manufacturing system usually visit distinct 
machines for specific operations, resulting in the demand 
for material handling devices such as mobile robots to 
move and transfer parts between machines [8]. Thereby, 
scheduling mobile robot should be regarded as equally 
important as scheduling the machines in FMS and should 
be taken into account concurrently for the actual evaluation 
of cycle time. Manufacturing systems with integrated 
mobile robots serving as vehicles for transportations can 
significantly profit from their optimal scheduling. The 
scheduling genuinely a complex process, aimed at 
optimizing operational activities in pursuit of one or more 
objectives by leveraging production data which may 
include previous schedules.  
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In FMS, the problem of scheduling in is commonly 
categorized as NP-hard combinatorial optimization 
problems and it remains as an endure problem to industrial 
practitioners and researchers. These facts lead to the 
numerous researchers have been analysed the mobile robot 
integration and scheduling within the manufacturing 
industry. There are two NP-hard problems involved in this 
problem. Those are job-shop scheduling and vehicle 
scheduling problems, similarly to the problem of pick-up 
and delivery from one location to another. There is no 
denying the complexities in solving the related problem 
and this is the primary reason why most research 
endeavours on this area have focused on 
heuristic/metaheuristic approaches for solving the problem 
efficiently. This is due to the fact that solving NP-hard 
problems often requires exponential computation time, and 
identifying whether the solution has reached its real 
optimality is difficult [9],[10]. In the case of incomplete or 
imperfect information is present and computation capacity 
is limited, the new heuristic may execute a satisfactory 
result to an optimization problem since it is more practical 
in finding a nearly ideal and reasonable solution within a 
marginal period of time [11].  

 There are related literatures on several techniques to 
solve the mobile robot scheduling in FMS environment 
using metaheuristics approaches including genetic 
algorithm [12], [13], [14], hybrid metaheuristic [15], 
swarm intelligence-based optimization algorithms [16], 
[17] and artificial intelligence based approaches [18], [19]. 
Among these methods, genetic algorithm (GA) is a 
remarkably applicable search algorithm that exploits the 
past performance of former solutions by impersonating the 
nature of the evolutionary process, has been employed for 
developing a heuristic to permute the simultaneous jobs – 
mobile robot scheduling problems towards finding near-
optimal solutions such as reported in [8], [20], [21], [22]. 
This is primarily attributed to its specialization in focusing 
on a specific area of solution instead of searching across 
the entire solution space, resulting in a nearly optimal 
solution being attainable much faster [11].  

This article presents the application of GA to solve the 
integrated scheduling problem in FMS environment. The 
issue is featured with scheduling a job-shop and two 
identical mobile robots in a given FMS environment where 
such problems fall under the category of NP-hard 
combinational problems. A criterion of performance is the 
reduction of the makespan to a minimum. In essence, the 
goal of this research is to determine the optimal schedule 
of the order of tasks’ execution to be assigned to dual 
mobile robot for transportation of jobs in FMS 
environment.   

2. METHODOLOGY  

2.1 Problem Formulation 
In general, the FMS encompasses diverse tasks (or jobs) 
with multiple operations being performed on a number of 
machines and mobile robots. There are basically three 
functional areas in the FMS design layout: four different 
machines (or workstations), a loading/unloading (L/U) 
station and a charging station, with two identical mobile 

robots to perform related transportation tasks. 
 Each job should be processed by machines which may 

require several machines or one machine in each of the 
stages. Consequently, jobs may be processed on one of the 
machines at each stage of production and may visit one or 
more stages of production throughout the course of the 
process, resulting in different routes of the process for each 
job. Once the job is started, each operation must be 
completed without interruption, i.e., no preemption. The 
L/U station serves as the hub for distributing and collecting 
components. Transportation tasks between the machines 
are accomplished by mobile robots. At any given time, 
each robot is limited to carry a maximum of one job. At the 
start of the production process, these robots are always 
stationed at the L/U machine. Each mobile robot can 
execute a range of actions concurrently, including an 
"empty trip" when the robot travels to a machine for 
necessary job pickup after completing the machining of the 
current operation. Additionally, there's the "loaded trip" by 
which the robot transports the job to the machine where the 
next operation is scheduled to be executed. 

