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Abstract: Digital twins have recently garnered attention as digital solutions in "Energy 4.0" that will reshape the future of the 

power generation industry toward the digitalization era. It is supported by the rapid advancement of data connectivity and 

computational power that intensifies the potential of the digital twin approach in addressing the energy trilemma. Despite its 

popularity, the preliminary analysis revealed a lack of publications discussing the implementation of digital twins in the power 

generation industry. The researcher may find the difficulties and face the issues that prevent them from exploring this study 

area. Therefore, this article will perform a literature review of the selected publications to analyze the challenges and enablers 

of the digital twin implementation in power plants. The selection of articles from multiple databases is refined based on 

keywords search, publication time frame, and inclusion criteria. The study found that the challenges can be divided into nine 

categories, and eight enablers have been identified to address the issues that arise in digital twin applications. The findings 

contribute to the body of knowledge on digital twin applications by proposing the operational ecosystem framework to illustrate 

the interaction between enablers and challenges. 
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1. INTRODUCTION 

The rapid advancement of technology in the era of the 4IR 

has led to significant improvements in data connectivity 

and computational power. The Internet of Things (IoT) 

technology revolution has influenced the emergence of big 

data and cloud computing, allowing for advanced 

monitoring and performance insight. IoT technology 

benefited plant personnel in the power plant context by 

increasing data collection and critical parameters 

unavailable in distributed control systems (DCS). These 

factors will intensify the potential of the digital twin 

approach to become a new technology to embrace. 

Adopting the digital twin approach as digital solutions will 

allow the cutting-edge platform to manage the power plant 

asset throughout its life cycle, aiming to be more 

sustainable, resilient, and efficient. 

A digital transformation is vital in the energy sector to 

reshape the future of electricity. It is driven by the Energy 

4.0 revolution in powering the new electric world toward 

digitalization. This ecosystem utilizes extensive artificial 

intelligence (AI) and big data to assist decision-making, 

improve energy efficiency, reduce emissions, and mitigate 

climate impact. This initiative should be aligned with the 

energy trilemma to address the main issues in global 

challenges: energy security, equity, and environmental 

sustainability. According to a preliminary study, the 

"digital twin" concept has been accepted across various 

industries: manufacturing [1 ; 2], aviation [3; 4 ; 5], oil and 

gas [6], construction [7], safety management [8] and 

healthcare [9]. 

However, this study found a lack of rigorous research in 

a comprehensive review of the prior literature due to the 

limited number of publications discussing the application 

of digital twins in power plant contexts. In addition, there 

is no discussion on the digital twin application framework 

for the power generation industry. Consequently, the 

researcher may find difficulties and face certain issues that 

prevent them from exploring this study area. Therefore, 

this article will analyze the publication trends from 2016 

to 2021 in order examine the challenges and enablers of 

digital twin applications in power plants. Later, the 

relationship between these elements will be discussed 

according to the proposed conceptual framework. The 

findings of this study can be used as a reference to expand 

a study in this area.  

This study is driven by the two (2) research questions as 

follows: 

 

RQ1: What are the challenges and enablers of the 

digital twin implementation in the power 

generation industry from 2016 to 2021? 

RQ2: What are the relationships between the enablers 

and challenges in implementing digital twins in 

the power generation industry? 
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2. DIGITAL TWIN SURVEY 

The recent emergence and integration of digital twin 

technology in the engineering and energy domains has 

sparked widespread interest, as evidenced by an extensive 

body of review literature developed over the past five years 

period of 2016-2021. An optimistic outlook on the impact 

of this technology is well-founded, considering the 

substantial research efforts exploring its applications and 

theoretical foundations. A thorough literature search across 

the databases SCOPUS and Science Direct yielded 386 

review articles, which were systematically analyzed into a 

core group of 135 papers for detailed analysis. These 

reviews were systematically organized and presented in 

Table 1 to demonstrate collective scholarly diligence. It 

provides a comprehensive view of current digital twin 

research, with notable emphasis on the manufacturing and 

construction sectors. 

According to this finding, digital twin technology has 

revolutionized the manufacturing and construction sectors 

by providing an innovative approach to system 

optimization and problem-solving. This technology 

provides virtual replicas of physical assets, processes, and 

systems, allowing for real-time monitoring and simulation. 

In the manufacturing sector, digital twins contribute 

significantly to smart manufacturing by enabling 

predictive maintenance, reducing downtime, and 

improving the overall efficiency of production lines. 

Meanwhile, in the construction industry, digital twins work 

seamlessly with Building Information Modelling (BIM) to 

provide detailed insights into the lifecycle of structures 

from design to operation. This will allow for more effective 

project planning, rapid prototyping, and enhanced 

collaboration among stakeholders. Through the integration 

of digital twins, both industries can analyze performance 

data, optimize designs, and make accurate decisions that 

lead to significant advancements in innovation. 

Furthermore, this review also identifies significant 

research attention in areas such as maintenance, smart 

cities, and the emerging electric vehicle industry, implying 

a forward-thinking strategy for integrating digital twins 

into urban development and sustainable transportation. 

Despite the on-the-ground constraints and the need for 

cross-disciplinary collaboration, the academic has 

conducted considerable research on digital twins, from 

conceptual frameworks to practical implementations.  

The enormous scholarly attention to digital twin 

research reflects the expected paradigm shift brought about 

by these technologies, which could enable groundbreaking 

future investigations that enhance efficiency and 

productivity across various industries. The positive 

academic discourse linked throughout the reviews is not 

only a testament to current achievement in digital twin 

technology but also a reflection of the direction these 

sectors are embracing. The publication trend indicates an 

emerging phase in which the virtual and physical worlds 

converge, promising innovative achievements that have 

the potential to transform the engineering and energy 

systems landscape. 

Table 1. Digital twin review articles across industries 

No. Industry Focus Citation 

1 General Maintenance [10] [11] [12] [13] 
Framework [14] 

Mixed reality [15] 

Safety [16] [17] 

2 Construction Conceptual [18] [19] [20] 
Application perspective [5] [21] [22] [23] [22] 

Building information modelling (BIM) [24] [5] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] 

[35] [27] [36] [37] [38] [39] [40] 
Building energy simulation (BES) [41]  

Smart cities [42] [43] [44] 

Safety [45] 
Cyber-physical systems (CPS) [21]  

Mixed reality [19] 
Delay analysis [46] 

Smart construction [47] 

Smart monitoring [48] 
Sustainable Design [49] 

3 Manufacturing Application perspective [50] [51] 

Smart manufacturing [52] [53] [54] [55] [56] [57] [58] [56] [59] [60] [61] 

Cyber-physical systems (CPS) [62]  
Cyber security  [63] 

Big Data [64] 

Shop floor [65] 
Maintenance [66] 

Product engineering [67] 

Non-destructive test (NDT) [68] 
Sustainability [69] 

Energy efficiency [70]  

Industrial robot [71] 
Remanufacturing [72] [73]  

Welding [74]  

Metallized film capacitor [75] 

4 Academic Conceptual  [76] [77] [78] [79] [80] [81] [82] 

Application perspective [83] [84][77] [85] [86] [87] [88] [89] 

Centrifugal valving [90] 
Autonomous management [91] 

Optical and wireless network [92]  
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Educational system [93] 
Augmented reality [94] 

Computing initiative [95]  

