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Abstract: This research focuses on the task of Masonry Wall Crack Identification using limited data, employing state-of-the-

art Convolutional Neural Network (CNN) models. The models investigated include VGG16, MobileNetV2, Xception, and 

DenseNet121. The dataset, consisting of 946 masonry wall images containing cracks, is used to evaluate the effectiveness of 

each model in this specific domain. The training set comprises 642 images, the validation set consists of 90 images, and the 

test set includes 214 images. The models are pretrained on large-scale datasets to extract robust features and are then fine-

tuned on the masonry wall crack dataset. Among the models, DenseNet121 stands out, achieving a commendable accuracy of 

85.98% in accurately identifying masonry wall cracks. This result underscores the efficacy of DenseNet121 for the challenging 

task of crack identification in masonry structures using limited data. This study not only contributes to the field of structural 

health monitoring but also emphasizes the practicality of employing CNN models for real-world applications, particularly in 

the critical domain of masonry crack identification. 
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1. INTRODUCTION 

The integrity of masonry structures is crucial for the safety 

and stability of buildings. Masonry walls, being integral 

components of various constructions, are susceptible to 

cracks due to a variety of factors such as environmental 

conditions, material properties, and structural loads. 

Cracks are a prevalent occurrence in robust structures like 

building walls, roofs, bridges, and tunnels. Timely 

identification of these cracks holds significant importance 

as it serves as an early indicator, signaling potential issues. 

Conventional methods for manually detecting cracks are 

characterized by being time-intensive, requiring 

significant labor, posing potential dangers, and subject to 

subjective interpretations [1][2]. Furthermore, the 

assessment process's reliability is subjective, as it 

significantly depends on the inspector's skills and physical 

condition. Inexperienced or fatigued inspectors may 

inadvertently misreport damage, introducing a potential 

source of error. Manual inspections also pose safety 

challenges, especially in areas with limited access and 

difficult-to-reach structures. 

To mitigate the limitations associated with manual 

inspection, there is a growing emphasis on employing 

vision-based methods for the assessment and monitoring 

of civil infrastructures [3][4]. Over time, researchers have 

shown significant interest in utilizing computer vision for 

the detection of cracks. Vision-based crack detection 

exemplifies a non-destructive assessment approach, 

proving particularly valuable for historical structures 

governed by stringent regulations [5]. In such cases, where 

even basic interventions like the placement of crack rulers 

are prohibited by conservation authorities, vision-based 

techniques offer an effective alternative. 

In the realm of artificial intelligence, Deep Learning 

(DL), a subfield thereof, and its notable instrument, 

specifically Convolutional Neural Network (CNN), have 

demonstrated their effectiveness in the domain of object 

detection [6]. The allure of CNNs lies in their capacity to 

formulate predictive models without the need for 

predefined associations [7]. The characteristic of Deep 

Learning (DL) algorithms, coupled with the advancements 

in graphics processing units (GPUs) facilitating rapid 

computations, has significantly elevated their application 

across various domains. By employing these methods, 

there has been a substantial expansion in the capabilities 
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and robustness of conventional approaches [8]. The rapid 

evolution of computer vision and machine learning (ML) 

technologies over recent years has given rise to numerous 

automated techniques as potent tools for addressing 

practical challenges in crack detection [9].  

Furthermore, CNN models have exhibited superior 

performance in tackling crack identification problems, 

distinguishing themselves from conventional machine 

learning techniques by their ability to learn data 

representations without the imposition of handcrafted rules 

or prior knowledge [10][11]. Since the introduction of this 

technology, diverse applications have been explored in the 

pursuit of utilizing deep learning for structural crack 

identification. These applications encompass a range of 

contexts, such as buildings [12][13][14]; bridges 

[15][16][17], roads [18][19][20]; railway systems 

[21][22]; tunnels [23][24]; dam [25][26]; and monument 

[27]. 

2. MATERIAL AND METHOD  

In the first stage, we collect images that showcase concrete 

cracks from sourced from the work of Hallee Mitchell J. et 

al. in [28], is a valuable asset for crack detection research. 

In the subsequent phase, we engage in preprocessing, 

where we discard unnecessary data and remove 

undesirable elements like noise and shadows. The third 

step involves labeling the data, classifying images into two 

categories: those with cracks and those without. Moving 

forward, the fourth step encompasses training the model, 

employing labeled datasets from the prior step and open-

source repositories. Finally, in the fifth step, we assess the 

effectiveness of the trained model by testing it with images 

sourced from campus buildings. 