In the context of a given FMS environment, where 
machines are fixed according to standard FMS layouts, the 
objective of the outlined scheduling problem is to achieve 
an efficient job processing and transportation costs of 
mobile robots. This is done with the overarching goal of 
minimizing the makespan i.e., the total time needed for the 
completion of all jobs. The layouts of machine locations 
which shows the travelling times of mobile robots between 
the machines adopted from [23], [24], are deployed for the 
computer experiments in this paper. Table 1 presents the 
machine-to-machine distances or mobile robot travel time 
matrix from machine-to-machine while the demonstration 
of machine locations and mobile robot flow paths in FMS 
layout can refer to Fig. 1. As well, the problem instance 
that comprises of 5 jobs, 13 operations and 4 machines is 
generated as shown in Table 2 for the use of illustrating the 
application of GA.  

Table 1. Travel time matrix 

 

Figure 1. FMS Layout 

             To 
From 

L/U M1 M2 M3 M4 

L/U 0 4 6 8 6 

M1 6 0 2 4 2 

M2 8 12 0 2 4 

M3 6 10 12 0 2 

M4 4 8 10 12 0 
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2.2 Fitness Function 
In order to schedule job-shops (or machines) and mobile 
robots, a mathematical model is necessary. Here, the 
optimization model for the related objective (fitness) 
functions is mathematically demonstrated as follows: 
Fitness Function, 

𝑓𝑓 =  𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚    (1) 

The objective is to determine a feasible schedule that 
minimizes the makespan, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, which is denoted as the 
maximum value among the completion times of each job, 
𝐶𝐶𝑖𝑖, for 𝑚𝑚 is ranges from 1 to 𝑚𝑚 where 𝑚𝑚 represents the 
number of scheduled jobs. This can be described as 
follows,  

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  =  Max (𝐶𝐶𝑖𝑖 , … .𝐶𝐶𝑛𝑛)    (2) 

The makespan is computed based on the total operation 
completion time which is defined by the following 
equations, 
Operation completion time,  

𝑇𝑇𝑖𝑖𝑖𝑖  =  𝑡𝑡𝑚𝑚𝑚𝑚′  +  𝑡𝑡’𝑚𝑚𝑚𝑚’  (3) 

𝑂𝑂𝑖𝑖𝑖𝑖  =  𝑇𝑇𝑖𝑖𝑖𝑖  +  𝑃𝑃𝑖𝑖𝑖𝑖  (4) 

Total completion time, 

𝐶𝐶𝑖𝑖  =  ∑𝑂𝑂𝑖𝑖𝑖𝑖    (5) 

where,  𝑚𝑚 = job/task 
         𝑗𝑗 = operation 
      𝑇𝑇𝑖𝑖𝑖𝑖  = mobile robot’s transportation/traveling time  
      𝑃𝑃𝑖𝑖𝑖𝑖  = processing times 

Due to the fact that scheduling is a combinatorial problem, 
it is necessary to choose a method that is appropriate to 
optimize the problem.  

In this article, the problem under study is focused on the 
flexible manufacturing environment, wherein the material 
transport system relies on a platform of mobile robots. The 
integrated scheduling problem bears a significant 
resemblance to the problem of pick-up and drop-off jobs 
within a given environment and, certainly, it has been 
classified as NP-hard problems, for which a polynomial-
time solution is highly unlikely expected to exist [25]. 
Therefore, this research attempts to employ genetic 

algorithm for optimizing the feasible schedule with 
minimal makespan. The algorithm’s performance will be 
examined based on travelling time matrix and the reference 
job dataset as presented in Table 1 and 2, respectively.    

2.3 Genetic Algorithm 
The application of GA to the field of computer science was 
formerly invented by John Holland in the 1970s [11]. It 
requires only pertinent encoding scheme and a fitness 
(objective) function that measures the quality of each 
encoded individual, which is called a chromosome. This 
algorithm comprises three distinct phases within its search 
mechanism: initiation of appropriate chromosome (or 
solution) representations, evaluation of fitness, and genetic 
operators i.e., selection, crossover, and mutation. Fig. 2 
illustrates the basic GA procedures that were applied in 
this study.  

Figure 2. Procedures of designing GA 

Ref. Data Ref. No. 