Predictive maintenance [96] 

5 Power Generation Carbon capture [97] 

 Power system [98] 

 Hydrogen [99] 
 Energy services [100] 

 Wind turbine [101]  

 Smart battery management [102] 
 Turbomachinery life cycle [103] 

 Sustainability [104] 

6 Oil and Gas Application perspective [6] [105] 

  Air separation units (ASU) [106] 
  Virtual flow metering [107] 

7 Transportation Shipping data modelling [108] 

Internal transport systems [109] 

8 Automotive Smart vehicle [110]  
Electric vehicle [111] [112] [113] 

9 Software Platform [114] 

  Autonomous management [115] [115] 

10 Agriculture Augmented reality [116] 
  Smart farm [117] 

11 Supply Chain Management [118]  

12 Sports Physical activities [119] 

13 Water Smart water grid [120] 

14 Mining IoT [121] 

15 Chemical Chemical process [122] 

16 Biopharma Application perspective [123] 

17 Biomanufacturing Mammalian cell culture [124] 

18 Healthcare Application perspective [44] 

Table 2 summarizes the review study on digital twins 

in the power generation industry and identifies a 

significant gap: To date, no reviews have been published 

that specifically address power plant applications. This 

finding reveals a significant gap in collective academic 

understanding, encompassing both practical knowledge 

and methodological approaches in this field. In addition, 

the need for expanding knowledge in this area is 

highlighted by the growing urgency for industries to meet 

the goals set by the Conference of the Parties (COP) and 

adhere to environmental, social, and governance (ESG) 

standards, all within the larger framework of dealing with 

climate change. The researcher should perceive this gap as 

an opportunity to make a valuable contribution of new 

knowledge and insights, rather than as a setback. The 

study's findings have the potential to drive academic 

advancement and foster innovative approaches in power 

generation, motivating the researcher to implement 

significant changes in the industry. 

Therefore, it is recommended that forthcoming studies 

lay the foundational work for an application taxonomy of 

digital twins within the context of power plants in 

addressing the emerging needs. This would encompass 

various perspectives, conceptual frameworks, potential 

challenges, and enablers that facilitate the seamless 

adoption of these advanced systems. The development of 

a roadmap for the evolution of digital twins in power plants 

is imperative, with a particular focus on elucidating 

publishing trends that will illuminate the path forward to 

unlock the full potential of digital twins in the power 

generation sector, as well as future research opportunities. 

As a result, the landscape of digital twin technology in the 

sector of power generation is ready for significant 

exploration and advancement. However, this study 

required the collaborative efforts of domain experts in the 

validation of relevant articles covering a wide range of 

power plant components and processes. Such 

interdisciplinary collaboration has the potential to 

significantly contribute to the field, resulting in increased 

publication trends and fostering a robust discourse about 

digital twin technologies in the power generation sector. 

With this collaborative spirit, the future research landscape 

appears substantial and promising, ready to support the 

transformative initiatives required for a sustainable and 

resilient energy future. 

Table 2. Digital twin review articles across industries 

No Focus Description Method Citation 

1 Carbon Capture Carbon dioxide 
transportation in 

carbon capture and 

storage system 

SLR [97] 

2 Power System Power System Survey [98] 

3 Hydrogen Hydrogen-based 

systems for 

integration of 
renewable energy 

LR [99] 

4 Energy Services Energy services that 

are based on 

intelligent 
recommendation 

systems 

LR [100] 

5 Wind Turbine Reliability analysis 
of offshore wind 

turbine support 

structure 

LR [101] 

6 Smart Battery 

Management 

Smart Battery 

Management 

Systems 

LR [102] 

7 Turbomachinery Life cycle 
perspective 

LR [103] 

8 Sustainability Sustainable energy 

industry for Solar 
and Hydrogen 

LR [104] 
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3. METHODOLOGY 

This review article adopted a combination of a systematic 

review approach and thematic analysis to identify the 

application themes and challenges in developing the digital 

twin for a power plant. Besides that, feedback from domain 

experts is critical for validating research boundaries and 

clarifying the scope of the study. This feedback can help 

identify potential biases, limitations, and weaknesses in the 

research design, data analysis, and results. Managing the 

article data can be divided into three (3) main processes: 

systematic review, data crunching, and metadata analysis. 

It consists of data collection and analysis to evaluate the 

articles focusing on the power generation industry. 

Meanwhile, the Mendeley databases and ATLAS ti 

software are used as tools for data crunching and metadata 

analysis. Figure 1 depicts the flow of the filtration process 

for the literature review based on inclusion and exclusion 

criteria. The selection process of literature articles was 

performed according to several selection criteria, as 

follows: 1) publication from 2016 - 2021, 2) Have at least 

keyword(s) Digital Twin, and 3) Focus on power plants 

operation and maintenance. 

Systematic review:  The first stage is to conduct a 

systematic review of research articles by identifying the 

current state of academic insight on the application of 

digital twins in power plants. Published articles were 

extracted using "Digital Twin" and "Power Plant" 

keywords from the database. If the keyword used in this 

search only uses "Digital Twin," the articles' results will be 

a few thousand. However, after focusing the search strings 

on power plant applications, the results show a significant 

drop and more focus, thus proving that the subject is still 

new. The literature search was performed in the SCOPUS, 

Science Direct, and Mendeley databases. The search 

results came out with 40 articles from (SCOPUS), 140 

articles from (Science Direct), and 14 articles from 

(Mendeley).  

Data crunching: Next, the articles were uploaded to 

Mendeley for data crunching. The data crunching involves 

removing duplicate articles, updating the authors, and 

ensuring the metadata is correct. Domain expert feedback 

is required to validate the scope of the study, which focuses 

on power plant operation or maintenance. As a result, 169 

articles were excluded due to their premature results and 

anecdotes or irrelevant to digital twin applications in 

power plants. Some of the articles were also incomplete, or 

the full articles were not accessible, or they had broken 

links or overlapped metadata. Hence, the total number of 

articles to be reviewed thematically is 25. 

Metadata analysis: Finally, the metadata for all 25 

articles were exported from Mendeley to ATLAS.ti as 

primary documents for literature mapping. Several 

groupings were automatically initiated in the code group 

based on the metadata established in Mendeley. Several 

criteria for classification were established from the 

document list, including the article author, year, country, 

objective, plant types, focus area, method, software, 

category, themes, and challenges. Then, the articles were 

analyzed according to the year they were published and the 

discussion pattern. The total number of articles finalized 

into final documents and coded in ATLAS.ti is 25. Later, 

the codes were grouped into several criteria to construct 

the literature review matrix table as a summary.

 

Figure 1. Literature review process flow
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4. RESULTS AND DISCUSSION 

The study's findings were examined from distinct 

viewpoints to validate the right direction to pave the future 

study. The details of these findings were organized 

according to twelve elements, as depicted in Appendix A: 

Literature review matrix analysis. The global trends of 

digital twin applications in power plants are presented in 

statistical form to visualize the recent direction of trends. 

4.1 Word Cloud 

The most prevalent words in this research area were 

discovered through keyword co-occurrence analysis. 

Figure 2 depicts a word cloud generated from the 25 

documents that captured the top four (4) terms 'System' 

which has been mentioned 3472 times, followed by 'model' 

was mentioned 3421 times. The presence of the words 

"System" and "Model" in the word cloud indicates the high 

frequency of the articles. In contrast, 'process' and 

'maintenance' were mentioned 2158 and 1755 times. 