2.1 Data acquisition 

The dataset utilized in this investigation comprises images 

of concrete surfaces, classified into two categories: 

'negative,' denoting surfaces devoid of cracks, and 

'positive,' signifying surfaces exhibiting cracks. In total, 

the dataset comprises 946 files, with 642 allocated to the 

training set, 90 to validation and 214 data for testing. The 

dataset demonstrates a near-balanced distribution between 

the two classes, with 55% of samples classified as 'crack' 

and 45% as 'non-crack', ensuring a well-rounded 

representation of both categories. It is noteworthy that no 

data augmentation methods, such as random rotation or 

flipping, were applied during dataset preparation. The 

images have undergone consistent resizing to dimensions 

of 224 × 224 pixels. The dataset undergoes a strategic 

partitioning process, wherein it is divided into training, 

validation, and testing sets, each fulfilling unique and 

specific roles in the experimental design. The training set 

is instrumental in facilitating the learning process for the 

model. Through exposure to a multitude of examples, the 

model refines its parameters and gains the ability to make 

accurate predictions. The validation set plays a crucial role 

in the fine-tuning phase of model development. It serves as 

a diagnostic tool, allowing for adjustments to be made to 

enhance the model's performance based on its evaluation 

on previously unseen data. The testing set serves as the 

ultimate benchmark, evaluating the model's proficiency on 

entirely new and unseen data. This phase gauges the 

model's generalization ability and provides insights into its 

real-world applicability and effectiveness. 

2.2 CNN Classifier Model Configuration 

A plethora of existing convolutional neural networks is 

available for classification tasks, with an illustrative 

comparison presenting the manifold architectural 

alternatives in terms of their accuracy, prediction speed, 

and model sizes. VGG16 [29], MobileNetV2 [30][31], 

Xception [32], and DenseNet121 have been chosen based 

on their reputation for achieving a balance between 

superior accuracy and relatively compact model sizes. 

For instance, research by Simonyan and Zisserman in [33] 

showcased the effectiveness of VGG16 in achieving high 

accuracy on image classification tasks. Similarly, 

MobileNetV2, proposed by Sandler et al. 2018 [34], has 

been widely acclaimed for its exceptional performance in 

terms of accuracy and efficiency, particularly on mobile 

and embedded devices. Xception, introduced by Chollet et. 

al in [35], employs depth wise separable convolutions to 

achieve impressive results with reduced computational 

complexity compared to traditional architectures. 

DenseNet121, proposed by Huang et al. [36], has also 

demonstrated remarkable accuracy while maintaining 

relatively compact model size through dense connections 

between layers. Their suitability for various applications, 

particularly in scenarios with limited computational power 

or memory constraints, makes them preferred choices in 

many cases. Table 1 offers an overview of the principal 

characteristics inherent to these pre-existing model 

instances. The inclusion of a masonry image further 

enhances the comprehensiveness of the analysis, providing 

a practical context for the assessment of these neural 

networks in real-world scenarios. 

Table 1. Features of the chosen networks 

Network Size (MB) Parameter 

(Million) 

VGG16 528 138.4 

MobileNetV2 14 3.5 

Xception 88 22.9 

DenseNet121 33 8.1 

 

In the configuration of these parameters, the batch size and 

the number of iteration is established for the process of 

training the model. Specifically, the batch size is set at 16, 

and the model is trained for 100 epochs. Subsequently, a 

pre-trained convolutional neural network (CNN) model is 

loaded from the ImageNet dataset, excluding the top 

classification layer. The subsequent step involves the 

immobilization of the layers in the pre-trained model. 

Following this, a global average pooling layer is 

introduced to flatten the spatial representation of the 

preceding model's output. To mitigate overfitting, dropout 

is implemented as a regularization technique. Specifically, 

dropout layers with a dropout rate of 0.5 were strategically 

inserted into the network. Following a certain layer or set 

of layers, the first dropout layer was applied. 

Subsequently, after incorporating a fully connected layer 

with 1024 units and Rectified Linear Unit (ReLU) 

activation, another dropout layer with the same dropout 
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rate of 0.5 was added. This approach aims to enhance the 

generalization ability of the model by randomly dropping 

50% of the units during training, thereby reducing the 

likelihood of overfitting to the training data. ReLU is a 

linear function that produces zero for negative inputs, 

effectively deactivating the neuron as depicted in equation 

1. This strategy provides computational benefits as not all 

neurons are activated concurrently. Efficient updating of 

model parameters relies on calculating derivatives for both 

actual and expected values. The computational process 

involves the utilization of a loss function, is specified as 

binary cross entropy. The binary cross-entropy loss 

function evaluates the discrepancy between predicted and 

actual binary outcomes, facilitating the iterative 

refinement of model parameters during the training 

process. This selection underscores the model's objective 

of minimizing the disparity between predicted and ground 

truth labels, ultimately enhancing its performance in binary 

classification tasks. The loss function assumes a crucial 

role in iteratively updating model variables during the 

training procedure.  