Jobs/Tasks 1 2 3 4 5 

Operations 1 2 3 1 2 3 1 2 3 1 2 1 2 

Machines 1 2 4 1 3 2 3 4 1 4 2 3 1 

Processing 
Times 

8 16 12 20 10 18 12 8 15 14 18 10 15 

Job No. 
Representations 

1 2 3 4 5 6 7 8 9 10 11 12 13 

              

Yes 

Start 

Generate initial population of job-operation 
at random sequences;  

�𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟 =  �𝑂𝑂𝑂𝑂𝑟𝑟𝑟𝑟𝑂𝑂𝑡𝑡𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟 

Evaluate fitness value (mobile robot scheduling 
algorithm) 

Select the best chromosomes for the next generation  

Max. termination 
= 100?  

Best solution 

Generate offspring by crossover and mutation 

No 

Table 2. Job reference for an example FMS scheduling 
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The related steps of the GA in solving the described 
scheduling problem can be summarized as follows, 
1. Generate an initial population of chromosomes that 

signifies the operation sequence. Each operation 
represents the processing of a particular task on a 
specific machine and is expressed by the job 
representation integer number, as refer to Table 2. The 
individual chromosome’s length corresponds to the 
cumulative count of operations across all jobs.  

2. Chromosomes are evaluated for their fitness (or 
objective) value of makespan (Eq. 1 – 4), aligned with 
the operation sequence and mobile robot assignment. 

3. Select individuals with comparatively higher fitness 
from the current population. Those high-fit individuals 
will have a higher likelihood of being chosen to take 
part in the reproduction process as parent 
chromosomes. 

4. In crossover operation, copy and exchange the selected 
job-operation numbers contained in parent 
chromosomes to produce the new offspring. 

5. Fill in the remaining positions of the offspring by the 
unselected job-operations numbers based on their order 
in parent chromosomes.  

6. After crossover, some offspring undergo operation 
shift mutation by inverting the substring between two 
randomly selected positions within a chromosome. 

7. Repeat steps 4 – 7 until the order of crossover rate (Pc) 
or mutation rate (Pm) are completed. 

8. Substitute the previous population of chromosomes 
with the newly generated one. 

9. Sort the combined parent and child chromosomes 
based on fitness function cost and the best solution is 
returned in the current population. 

10. Proceed back to step 2 and iterate until the termination 
criteria is satisfied (i.e., the number of generations 
reach its maximum, Gmax). 
 
This developed GA coding structure utilizes the 

operations-based coding which is comparable to be 
utilized in the flexible job shop scheduling [26],[27], with 
no information of transportation included in the 
chromosome representation of GA except in the fitness 
evaluation. Furthermore, the implementation of GA in this 
study has employed the modified crossover method called 
as POX (precedence operation crossover) strategy in order 
to complete the crossover process of operation-based 
sequence strings. The typical process of this strategy can 
be exemplified as in the Figure 3.  

 

 
 
 
 
 
 
 
 
 

 
From Figure 3, the POX-based process is constructed 

to guarantee that precedence constraints are never violated. 
Basically, a job (or task) is randomly chosen from each 
parent chromosome, denotes as P1 and P2. The matched 
operations are then marked and directly copied into the 
corresponding positions of their respective offspring, 
denoted as O1 and O2. For instance, let’s consider task 
number 3 being chosen, which encompasses a total of 3 
operation numbers expressed by job numbers 8, 9, and 10. 
This can be illustrated as shown in Figure 4 below.  

 
Figure 4. A feasible chromosome representation structure 

In the case of direct copying, the positions of each 
respective operation are not altered during the crossover 
process, so that the precedence relationship will remain 
intact. Subsequently, the vacant positions of the offspring 
1 (O1) is filled by the number of unselected jobs based on 
their appearance order in parent 2 (P2), and vice versa. 

Noted that, jobs are scheduled according to the 
operation sequence derived by GA. Based on the sequence, 
each of mobile robot will be assigned to handle the 
transportation tasks using the heuristic within the fitness 
evaluation module. In brief, a scheduling list on each 
chromosome contains a sequence of locations which 
mobile robots can refer to when claiming their task. First 
scheduled operations in the chromosome sequence will 
find the earliest available mobile robot to reach the 
machine or L/U station for picking up the job, and then 
moves to the subsequent machine as determined by the 
job's operation sequence. The assignment of mobile robots 
is formulated based on available heuristics i.e., the 
earliest/nearest rule [8],[28]. It consistently checks the 
status of the job and mobile robot, calculates the 
availability of the robot at the necessary demand point, and 
then allocates tasks accordingly. 