However, this analysis shows that 'operation' and 'real-

time' words are not the top word cloud as the most popular 

topic. It is indicated that most researchers focus on the 

maintenance level rather than the operational level by 

using non-real-time data to validate the hypothesis. Thus, 

this absence can be considered a gap for future study 

exploration. 

 

Figure 2. Word cloud generated from literature review 

articles. 

4.2 Publication Statistic 

Figure 3 illustrates the trend of articles throughout the six 

(6) years of publication in the databases. The trend of 

publications has increased significantly over the years. 

There has been a significant surge in publications from 

only one published in 2017 to 12 published in 2020 and 

still counting for 2021. The primary reason for this surge 

is driven by technological advancements in the recent 4IR 

era in data processing, storage, and transmission. Even 

though the trend is growing, no review paper discusses the 

integration and mapping of this strategy for the future. 

 

Figure 3. Articles trending according to the year of 

publication. 

4.3 Application Themes 

Figure 4 shows the pattern analyzed of themes established 

from the selected publications: Analytical solution (7), 

Engineering (11), Case study (9), and Training (1). The 

main themes are not independent but somewhat overlap 

between articles presented in this review, and it is common 

for some articles to adopt several themes and vice versa. 

The following section will discuss the theme to formulate 

the conclusion and recommendations for future studies. 

 

Figure 4. The theme according to publication year 

4.4 Geographical Dispersal 

The digital twin applications in power plants were more 

prevalent in developed countries such as Russia and China. 

Table 3 indicates that Russia led the digital twin research 

primarily on engineering and case study applications. 

Besides that, digital twin publications are also reported 

from other countries, such as Germany, the United 

Kingdom, France, Iran, Malaysia, Poland, Portugal, the 

Republic of Korea, Singapore, South Africa, Tajikistan, 

and the UAE. This finding demonstrates that developed 

countries are at the leading edge of this research area due 

to established infrastructure and data availability. Another 

significant factor affecting the low number of published 

study articles is the limited access to plant data due to 

confidentiality and cybersecurity policies. 
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Table 3. The distribution of articles according to country 

and year 
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 Germany - - - 1 - 1 2 

 UK - - - 1 1 - 2 

 France - - - - 1 - 1 

 Iran - - - - 1 - 1 

 Malaysia - - - - 1 - 1 

 Poland - - - 1 - - 1 

 Portugal - - - - 1 - 1 

 Republic of 

Korea 

- - - - 1 - 1 

Singapore - - - 1 - - 1 

 South 

Africa 

- - - - 1 - 1 

Tajikistan - - - 1 - - 1 

 UAE - - - 1 - - 1 

 

4.5 Development Analysis 

This section examines global trends in developing digital 

twin applications for power plants. Digital twins are virtual 

replicas of physical assets, systems, or processes that allow 

simulation and analysis of their behavior and performance 

in a virtual environment. The classification of the 

development approach is divided into three main sections: 

method, software, and target. Figure 5 shows the 

information mapping to understand the different 

approaches, tools, and applications in developing digital 

twin technology. 

 

Figure 5. Digital twin development approach and 

software 

The method section refers to the different approaches or 

techniques to develop digital twins. In this study, there are 

five approaches identified for developing digital twins: 

hybrid model, machine learning model, physical model, 

geometry model, and mathematical model. The following 

is the overview of five approaches identified in this study: 

a. Hybrid model: This approach combines different 

modeling techniques, such as physical and 

mathematical models or data-driven and physical 

models, to create a more comprehensive digital twin. 

b. Machine learning model: This approach uses 

machine learning algorithms to analyze data from the 

physical system and create a digital twin that can 

predict the system's behavior and performance. 

c. Physical model: This approach involves creating a 

digital twin that directly replicates the physical asset, 

system, or process using CAD (computer-aided 

design) software or other modeling tools. 

d. Geometry model: This approach creates a simplified 

version of the physical system that focuses on the 

system's geometry, such as the shape, size, and 

position of the components. 

e. Mathematical model: This approach uses 

mathematical equations and models to represent the 

behavior and performance of the physical system in a 

digital twin. 

Next, the software section refers to the tools and 

technologies used to develop digital twins, such as 

modeling software, simulation tools, and data analytics 

platforms. The choices of software or tools used will 

depend on the development approach, target application, 

and other factors. A brief description of each software and 

tool is shown in Table 4. 

Table 4. List of tools and description 

No Tools Description 

1 MATLAB A numerical computing 

environment and programming 

language can be used for data 

analysis, visualization, and 

modeling. 

2 AMesim Simulation software can be used 

to create models of physical 

systems and components. 

3 Keras A deep learning framework that 

can be used to develop machine 

learning models for digital twins. 

4 C# A programming language that can 

be used to develop software 

applications for digital twins. 

5 PowerEye A software tool that can be used to 

develop digital twins of power 

systems and energy assets, 

including wind turbines and solar 

farms. 

6 Modelica An object-oriented language for 

physical systems modeling that 

can be used to create digital twins. 
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7 PTB A software tool for modeling and 

simulation that can be used in 

industrial processes and systems. 

8 Thermoflow A software tool for designing and 

simulating that can be used in 

energy systems such as power 

plants, refrigeration systems, and 

HVAC systems. 

9 Apros A software tool for dynamic 

simulation of processes and power 

plants. 

10 Aspen Plus Process simulation software can 

model chemical processes, 

including chemical reactions and 

thermodynamics. 

11 Visual 

Modeler 

A modeling software tool that can 

be used to create digital twins of 

complex systems, including 

aerospace and defense systems. 

12 Boxer A simulation software tool that 

can be used to create digital twins 

of mechanical systems, including 

robots, vehicles, and machines. 

13 OpenFOAM An open-source computational 

fluid dynamics (CFD) software 

tool that can be used to simulate 

fluid flows and heat transfer. 

14 Salome 

Meca 

A software tool that for multi-

physics simulations of mechanical 

and thermal systems. 

 

Finally, the target section refers to the specific 

application or purpose of the digital twin, such as 

predictive maintenance, optimization, or monitoring. The 

scope of the study can be categorized into three focus 

areas: component, process, and software. This study found 

a lack of studies on the machine learning method, as it 

primarily focuses on the component rather than the process 

level. The scope of the component study focuses on 

various types of power plants, including nuclear plants, gas 

turbines, coal-fired plants, renewable energy, and general 

components. 

This review suggests that future studies should leverage 

the advantages of the IR4.0 technology revolution by 

focusing on machine learning methods to develop power 

plant anomaly detection and performance monitoring for 

process applications. The machine learning approach is 

crucial as it allows for better accuracy and precision in 

predicting power plant performance and detecting 

anomalies. The advancement of technology in the era of 

IR4.0 should be aligned with the development approach to 

developing an effective and efficient digital twin platform. 

Future studies should focus on utilizing machine learning 

methods and IR4.0 technology to enhance the development 

of digital twins for power plant applications. It can be done 

by utilizing new tools and techniques to improve 

performance, increase efficiency, and reduce costs. This 

analysis highlights the importance of considering the latest 

technological advancements while developing digital twin 

applications for power plants. 