 

𝑓(𝑥)  =  𝑚𝑎𝑥 (0, 𝑥)                          (1) 

 

The model is then compiled utilizing the Adam optimizer, 

incorporating specified parameters such as the learning 

rate, beta values, and epsilon. Throughout the training 

process, this optimizer will be employed to optimize the 

model. 

2.3 System specification 

The study utilized Python within the Google Colab 

environment as the programming language, leveraging 

TensorFlow and Keras as the primary libraries. The 

hardware configuration encompassed an Intel(R) Core 

(TM) i5-3337U CPU operating at a clock speed of 

1.80GHz, 4.00 GB of RAM, and the Windows 10 Pro 

operating system. 

3. RESULT AND DISCUSSION 

The assessment of crack classification outcomes involved 

the utilization of a confusion matrix, a widely employed 

tool in classification scenarios for evaluating classifier 

performance as depicted in Figure 1. The accuracy of the 

model reflects the percentage of images accurately 

classified based on their crack type. In contrast, the recall 

and precision scores assess the model's ability to accurately 

identify concrete cracks among all images identified as 

containing cracks and among all images overall, 

respectively, regardless of crack presence. The F1 score, 

resulting from the combination of precision and recall, 

provides a comprehensive assessment of the model's 

efficacy. The precise formulas utilized for these 

assessments are delineated in equations (2) to (5). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (2) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (3) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (4) 

F1𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (5) 

In the context of this research, True Positive (TP) signifies 

the number of crack images that have been accurately 

classified, whereas True Negative (TN) represents the 

correct classification of images without cracks. False 

Positive (FP) refers to the misclassification of images 

without cracks as having cracks, and False Negative (FN) 

indicates the misclassification of crack images as lacking 

cracks. The outcomes, encompassing TP, TN, FP, and FN, 

are illustrated in the binary confusion matrix. Given the 

binary nature of the classification task involving only two 

classes, namely "crack" and "non-crack," a binary 

confusion matrix is employed. These metrics play a crucial 

role in evaluating the precision and dependability of the 

model. As result, accuracy, precision, recall, and f1-scores 

value for all the four models are summarized in Table 2.  

The results reveal notable performance variations 

among the models in different metrics. DenseNet121 

emerges as the top performer in terms of accuracy, 

achieving the highest value of 0.860. When it comes to 

precision, MobilenetV2 outshines the other models with a 

remarkable score of 0.973. Xception exhibits the highest 

recall among the models, reaching 0.894. Lastly, in terms 

of F1 score, DenseNet121 leads with the highest value of 

0.877. Subsequently, as depicted in Table 3, various 

examples of crack identification utilizing the VGG16, 

MobilenetV2, Xception, and DenseNet121 classifier are 

showcased. VGG16 and DenseNet121 display strong 

capabilities, achieving perfect True Positive (TP) rates by 

correctly identifying all wall crack images. MobileNetV2 

and Xception also perform well with slightly lower TP 

rates, still commendable at 0.9 and 0.88 respectively, 

indicating their ability to recognize most cracks. However, 

significant differences emerge in False Positive (FP) 

classifications. Xception exhibits a relatively high FP rate 

of 0.47, suggesting a tendency to misclassify crack images 

as non-cracks. Conversely, Xception's elevated False 

Negative (FN) rate of 0.6 indicates difficulties in correctly 

identifying wall cracks, possibly due to limitations in 

feature extraction. Meanwhile, DenseNet121 demonstrates 

a slightly higher True Negative (TN) rate, excelling in 

recognizing non-crack images, while VGG16 and 

MobileNetV2 display higher FN rates, indicating less 

accurate detection of non-cracks wall. 

