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Abstract: The vegetation stage of Durio Zibethinus trees is characterized by active root development, leaf expansion, and the 
initiation of reproductive structures. During this crucial phase, adequate irrigation is necessary to satisfy the trees' water 
requirements. A well-irrigated durian plantation encourages effective nutrient absorption, resulting in healthier trees with 
increased pest and disease resistance. Understanding the water needs of durian trees is essential for irrigation management to 
optimize water application and prevent water stress and waterlogging. Typically, sensors measure the soil moisture within the 
root zone. However, installing soil moisture sensors at each tree is laborious and prohibitively expensive. Using climatic data 
to forecast the value is a viable option in such a scenario. Climate data are used to create soil moisture predictions incorporated 
into the irrigation model. This research employs Ant Colony Optimization- Support Vector Regression (ACO-SVR) to predict 
soil moisture levels. The model is compared to other optimization methods, and its accuracy is assessed using statistical 
methods. Finally, the prediction models' findings determine the irrigation volume and schedule.  
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1. INTRODUCTION 
Durio Zibethinus, also known as the Durian, is a king of 
fruits, is a tropical Southeast Asian fruit with a notable 
reputation for its strong odor and exceptional flavor 
richness. The fruit is harvested twice a year and is 
renowned for its economic significance and high demand 
both locally and internationally. Many Malaysian farmers, 
predominantly smallholders, cultivate durian due to its 
commercial importance. In Malaysia, durian boasts the 
largest planted area compared to other fruits [1]. 
Depending on their varieties, durian trees typically mature 
within three (3) to seven (7) years [2]. As depicted in 
Figure 1, the durian tree cultivation process comprises five 
significant stages: the planting stage, the vegetative stage, 
the blossoming stage, the harvesting stage, and the 
hibernation stage.   

Figure 1. Durian Planting Stages 
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The vegetative stage, which is both the most prolonged 
and critical phase in durian tree cultivation, requires 
precise water management. This phase typically spans up 
to four (4) years for most durian varieties, during which 
tree growth is continuously monitored [3]. Farmers closely 
assess elements such as the colour and quality of the 
foliage, the trunk's diameter, and the tree's height, all of 
which significantly impact overall growth. As a result, 
regular irrigation and fertilization are indispensable. 
Notably, for durian trees, water takes precedence over 
fertilizer in terms of importance [4]. During this stage, 
ensuring the correct amount of water is applied to each tree 
is of utmost importance, and proper irrigation practices are 
essential to guarantee the optimal water supply. 

2. LITERATURE REVIEW  

2.1 Soil Moisture Prediction 
Understanding soil moisture is essential in agriculture and 
environmental science, given the significant impact on 
plant growth, water resource management, and climate 
studies. Soil moisture refers to the quantity of water in the 
soil, and knowing the soil moisture value is essential. 
Knowing soil moisture levels is highly important to 
enhancing the efficiency of irrigation techniques. Soil 
moisture data is utilized by farmers to make decisions 
regarding irrigation practices, thereby guaranteeing that 
crops receive the precise amount of water necessary to 
maximize tree growth. This practice helps minimize water 
wastage and reduce crop damage caused by drought, hence 
enhancing agricultural efficiency [5]. 

Furthermore, soil moisture is crucial in hydrological 
models, especially in water resource management. 
Understanding the soil moisture content helps predict and 
manage water runoff, groundwater state, and the 
availability of water resources to manage water scarcity 
and maintain the water supply [6]. In addition, 
understanding soil moisture data is crucial for climate 
studies and weather forecasting. The heat impacts and 
ground moisture between the Earth's surface and the 
atmosphere influence local weather patterns and long-term 
climate trends [7]. The significance of soil moisture is 
absolute from both academic and practical perspectives. 
Various methodologies and technological advancements, 
such as utilizing soil moisture sensors and satellite-based 
remote sensing, have been developed to evaluate soil 
moisture levels effectively. These data offer significant 
information that can be utilized to enhance agricultural 
practices, manage water resources effectively, and give 
further understanding of climate change [8]. 

Soil moisture is a metric that quantifies the amount of 
remaining water in the soil. A soil moisture sensor is used 
to determine this value. However, having numerous soil 
moisture sensors on a farm is impractical and inefficient 
due to the expense and labor needs. In addition, the 
coverage area of a particular soil moisture sensor is 
unknown [9]. Forecasting soil moisture readings to depict 
the agricultural region is the solution. The moisture content 
of the soil is a crucial determinant when analyzing the soil's 
performance concerning irrigation application. It 
establishes the essential elements required for a logical 

application of irrigated agriculture, especially in arid or 
semiarid regions where water scarcity and poor water 
quality can hinder crop development and yield. 