5. CHALLENGES AND ENABLERS 

This section will discuss the findings obtained from the 

current publication to establish the relationship between 

the challenges and enablers. The scope of analysis is 

divided into three (3) steps: 1) Challenges Identification, 

2) Enabler Identification, and 3) Connecting challenges 

and enablers. This analysis examines the challenges 

authors faced during the research process and identifies 

other factors that facilitated or supported the research. It 

can also help identify potential biases or limitations in the 

reviewed literature and identify areas where additional 

support or resources may be needed to advance the 

research agenda. Enablers in challenges might include 

funding, access to resources or collaborators, or 

technological advances that enable more complex or 

sophisticated research methods. However, this study will 

examine the correlation between IR4.0 elements as 

enablers and identified challenges. At the end of this 

section, the application conceptual framework is 

constructed based on current findings to deepen the 

research area. 

5.1 Challenges Identification 

The challenges identified in the current publication were 

organized according to functionality, types of plants, and 

category. Table 5 shows the details of the challenges 

classification based on above mentioned criteria. The 

digital twin applications in power plants can be grouped 

into seven (7) study majors: anomaly detection, 

performance monitoring, data security, engineering, 

environment, energy management, and training. Anomaly 

detection is recorded as the most popular topic of study, 

followed by performance monitoring and data security. 

Meanwhile, coal-fired, and gas-turbine plants dominate the 

most prevalent study on power plant types. 

 

Figure 6. Challenges classification based on main 

categories. 

In 2022, Perno et al. [125] highlighted several barriers to 

digital twin applications in the process industry. However, 

the outcome of this study is inadequate as it provides a 

general review which is unable to address fundamental 

issues in the power generation industry. Therefore, this 
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study performs a specific review of digital twin 

applications in power plants. This study found that 

numerous challenges have been discovered in the digital 

twin publication for power plant applications. The findings 

have concluded that the challenges can be classified into 

nine (9) categories: modeling complexity, dynamic 

validation, data collection, real-time, multi-scaling 

simulation, maintenance optimization, visualization, 

emission simulation, and energy optimization. Later, these 

categories are grouped into four main categories, as shown 

in Figure 6: data acquisition, modeling and simulation, 

optimization, and graphic user interfacing (GUI). 

Addressing these challenges requires collaboration 

between experts in various fields, including plant design, 

simulation, data analytics, and environmental science. In 

addition, ongoing investment in research and development 

is necessary to improve the accuracy and reliability of 

digital twin technology in power plant applications.

Table 5. The challenges classification based on the digital twin function. 

No. Function Author Plant Challenges Category 

1 Anomaly Detection [126] Nuclear Modeling for Complex object Modeling Complexity 

[127] Hybrid Component maps modeling Modeling Complexity 

[128] Gas Turbine Modeling for Complex object Modeling Complexity 

[129] Coal Fired Combustion behavior for 

different grate firing systems 

Modeling Complexity 

[130] RE  

(Hydro) 

Accuracy of turbine  

and generator modeling 

Modeling Complexity 

[131] RE  

(Wind) 

Validation of dynamic behavior 

of the pitch angle control 

Dynamic validation 

[132] General Vibration data gathering  

and analysis 

Data Collection 

[133] Nuclear Maintenance data captured for 

dynamic behavior 

Data Collection 

[134] General Consistency of virtual and real 

systems during a real-time 

interaction 

Real-time 

[135] Gas Turbine Hybrid approach in real-time Real-time 

[136] Gas Turbine Simulation scaling and data-

driven feedback 

Multi-scaling  

Simulation 

[137] Gas Turbine Strategic economic decisions Maintenance Optimization 

2 Process Validation 
 

[138] Gas Turbine Mathematical modeling for 

components and elements 

Modeling Complexity 

[139] RE  

(Wind and 

Hydro) 

Modeling strategy for 

electromagnetic, mechanics,  

and thermal 

Modeling Complexity 

[140] Coal Fired Accuracy - Model calibration 

within 5 % error 

Modeling Complexity 

[141] Coal-fired Off-design and dynamic 

operation 

Dynamic validation 

[142] Co-gen  

(Coal Fired) 

Plant impacts under the high 

frequency of load variation 

Dynamic validation 

[143] Coal Fired Oxy combustion dynamic 

modeling and control strategies 

Dynamic validation 

[144] Coal Fired Plant monitoring and storage  

by remote 

Visualization 

3 Data Security [145] Nuclear Plant modeling development Modeling Complexity 

[146] Nuclear Flexible modeling to validate 

life cycle 

Dynamic validation 



Balbir Shah Mohd Irwan Shah et al. / ELEKTRIKA, 23(1), 2024, 103-124 

111 

 

5.1.1 Data Acquisition 

The first challenge in developing a digital twin is data 

acquisition which consists of a data collection process and 

real-time data streaming. Data acquisition in a power plant 

involves the process of measuring and recording real-

world physical conditions using sensors, measurement 

devices, and a computer. The collected data is converted 

into digital numeric values that can be processed and 

analyzed. It is a critical aspect of the data collection 

process in power plants. Meanwhile, data streaming 

involves continuously transferring real-time data to a 

central system for analysis and processing. It allows real-

time plant operations monitoring and provides an early 

warning system for potential issues. 

Data Collection: Digital twins require vast amounts of 

data from various sources, such as sensors, control 

systems, and operational records, to create an accurate 

representation of the physical system. The information 

gathering can be done via offline or online approaches. 

These approaches allow researchers to start a journey in 

this study area. With the recent advancement of technology 

in 4IR, an online approach should be available across the 

power plant control system to enable system integration 

with third-party access. However, upgrading the legacy 

control system to communicate with new technology 

requires high investment. This statement is supported by 

Wishnow et al. [1] on the fundamental issues of system 

integration in the oil and gas industry, which require 

significant investment and extended production downtime 

due to the transition of aging control systems. 

Real-Time: The system integration provides significant 

advantages to a researcher to deepen the study in this area 

as the plant information can be accessed in real-time. Real-

time data access is gathering and analyzing data in real-

time, allowing for immediate insights and decision-making 

based on current conditions. It requires high performance 

of hardware and software to exchange information 

efficiently from the physical to digital twin and vice versa. 

Traditionally, plant owners will invest highly to establish 

the infrastructure and resources. However, this approach 

should be changed as the plant owner should migrate from 

capital expenditure (CAPEX) into operational expenditure 

(OPEX) with significant cost savings. Nowadays, many 

vendors in the market have offered cloud services and 

storage systems, which only require less cost for 

subscription. Another challenge in real-time data 

streaming is limited access for cyber security reasons. 

Several authors have highlighted this issue: Xia et al. [151] 

; Redelinghuys et al. [4] ; Zhang et al. [3] on big data access 

and processing in real-time for general industrial 

applications. In addition, most power plants today are 

subjected to cybersecurity compliance governed by 

ISO27001 standards to foresee the three (3) essential 

elements: confidentiality, integrity, and availability. 

Hence, implementing this standard becomes the main 

obstacle in the digital twin development process due to 

restricted access and cybersecurity reasons. 

5.1.2 Modelling and Simulation 

The second challenge in creating a digital twin is plant 

modeling and simulation. A digital twin must accurately 

model the physical system to represent the system's 

behavior accurately. However, developing an accurate and 

reliable plant model can be challenging, particularly for 

large and complex systems. The model must account for 

the behavior of all system components, including their 

interactions and dependencies. Additionally, the model 

must be validated and calibrated to ensure that it accurately 

reflects the behavior of the physical system. This section 

will discuss the four subcategories: modeling complexity, 

dynamic validation, multi-scaling simulation, and 

emission simulation.  