Each instance furnishes particulars such as the 

anticipated class and the associated prediction outcome for 

the imperfection. It illustrates the crack classification 

outcomes using the pre-trained models VGG16, 

MobilenetV2, Xception, and DenseNet121. The 

confidence percentage is a probability value obtained from 

the model's prediction, which uses a specified threshold to 

categorize images as positive or negative. The results are 

visualized in a grid of subplots for each tested image. The 

sample images indicate that the confidence levels for 

images 1 and 2 are highest for VGG16 and DenseNet121, 

while for MobileNetV2 and Xception, they are deemed 

satisfactory. 
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Figure 1. Confusion matrix for each model 

Table 2. Evaluating Performance Metrics for Different Pre-trained CNN Models 

Parameters VGG16 MobilenetV2 Xception DenseNet121 

Accuracy 0.742991 0.757009 0.831776 0.859813 

Precision 0.732877 0.973333 0.827068 0.884298 

Recall 0.869919 0.593496 0.894309 0.869919 

F1 Score 0.795539 0.737374 0.859375 0.877049 
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Table 3. Sample images for crack prediction using Different Pre-trained CNN Models 

 VGG16 MobilenetV2 Xception DenseNet121 
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4. LIMITATION 

While our study contributes valuable insights into masonry 

crack identification using Convolutional Neural Network 

(CNN) models, it is essential to acknowledge several 

limitations that may impact the interpretation and 

generalizability of our findings: 

a. Limited dataset size: The dataset used for masonry 

wall crack identification is relatively small, containing 

fewer than 1000 images. This limited dataset size may 

affect the generalizability of the findings and the 

robustness of the trained models, potentially leading to 

overfitting on the available data. 

b. Dependency on pre-trained models: The study 

heavily relies on pre-trained models such as VGG16, 

MobileNetV2, Xception, and DenseNet121 for feature 

extraction and fine-tuning. While pre-trained models 

offer advantages in terms of efficiency and 

effectiveness, their performance may influenced by the 

characteristics of the pre-training datasets and may not 

fully generalize to the masonry crack identification 

task. 

c. Sensitivity to image quality: The performance of the 

CNN models may be sensitive to variations in image 

quality, such as lighting conditions, resolution, and 

image artifacts. In real-world applications, variations in 

image quality can significantly impact the accuracy and 

reliability of crack detection algorithms. 

d. Limited evaluation metrics: The evaluation of model 

performance primarily focuses on accuracy, precision, 

recall, and F1 score. While these metrics provide 

insights into the overall performance of the models, 

they may not capture specific nuances or trade-offs in 

crack detection tasks, such as the detection of small or 

subtle cracks versus larger, more prominent cracks. 

e. Generalization to diverse masonry structures: The 

study's findings may be specific to the characteristics 

of the dataset and may not fully generalize to diverse 

masonry structures with varying materials, 

construction methods, and crack patterns. Evaluating 

model performance across a broader range of masonry 

structures could provide a more comprehensive 

understanding of their effectiveness in real-world 

applications. 

5. CONCLUSION 

In conclusion, this research addresses the critical task of 

identifying masonry wall cracks with limited data, 

leveraging advanced Convolutional Neural Network 

(CNN) models, including VGG16, MobileNetV2, 

Xception, and DenseNet121. The comprehensive 

evaluation, conducted on a dataset comprising 856 

masonry wall images, reveals the superior performance of 

DenseNet121. With a notable accuracy of 85.98%, 

DenseNet121 excels in accurately identifying masonry 

wall cracks, emphasizing its effectiveness for this 

challenging task with limited data. Furthermore, our 

models achieved commendable performance metrics, 

including precision of 97.33% by MobileNetV2, recall of 

89.43% by Xception, and F1 score of 87.70% by 

DenseNet121, providing additional validation of the 

efficacy in masonry crack identification. This study not 

only advances the field of structural health monitoring but 

also underscores the practical applicability of CNN models 

in real-world scenarios, particularly in the crucial domain 

of masonry crack identification. Our forthcoming research 

endeavors will revolve around the integration of the 

proposed models into practical applications within the 

realm of detecting cracks in brickwork masonry. These 

applications will be designed to operate on camera-

equipped handheld devices, including commercial 

Unmanned Aerial Vehicle (UAVs), and robotic platforms. 

By implementing these models in real-world scenarios, 

such as building inspections, we aim to assess their 

effectiveness, reliability, and adaptability. It is imperative 

to acknowledge that the current capabilities of the 

proposed methods are confined to the detection of cracks 

in brickwork masonry without providing information on 

their severity. Consequently, we intend to expand our 

dataset and delve into deep learning methodologies to 

gauge the extent of identified cracks. This strategic 

enhancement aims to elevate the accuracy and 

applicability of our models in real-world settings. 
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