Numerous studies have used machine learning to 
predict soil moisture. The forecast depends on external 
factors such as meteorological information, electrical 
conductivity (EC), and soil salt [10]. Many machine 
learning techniques have been applied for prediction. For 
the prediction, numerous machine learning algorithms 
have been used employing regression techniques, 
including Support Vector Regression (SVR) and linear 
regression, to forecast soil moisture [11]. However, the 
paper did not provide specifics regarding the algorithm's 
input. Based on data from precipitation and 
evapotranspiration, SVR can forecast drought conditions 
for use in agriculture [12]. Using a multi-layer soil sensor, 
researchers used SVR to estimate soil moisture [13]. 
Artificial neural networks (ANN) have also been used to 
forecast soil moisture [14], [15]. However, pre-processing 
techniques were used on the raw data to remove partial 
data due to the unpredictably changing weather. 

Support Vector Regression (SVR) was employed by 
[11], [16], [17], [18], [19] the most frequently when 
modelling soil moisture. Using precipitation and 
evapotranspiration data, SVR can forecast drought 
conditions for agricultural applications [12]. Using a multi-
layer soil sensor, researchers employed SVR to estimate 
soil moisture [13]. However, the performance of SVR 
models can be highly dependent on the selection of their 
hyperparameters and optimizing these hyperparameters is 
essential for increasing the precision of soil moisture 
predictions. 

A method based on the Particle Swarm Optimization 
algorithm (PSO) has been proposed [20] for SVR-based 
soil moisture prediction using remote sensing data. The 
outcomes demonstrated that the proposed method could 
successfully optimize the SVR model and improve its 
prediction accuracy. Using a genetic algorithm to optimize 
the model parameters revealed that the model outperforms 
conventional SVR models [21]. The efficacy of an SVR-
based model for estimating soil moisture using remote 
sensing data was compared to that of other machine 
learning algorithms [22]. Consequently, it was determined 
that the SVR model had the highest level of accuracy and 
that its performance could be improved by optimizing its 
hyperparameters. Using remotely sensed data, various 
machine learning algorithms, including SVR, were 
contrasted for estimating soil moisture [23]. 

Moreover, a Grid Search algorithm-based optimization 
method for SVR was proposed and found to enhance the 
efficacy of the SVR model significantly. SVR and multiple 
linear regression were evaluated for their ability to predict 
soil moisture, and a genetic algorithm-based optimization 
method for SVR was proposed [24]. It was discovered that 
the SVR model with optimized hyperparameters 
outperformed the multiple linear regression model in terms 
of accuracy. 

The previous results highlight the necessity for 
additional studies to address limitations in previous 
research relevant to the improvement of SVR models for 
accurate soil moisture prediction. The potential to improve 
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the performance of SVR models can be observed by 
utilizing several optimization techniques, such as particle 
swarm optimization, grid search, and genetic algorithms. 
Nevertheless, it is essential to understand that the most 
suitable methodology may differ based on the dataset and 
problem within the study. Hence, before selecting the most 
suited optimization approach, it is crucial to perform a 
comprehensive evaluation and comparison of different 
optimization methodologies. 

2.2 Irrigation Management 
The Soil-Plant-Atmosphere Continuum (SPAC) model, 
initially proposed by B.J. van den Honert in 1948, provides 
a fundamental framework for understanding the dynamics 
of water transport in the soil-plant-atmosphere system. The 
present model elucidates the complex interconnections 
among these constituents and carries significant 
ramifications for irrigation methodologies [25]. The 
concept of transpiration is considered a fundamental 
principle within the SPAC model. The process, which 
plays a vital role in the transportation of water throughout 
plants, has a strong correlation with the principles outlined 
in the model. Transpiration is a physiological process in 
plants whereby water vapor is emitted through 
microscopic apertures known as stomata, facilitated by the 
tension generated by evaporation occurring on the surfaces 
of leaves. 

The SPAC model is an indispensable tool for farmers 
and agricultural practitioners to manage irrigation 
effectively. This model offers valuable insights for making 
informed decisions on irrigation timing, quantity, and 
methods. Among the crucial factors the model highlights, 
soil water potential takes center stage. This parameter is 
influenced by a range of factors, such as soil texture, 
organic matter concentration, and nutrient availability, and 
it plays a pivotal role in determining the rate at which plant 
roots absorb water. For this reason, soil water potential is 
a vital component for improving irrigation techniques [26]. 
In addition, the SPAC model places significant emphasis 
on maintaining an ideal soil moisture level. Ensuring 
adequate water for plants facilitates their optimal growth 
and developmental processes. Furthermore, the model 
emphasizes the significance of transpiration in the 
regulation of plant temperature and the absorption of 
nutrients. Implementing appropriate irrigation techniques 
is crucial in managing excessive transpiration in times of 
drought, hence guaranteeing a consistent water supply for 
plants [27]. 