Plant Model Complexity: Power plants are complex 

systems with many interdependent components and 

processes that must be modeled accurately to create a 

practical digital twin. Accurately modeling the behavior of 

these components and processes requires a deep 

understanding of the plant's physical and operational 

characteristics and the ability to incorporate real-time data 

from sensors and other sources. Developing an accurate 

and reliable plant model can be challenging, particularly 

for large and complex power plants. 

Dynamic Validation: A digital twin must be 

continuously validated to ensure that it accurately reflects 

the behavior of the physical system. This approach is 

particularly challenging in power plants, which operate in 

a constantly changing environment with inputs such as fuel 

quality, ambient temperature, and electricity demand 

changing frequently. Ensuring the digital twin remains 

accurate and up to date in this dynamic environment is a 

significant challenge. Dynamic validation requires real-

time data monitoring, modeling, and simulation, which can 

be computationally intensive and require advanced 

analytics capabilities. 

Multi-scaling Simulation: Power plants operate at 

different scales, from the individual component to the 

plant-wide level. To accurately simulate the behavior of a 

power plant, a digital twin must incorporate models at 

multiple scales. Developing and integrating these models 

can be challenging because they may have different levels 

of complexity and require different computational 

resources. Ensuring that the models are consistent across 

4 Engineering [147] Nuclear FEM development as per 

visualization data 

Modeling Complexity 

5 Environment [148] General Limited boundary for a software 

agent to simulate a function 

Emission Simulation 

6 Energy Management [149] General Demand response estimation Operation Optimization 

7 Training [150] General Process control validation in 

dynamic operation 

Dynamic validation 
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different scales and accurately capture the behavior of the 

physical system can be a significant challenge. 

Emission Simulation: The power plant is a significant 

source of greenhouse gas emissions, requiring 

environmental impact analysis to evaluate the current 

conditions. In general, emission monitoring in power 

plants can be categorized into continuous emission 

monitoring systems (CEMS) and predictive emission 

monitoring systems (PEMS). The selection of these 

methods depends on operating and maintenance costs, 

reliability, and system independence. However, PEMS is 

the most popular method of emission monitoring systems 

using software-based calculations compared to hardware-

based in CEMS. It is critical in predicting and simulating 

gas emissions because it requires accurate modeling of 

combustion processes and the behavior of pollutants in the 

atmosphere. The accuracy of emission simulation depends 

on the quality and availability of data on fuel composition, 

combustion efficiency, and other factors that can vary 

widely across different power plants. 

5.1.3 Optimization 

Developing digital twin applications for power plant 

maintenance and operation optimization is complex. These 

areas of study strongly correlate with each other; for 

example, the predictive maintenance interval results from 

the operation regime and operating variables. Hence, the 

researcher needs collaboration with technical experts to 

understand each component's working principle and the 

power plant's process behavior. Besides that, this study has 

identified several key factors associated with 

implementing digital twins for optimization: data 

availability and quality, interoperability, model 

complexity and validation, simulation accuracy, analytical 

tools, and cyber threats. By overcoming these factors, plant 

personnel can optimize plant performance, reduce 

downtime, and improve efficiency, leading to cost savings 

and increased profitability. 

Data Availability and Quality:  Digital twins must be 

fed high-quality data from various sources such as sensors, 

DCS, SCADA, operational records, and maintenance logs. 

However, data quality and availability can be challenging, 

particularly for older power plants or plants with legacy 

systems. It is due to the lack of standardization, data silos, 

and the large volumes of data generated by the assets. 

Gathering, integrating, and interpreting this data to build a 

comprehensive digital twin model might be challenging. In 

some cases, data may not be available or incomplete, 

making it challenging to develop accurate models for 

optimization. Hence, implementing a digital twin 

optimization system can be costly, particularly for older 

power plants that may require upgrades to sensors and 

control systems. The benefits of digital twin optimization, 

such as improved maintenance and energy efficiency, must 

be weighed against the costs of implementing and 

maintaining the system over time. 

Interoperability: Digital twin platforms should be able 

to interface and integrate with multiple data sources 

systems. Integrating digital twins into existing systems can 

be challenging, as it must be seamlessly integrated with 

control systems to archive databases and deploy analytics 

tools. This integration requires a deep understanding of the 

existing infrastructure, and any changes must be made with 

minimal disruptions to ongoing operations. Moreover, 

disparate data sources may use different data formats and 

provision access levels and may not be compatible. 

Model Complexity and Validation: Digital twin 

optimization systems must be based on accurate and 

reliable plant models that capture the complex 

interrelationships between various plant components and 

operational parameters. Developing and validating these 

models can be challenging, particularly for large and 

complex power plants. Ensuring that the models remain 

accurate over time requires ongoing validation and 

calibration. 

Simulation Accuracy: The accuracy of the digital twin 

model is critical in ensuring that the model accurately 

represents the behavior of the physical asset. Any errors or 

discrepancies in the model can lead to incorrect predictions 

and poor performance and maintenance decisions. The 

digital twin model needs to simulate the behavior of the 

plant accurately, considering various operating conditions 

and scenarios. These models must also be continuously 

updated with the latest data to ensure their accuracy and 

reliability. 

Analytical Tools: The digital twin application is used 

to predict equipment failures and other issues before they 

occur, allowing plant operators to take preventive action. 

This approach requires advanced analytics and machine 

learning algorithms that can identify patterns and 

anomalies in the data and provide predictive insights. 

Moreover, this tool should be able to optimize plant 

operations to improve efficiency and reduce downtime. It 

requires the application to analyze data in real-time, 

identify opportunities for optimization, and provide 

recommendations to plant operators. 

Cyber Threats: Digital twins rely on data from various 

sources, including sensors, IoT devices, and other systems, 

which can pose security and privacy risks. It is mandatory 

to ensure that appropriate security and privacy measures 

are in place to protect sensitive data and prevent cyber-

attacks. In addition, protecting against cyber threats 

requires ongoing monitoring and security updates and 

regular cybersecurity training for plant personnel. 

5.1.4 Graphic User Interfacing (GUI) 

The large volume of data generated by the sensors is a 

major factor in the need for effective visualization systems 

for plant operators to process and analyze plant data in real 

time, which can be challenging without the right tools and 

technologies. However, the rise of the IR4.0 application 

has become increasingly popular in recent years, enabling 

plant personnel to monitor plant operation and 

performance in real time. Developing effective 

visualization systems is a critical challenge when building 

digital twins for power plants, as each power plant has 

unique operating conditions and configurations an 

effective visualization is essential as it provides an 

intuitive representation of the data collected from the 

sensors installed on the plant equipment, allowing 

operators to identify any issues and take corrective action 

quickly. Several challenges have been identified in 
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developing an effective visualization system for power 

plant monitoring. 

The visualization system needs to be designed to meet 

the specific needs of the plant operators, be scalable and 

adaptable, and provide an intuitive representation of the 

data collected from the plant equipment. Moreover, the 

visualization system needs to adapt and provide accurate 

real-time monitoring as the plant equipment ages; new 

sensors are installed, and the plant's performance changes. 