P1 5 1 8 2 9 3 4 6 7 10  P2 8 5 6 1 7 2 3 9 4 10 

   
 

 
 

 
 

 
  

 
 

 
          

        
 

    
 

    
 

 
 

 
 

O1 5 6 8 1 9 7 2 3 4 10  O2 8 5 1 2 3 4 6 9 7 10 

5 1 8 2 9 3 4 6 7 10
 

(3,1) (3,3) (3,2) 

G (1) G (2) G (3) G (n) G (n-1) 

G (n) 

The task numbers 
The operation numbers Gene numbers 

Max. number of 
genes = total number 
of operations 

………………………………
 

(i, j) 

Figure 3. The basic procedure of job-based POX strategy in crossover process 
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3. COMPUTATIONAL RESULTS 
In this section, the performance results of the developed 
GA in solving the studied problem are presented. 
Considering the integrated scheduling algorithm in FMS 
environment, the developed algorithm aimed to search for 
the best solution on the minimal makespan. The 
corresponding layout and reference dataset as in Table 1 
and 2, were used in the experiment to examine the 
searching performances of the GA. This algorithm was 
programmed and run with MATLAB 2022b software. The 
best selected on parameters used in computer experimental 
calculations for the genetic algorithm are described in 
Table 3. 
 

Table 2. Parameter used in computer experiments 

 
In corresponds to FMS layout (Fig. 1), the relationship 

curves between the best (minimum), worst (maximum) and 
mean of individuals of the GA is illustrated in Figure 4. 
The curve of the best solution shows the convergence at a 
faster rate. The developed algorithm capable of finding the 
minimal makespan with the best value of 86 and the 
computation time in this case was merely a few seconds. 
In view of the gap between the curves of maximum and 
minimum values, there appears to be substantial 
exploration activity taking place in search of the best 
solutions. 

The complete scheduling results obtained from the 
optimization are presented in Table 4, by which the 
processing sequence of operations is determined and each 
of mobile robots are assigned to transport the jobs. In 

addition, Figure 5 graphically depicts the best solution of 
the respective problem that is obtained from the optimized 
scheduling results table. This Gantt chart representation is 
prepared for a clear understanding of the developed 
schedule based on the start and completion time of 
processing operations and processing times on machines as 
well as the schedules of mobile robots. Note that, the time 
intervals of each mobile robot (MR) to complete the 
transportation of its assigned jobs/operations to the 
destination machines, comprising both the empty trip 
(unloading) and loaded trip phases, are visually 
represented using dark and light gray colored bars. 

Table 3. The scheduling results 

 

Parameter Value 

Population size 100 

Maximum genetic generation 100 

Crossover probability 0.4 

Mutation probability 0.08 

 Order sequences Makespan 

Operation 
sequence 

 
1 – 10 – 4 – 7 – 12 – 2 – 8 
– 5 – 11 – 9 – 13 – 6 – 3 

86 

MR Assignment 

 
1 – 2 – 1 – 2 – 2 – 1 – 2 – 2 
– 1 – 2 – 2 – 1 – 1 
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Figure 4.  Performance of the developed GA 
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Gantt Chart of Integrated MR Scheduling in Flexible Job-Shop using Genetic Algorithm 
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              Mobile Robot 1 (Unloaded Trip)

              Mobile Robot 2 (Loaded Trip)
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Figure 5.  The Gantt Chart of the integrated scheduling results 
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4. CONCLUSION 
In this paper, the integrated scheduling problem of mobile 
robots and job operations within the context of an FMS 
environment was addressed. It holds significance to 
establish the sequence in which job operations should be 
processed on specific machines and transported by mobile 
robots in order to acquire the tasks completion in the 
shortest possible time. A metaheuristic approach, genetic 
algorithm, was developed to search the best solutions for 
the studied problem with a single objective: minimizing 
the time necessary to finish all assigned tasks (or 
makespan) to be selected as performance criterion in the 
optimization. The numerical experiment is conducted 
based on the commonly used job dataset and FMS layout. 
The generated results demonstrated the effectiveness of the 
developed algorithm that is capable of finding the best 
solution at a faster convergence speed. For further 
research, the developed algorithm can be evaluated in 
context with other competing approaches and a 
comparative analysis of the obtained solutions could be 
performed for the purpose of performance evaluation in 
solving the specified problem.  
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