Overcoming these challenges can help plant operators 

optimize the plant's performance by improving overall 

efficiency, reducing downtime, and improving the 

reliability of the plant. Advanced data analytics can be used 

to enhance the visualization system to become a user-

friendly interface. 

5.2 Enabler Identification 

The fourth industrial revolution (4IR) has brought 

significant change in the manufacturing industry, with the 

widespread adoption of advanced technologies such as 

digital twins. In the power generation industry context, the 

eleven (11) pillars of 4IR in smart manufacturing 

technologies were evaluated to address the challenges in 

developing the digital twin for power plants. Figure 7 

shows the eleven (11) pillars of 4IR technology 

advancement. However, this study has identified the eight 

(8) pillars that can be adopted as enablers to facilitate the 

successful implementation of digital twin applications in 

power plants: System Integration, Cybersecurity, Big Data, 

AI, IoT, Cloud, Simulation, and VR/AR. These elements 

have been chosen as enablers based on the outcomes of 

challenges in developing digital twin applications for 

power plants. 

 

Figure 7. Eleven Pillars of 4IR technology advancement 

5.2.1 System Integration 

Integrating digital twin systems with power plant control 

systems is vital for seamless communication and data 

exchange between the digital twin and processes in power 

plants. Several communication platforms can be integrated 

to empower the digital twin system, including smart 

sensors, cloud computing, and 5G communications. The 

industrial control system generally has open platform 

communication (OPC) features to enable third-party data 

access and communication interoperability. OPC unified 

architecture (UA) is a widely accepted standard for plant 

systems integration, which incorporates three essential 

elements such as data access (DA), alarms and events 

(AE), and historical data access (HDA). By integrating 

digital twin systems with existing plant systems and 

processes, operators can monitor plant performance in 

real-time and make firm decisions to optimize plant 

performance. 

5.2.2 Cybersecurity 

Cybersecurity is critical to protecting digital twin 

technology in power plants from cyber threats, as it ensures 

data confidentiality, integrity, and availability. The policy 

maker and regulatory bodies play a leading role in 

strengthening cybersecurity resilience across various 

sectors and implementing robust security measures to 

protect the power grid and energy infrastructure from 

cyber threats. Some basic cybersecurity measures include 

using secure passwords, regularly updating software and 

applications, and using firewalls and intrusion detection 

systems. It is crucial to use cybersecurity measures tailored 

to the power plant's specific needs and its digital twin 

system and to stay up to date with the latest threats and 

security technologies. By following best practices and 

continuously improving cybersecurity, power plants can 

protect their digital twin systems from cyber threats and 

ensure optimal performance and operation. 

5.2.3 Big Data 

Big Data is a term that refers to large, complex datasets that 

are difficult to process using traditional data processing 

techniques. It has become an essential tool for businesses 

and industries that generate vast amounts of data, including 

power plants. By capturing and analyzing large volumes of 

data generated by the power plant, big data can provide 

insights critical to optimizing plant performance, 

identifying patterns and trends, and predicting and 

preventing potential issues. In the context of power plants, 

big data can help operators identify inefficiencies in plant 

operations and reduce costs associated with maintenance 

and repairs. Additionally, big data analytics can help 

predict and prevent equipment failures before they occur, 

reducing downtime and improving overall plant reliability.  

However, handling big data can be challenging and 

requires powerful computational resources and specialized 

expertise. To effectively leverage big data, power plants 

may need to invest in sophisticated data management and 

analysis tools and training for employees to understand and 

interpret the results. In conclusion, big data presents many 

opportunities for power plants, requiring a significant 

investment in resources and expertise to be effectively 

utilized. With the right tools and training, however, power 

plants can unlock the full potential of big data to improve 

plant operations, reduce costs, and enhance overall 

efficiency. 

  



 Balbir Shah Mohd Irwan Shah et al. / ELEKTRIKA, 23(1), 2024, 103-124 

  

114 

5.2.4 Artificial Intelligence (AI) 

Artificial Intelligence (AI) has revolutionized the world of 

data analytics and predictive modeling, making it possible 

for operators to make informed decisions and optimize 

plant performance. AI has many applications in the power 

plant industry, including machine learning algorithms that 

can automatically detect anomalies, predict equipment 

failures, and identify optimal operating conditions. For 

example, AI techniques are used in the financial sector to 

identify fraudulent transactions, fast and accurate credit 

scoring, and automate manual data management tasks. In 

addition, AI is streamlining the data analytics process, 

making it less labor-intensive and automating intelligent 

bots and algorithms that learn from vast data sets to make 

automated, more intelligent decisions. AI in the power 

plant industry can also help identify patterns and trends, 

optimize plant performance, and predict and prevent 

potential issues by analyzing large volumes of data 

generated by the power plant. By leveraging AI and 

developing advanced analytics and predictive models, 

power plant operators can make data-driven decisions, 

achieve higher levels of efficiency, and reduce costs 

associated with maintenance and repairs. Thus, AI is an 

essential tool for power plants looking to stay ahead in the 

industry and ensure optimal performance. 

5.2.5 Internet of Things (IoT) 

It is a network of interconnected devices equipped with 

sensors, software, and connectivity capabilities to collect 

and exchange data over the internet. IoT has gained 

significant attention and is transforming various industries 

due to its potential to enhance efficiency, improve 

decision-making, and enable new services and business 

models. The widespread adoption of IoT is driven by its 

potential to revolutionize various aspects of our lives and 

drive innovation across multiple sectors. Some of IoT's 

notable applications are as follows: industrial automation, 

predictive maintenance, supply chain optimization, Smart 

Grids, Energy Management, and Transportation and 

Logistics. In terms of its fundamental aspects, IoT relies on 

three key components: devices and sensors, connectivity, 

and data processing and analytics. 

a. Devices and Sensors: IoT devices have sensors and 

actuators that gather data from the environment or 

perform actions based on the received instructions. 

These devices can collect information such as 

temperature, humidity, location, motion, and vice 

versa. 

b. Connectivity: IoT devices are connected to the 

internet or other networks, enabling them to 

communicate with other devices and central systems. 

This connectivity can be achieved through various 

means, including Wi-Fi, cellular networks, Bluetooth, 

and low-power wide-area networks (LPWANs). 

c. Data Processing and Analytics: The data collected 

from IoT devices is processed, analyzed, and 

transformed into meaningful insights. This process 

involves applying advanced analytics techniques like 

machine learning and artificial intelligence to derive 

valuable information from the collected data. 

5.2.6 Cloud 

Cloud computing is a technology that allows users to store, 

access, and process data through remote servers connected 

to the internet. Cloud technology provides a secure and 

scalable platform for storing and processing data generated 

by the digital twin in the context of a power plant. The 

digital twin is a virtual model that simulates the 

performance of physical assets and systems in real-time. 

Storing data generated by the digital twin in the cloud 

allows power plant operators to access and analyze data 

from anywhere and at any time, making it easier to identify 

and respond to issues quickly. In addition, cloud storage is 

a cloud computing model that enables storing data and files 

on the internet through a cloud computing provider that can 

be accessed through the public internet or a dedicated 

private network connection. This model has become 

increasingly popular as it moves expenses from a capital 

expenditure (CAPEX) model to an operational expenditure 

(OPEX) model. It can be accessed through the public 

internet or a dedicated private network connection, and it 

allows data and files to be stored in an off-site location, 

making it the responsibility of a third-party cloud provider. 

In conclusion, cloud storage is an efficient and cost-

effective way for power plant operators to store and access 

data generated by the digital twin, and it allows them to 

respond to issues and make firm decisions quickly. 

5.2.7 Simulation 

Simulation is a powerful tool that enables power plant 

operators to simulate different scenarios and test different 

strategies in a virtual environment. Operators can identify 

potential problems and optimize plant performance 

without costly and time-consuming physical tests. With 

simulation, operators can explore various possibilities and 

better understand how their power plant operates under 

different conditions. This platform allows them to make 

informed decisions and take proactive steps to improve the 

efficiency and reliability of their plant. Additionally, 

simulation can be used to train operators and engineers, 

allowing them to gain valuable experience and develop the 

skills they need to manage and maintain the plant 

effectively. Overall, simulation is a critical tool for power 

plant operators, as it helps them to reduce costs, improve 

performance, and ensure the safety and reliability of their 

plants. 

5.2.8 VR/AR 

Virtual Reality (VR) and Augmented Reality (AR) 

technologies have gained popularity recently and are now 

used in various fields. VR and AR provide an immersive 

and interactive way to visualize and interact with the 

digital twin, a virtual replica of a physical asset of the 

power plant. This method can help power plant operators 

better understand the plant's operations, identify potential 

issues, and test new ideas as solutions.  

Furthermore, by using VR and AR applications, 

operators can experience a virtual walkthrough of the 

power plant, thoroughly investigating the various 

components and systems. Besides that, the plant data can 

be visualized in real-time, allowing them to spot patterns 
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and trends that traditional data visualizations may not 

reveal. The hybrid approach will assist plant personnel in 

identifying potential problems and opportunities for 

optimization promptly. Moreover, this application also can 

be utilized to test new ideas and solutions, allowing them 

to assess their effectiveness before execution in the  

physical plant quickly. Overall, VR and AR applications 

can provide an immersive and interactive way for power 

plant operators to visualize, analyze, and optimize the 

plant's operations effectively. 

5.3 Connecting Challenges and Enablers 

This section will discuss the connection of eight (8) key 

pillars of the Fourth Industrial Revolution (4IR) and their 

role as enablers in addressing challenges in developing 

digital twin technology for power plants. These pillars are 

crucial components contributing to the advancement and 

successful implementation of digital twins in the power 

plant industry. The connection between the challenges and 

enablers is shown in Table 6. The eight (8) key pillars of 

4IR are connected to respective challenges to deploy a 

primary function in the proposed operating platform. The 

proposed operating platform introduces four (4) platforms: 

communication platform, simulation platform, 

optimization platform, and monitoring platform. These 

platforms serve as the infrastructure for integrating the 

identified enablers with the challenges associated with 

digital twin development for power plants. It is derived 

from the relationship of enablers and challenges under the 

operational ecosystem for digital twin development. The 

user can effectively manage the challenges and empower 

enablers via this platform by understanding the operational 

ecosystem. 

The communication platform plays a significant role in 

addressing data collection methodology and real-time data 

management issues. It enables effective data gathering and 

management strategies to ensure accurate and timely 

information for digital twin applications. The 4IR pillars 

that can serve as enablers for the communication platform 

include IoT, Cybersecurity, System Integration, and 

Cloud. These technologies provide the tools and 

frameworks to support seamless data exchange, secure 

communication, and efficient integration of various 

systems and devices. By leveraging the communication 

platform, power plant personnel can establish robust data 

collection processes that capture essential information 

from various sources within the plant environment. 

Meanwhile, the simulation platform addresses four 

challenges: complex modeling, multi-scaling, dynamic 

validation, and emission prediction. Through this platform, 

plant operators and engineers can create virtual models 

replicating real-world scenarios, allowing them to 

understand better and optimize the plant's performance. 

The simulation platform benefited from the 4IR pillars, 

such as Big Data, AI, VR/AR, Simulation, and Cloud. 

These technologies lead to accurate predictions and 

analysis by providing advanced data analysis, artificial 

intelligence algorithms, immersive visualization, and 

efficient utilization of computational resources. 

Table 6. The Connection between Challenges and Enablers 

No Function Challenges IR 4.0 Enabler Platform 

1 Anomaly detection Modelling Complexity Big Data, AI, VR/AR Simulation 

Dynamic Validation AI, Simulation, Cloud Simulation 

Data Collection IoT, Cybersecurity, System 

Integration, Cloud 

Communication 

Real-time Cybersecurity, 

System Integration, Cloud 

Communication 

Multi-scaling Simulation AI, Simulation, Cloud Simulation 

Maintenance Optimization Big Data, AI, Simulation, Cloud Optimization 

2 Process Validation Modelling Complexity Big Data, AI, VR/AR Simulation 

Dynamic Validation AI, simulation, Cloud Simulation 

Visualization Cybersecurity,  

System Integration, Cloud 

Monitoring 

3 Data Security Modelling Complexity Big Data, AI, VR/AR Simulation 

Dynamic Validation AI, simulation, Cloud Simulation 

4 Engineering Modelling Complexity Big Data, AI, VR/AR Simulation 

5 Environment Emission Simulation Big Data, AI, Simulation, Cloud Simulation 

6 Energy Management Operation Optimization Big Data, AI, Simulation, Cloud Optimization 

7 Training Dynamic Validation AI, simulation, Cloud Simulation 



 Balbir Shah Mohd Irwan Shah et al. / ELEKTRIKA, 23(1), 2024, 103-124 

  

116 

However, advanced applications such as performance 

optimization should be done in an optimization platform. 

This platform shall be equipped with optimization 

algorithms and techniques to solve optimization issues in 

operation and maintenance. Therefore, the simulation and 

optimization platform are proposed to merge into the 

unified application platform to link the plant model 

simulation and optimization algorithms. The unified 

application platform represents the integration of the 

platforms mentioned above into a comprehensive solution 

for digital twin development in power plants. This platform 

leverages the 4IR pillars, including Big Data, AI, VR/AR, 

Simulation, and Cloud, as enablers to support various 

applications and functionalities. By combining the 

capabilities of these pillars, the unified application 

platform provides a holistic approach to digital twin 

implementation, facilitating enhanced operational 

efficiency and decision-making in power plants. 

Finally, the monitoring platform is proposed to address 

visualization issues in digital twin development. It utilizes 

the 4IR pillars of Cybersecurity, System Integration, and 

Cloud as enablers for effective remote monitoring 

capabilities. These technologies ensure secure data 

transmission, seamless integration of monitoring systems, 

and remote access to real-time plant data, enabling 

efficient monitoring and control of power plant operations. 

6. CONCLUSION 

This study has found eight (8) enablers from 4IR pillars 

that can be applied to address nine (9) challenges in 

developing the power plant digital twin. The eight (8) key 

pillars of the 4IR, including IoT, Cybersecurity, System 

Integration, Cloud, Big Data, AI, Simulation, and VR/AR, 

play essential roles as enablers in developing the power 

plant's digital twin technology. These pillars are 

incorporated into dedicated platforms to expedite 

development by resolving challenges with new 

approaches. This approach will contribute to the successful 

implementation of digital twins in the power plant 

industry. 

Furthermore, the operational ecosystem has been 

constructed as the proposed conceptual framework to 

locate the challenges and apply the enablers at the right 

platform. Figure 8 shows the operational ecosystem model 

derived from the multi-platform interaction of challenges 

and enablers. Initially, this framework consists of four (4) 

operational platforms: Communication, Simulation, 

Optimization, and Monitoring. The simulation function 

can perform a multi-purpose function, relying on digital 

twin modeling. Meanwhile, the optimization platform 

requires specific algorithms to perform optimization 

functions. However, in real applications, these functions 

should be interacted with each other as complementary to 

perform the decision-making. Therefore, the simulation 

and optimization functions were merged into a unified 

application platform. Finally, the operational platform is 

reduced from four (4) platforms to three (3) platforms. 

The significance of system integration and 

cybersecurity pillars has been identified as crucial factors 

in communication and monitoring platforms. Integrating 

the system will facilitate the data linkage protocol between 

two distinct systems, enabling communication and 

visualization of the process data. The distributed control 

system (DCS) data is vulnerable to cyber threats and 

unauthorized access. However, the double cybersecurity 

protection from front to end may pose difficulties for cyber 

threats to access the DCS. Contrarily, applying 

cybersecurity protection to the application platform is not 

advisable as it may lead to reduced hardware performance 

and slower application response. In addition, 

unidirectional data transport is recommended for the 

primary data analytics function. 

 

Figure 8. Proposed digital twin operational ecosystem 

model for power plant application. 

In contrast, an advanced application requires 

bidirectional data transport to collaborate with DCS to 

update the optimization function block in real time. 

Collaboration with DCS makers is necessary to allow some 

essential input from third-party applications to access the 
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control logic environment. The central infrastructure must 

have a high-speed data connection and high-performance 

hardware to process the data in real-time. 

Moreover, this study also found that cloud technology 

plays a significant role in providing a holistic solution as it 

can be applied across the operational ecosystem. The plant 

personnel should consider leveraging this technology in 

developing a power plant digital twin at optimum cost. 

This technology offers fewer expenses and provides 

greater flexibility for operational and maintenance 

activities. The plant owner will benefit from a new 

financial model to utilize the digital twin without owning 

the hardware infrastructure. Hence, the capital expenditure 

(CAPEX) model is expected not to be valid in the future as 

the user can be more selective of service providers, which 

leads to competitive operational expenditure (OPEX). This 

landscape will increase the demand for cloud technology 

and create more growth opportunities for this industry. 
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APPENDIX

Literature review matrix analysis 

Authors 
Country/ 

Year 
Focus Plant Method Software Theme Challenges 

[126]  

 
 

China 

2021 

Fault diagnostic for 

anomaly monitoring 

Nuclear CGRU 

and 
EPSO 

PWR 

Simulator 

Analytical Complexity of 

object modelling 

[127] UK 

2020 

Health monitoring for 

transient operation 

Hybrid 

GT & Wind 

Machine 

Learning 

- Analytical Component maps 

modelling 

[137]  

 

UAE 

2019 

Predictive  

maintenance 

Gas Turbine Physic 

Model 

Power  

Eye 

Analytical Strategic economic 

decisions 

[132] 
 

China 
2017 

Life  
prediction 

General 
 

Deep 
Learning 

Keras Analytical Vibration data 
gathering and 

analysis 

[152] 
 

Russia 
2021 

Failure identification 
and prediction 

Gas Turbine ANN - Analytical Complexity of 
object modelling 

[135]  Russia 

2019 

Condition monitoring 

for maintenance 

Gas Turbine ANN, 

Physic 

Model 

Amesim Analytical/ 

Engineering 

Hybrid approach in 

real-time 

[153]  Korea 

2020 

Anomaly  

detection and health 
monitoring 

Nuclear PCA, 

k-Means, 
SVM 

- Analytical Maintenance data 

captured for 
dynamic behaviour. 

[138] Russia 

2019 

Performance 

monitoring and 
improvement 

Gas Turbine Physic 

Model 

Modelica Engineering Mathematical 

modelling for 
components and 

elements 

[154]  Singapore 

2019 

Emission conceptual 

framework 

General - J-Park 

Simulator 

Engineering Limited boundary 

for software agent 
to simulate a 

function 

[146]  Russia 
2020 

Operators Support 
system to enhance 

cybersecurity and 

reliability 

Nuclear - ICS  
RAS  

Control 

System 

Engineering Flexible modelling 
to validate life 

cycle 

[145]  Russia 
2020 

Flexible modelling 
software package 

development 

Nuclear - - Engineering Plant modelling 
development 

[149]  Portugal 
2020 

Distributed Energy 
management 

framework 

General - Virtual Power 
Plant 

Engineering Demand response 
estimation 

[139]  Germany 
2019 

Generators modelling RE Wind and 
Hydro 

Multi-Physic 
Model 

 

- Engineering Modelling strategy 
for electromagnetic, 

mechanics and 

thermal 

[136]  UK 
2019 

Life Cycle Modelling 
for MRO 

Gas Turbine Geometry 
Model 

Boxer Engineering Simulation scaling 
and data-driven 

feedback 

[155]  China 
2020 

Control performance 
monitoring 

Coal-fired Hybrid 
Model 

MATLAB Engineering/ 
Case Study 

Off-design and 
dynamic operation 

[140]  

 

South 

Africa 

2020 

Predictive maintenance 

for cost-effective 

Coal Fired Empirical 

Thermo-

hydraulic 
Model 

PTB Engineering/ 

Case Study 

Accuracy -Model 

calibration within 5 

% error 

[156]  

 
 

Germany 

2021 

Grate firing system 

modelling 

Coal Fired CFD OpenFOAM Engineering Combustion 

behaviour for two 
different grate 

firing system 

[134]  China 

2020 

Power System design 

optimization, fault 

analysis, and 

monitoring 

General Hybrid 

Model 

- Case Study Consistency of 

virtual and real 

system during a 

real-time 

interaction 

[142]  China 

2019 

Performance 

optimization during 

winter and summer 

Coal Fired - 

Co-gen 

Physic 

Model 

Thermoflow Case Study Plant impacts under 

high frequency of 

load variation 

[144]  Russia 

2020 

Evaluation of an 

access fuel flow by 

remote 

Coal-fired Regression 

Model 

C# Case Study Plant monitoring 

and storage by 

remote 
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[130]  Tajikistan 
2019 

Improve the reliability 
of autonomous 

maintenance 

RE 
Hydroelectric 

Mathematical 
Model 

- Case Study Actual turbine and 
generator modelling 

[157]  Iran 

2020 

Wind turbine adaptive 

controllers 

RE 

 

DDPG MATLAB Case Study Validation of 

dynamic behaviour 
of the pitch angle 

control  

[143]  
 

Poland 
2019 

Control strategies for 
transient operation 

Coal Fired Physic 
Model 

Apros and 
Aspen Plus 

Dynamics 

Case Study Oxy combustion 
dynamic modelling 

and control 

strategies 

[147]  France 
2020 

Digital twin modelling 
for nuclear reactor 

Nuclear Finite 
Element 

Model 

Salome Meca Case Study FEM development 
as per visualization 

data 

[150]  Malaysia 
2020 

Operator Training 
Simulator (OTS) 

system development 

General Physic 
Model 

Visual 
Modeler 

Training Process control 
validation in 

dynamic operation 

 