The use of technology developments in irrigation 
management has proven advantageous for contemporary 
agriculture. Precision agricultural approaches leverage 
data from multiple sources, such as soil moisture sensors 
and weather forecasts, to optimize irrigation procedures. 
The utilization of data-driven methodologies facilitates the 
alignment of irrigation practices with the principles of the 
SPAC model, leading to a decrease in water wastage and 
an enhancement in crop yields. The field of precision 
agriculture has yielded findings that highlight the capacity 
to enhance irrigation and crop management practices, 
hence increasing the efficiency and sustainability of 
agricultural systems [28]. 

The weather, soil moisture readings, runoff, and 
infiltration all influence the quantity of water required 
[29]. Numerous studies and techniques have been 
conducted to correlate these factors with irrigation 
systems, with the Water Balance approach being the most 
widely used [30]. As shown in Figure 2, the Water Balance 
approach represents soil moisture as a function of water 
streaming into the soil through irrigation and precipitation 
and water flowing out through evapotranspiration (Et), 
runoff, and deep percolation below the plant's root zone. In 
contrast, Water Balance reflects the soil moisture value, 
the quantity of water remaining in the soil at a given time. 
Consequently, it is essential to determine the soil moisture 
content (θs). Several soil parameters, such as the wilting 
point, field capacity, and saturated zone, must be 
determined to develop the optimal irrigation strategy based 
on the water-balanced model. Previous research has 
demonstrated that soil moisture content is one factor 
considered when administering irrigation systems [31], 
[32]. It can be used daily and annually to monitor crop 
response and water intake. The inventive irrigation system 
will also be designed to respond to varying soil moisture 
content levels, allowing for more tailored irrigation [33]. 

 

 
Figure 2. Water Balance Model 

There are two irrigation strategies using Artificial 
Intelligence (AI): Open Loop Irrigation and Close Loop 
Irrigation. Open Loop AI Irrigation is relatively 
straightforward; the irrigation volume threshold is 
calculated using a specific AI soil moisture model, and 
irrigation is initiated and terminated based on the volume 
estimate. Close Loop AI Irrigation is considerably more 
advanced, involving intelligent processes before and 
during irrigation. In recent years, numerous studies have 
been conducted to determine the applicability of Artificial 
Neural Networks to irrigation scheduling. ANNs were 
used to develop and validate data-driven models for 
forecasting the reference canopy temperatures necessary to 
compute sugar beetroot and wine grape water stress [34]. 
The models could estimate reference temperatures and 
automate the generation of the crop-water-stress index for 
efficient crop-water stress evaluation. Following the 
implementation of ANN in irrigation scheduling, water 
and energy savings were demonstrated, with soil moisture 
and physical characteristics such as flow rate and weather 
data functioning as model inputs [35]. 

A system of expert-controlled irrigation equips farmers 
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with the knowledge required to accurately anticipate the 
amount of crop water required at the optimal time, weather, 
and growing medium parameters, such as temperature, 
humidity, and soil type [36]. Numerous academicians have 
used expert systems to solve a wide range of agricultural 
issues, such as irrigation scheduling [37], irrigation in arid 
conditions [38], and drip irrigation system design [39]. The 
efficiency with which knowledge is acquired influences 
the performance of an expert system. Process errors pose a 
significant threat to the dependability and efficacy of 
expert systems. 

Previous studies conducted on the development of an 
ideal irrigation model have identified some limitations. 
The existing knowledge gaps include the requirement for 
an in-depth understanding of the relationships among soil, 
plants, and the atmosphere, combined with the necessity 
for enhanced data-driven methodologies in irrigation 
management. Furthermore, it is vital to investigate the 
effects of climate change on irrigation methods and 
explore possibilities to include new technologies to 
maximize water utilization. In general, the deficiencies in 
prior research highlight the significance of constructing 
comprehensive and technologically sophisticated 
irrigation frameworks to address the escalating 
complexities in agricultural practices and water resource 
governance. 

3. METHODOLOGY 

3.1 Site Setup 
The setup occurred at the MIE Agro Durian Farm in 
Selangor; Malaysia located at 3.38551/101.45574. In the 
farm, there are 5,000 durian trees planted in four blocks, 
with multiple sub-blocks in each of which the trees are 
planted at terraces. The number of terraces varies between 
subblocks, and each terrace's incline gradient depends on 
the subblock's characteristics. For irrigation purposes, each 
sub-block is equipped with a 2200-litre water reservoir. 
Each tank is additionally fitted with a pump for irrigation 
water discharge. As depicted in Figure 3, the test was 
conducted in a section of Sub-block B2 containing four 
terraces. Each terrace consists of four trees spaced 10 
meters apart. On the same day, twelve six-month-old trees 
were planted in a one-meter-deep trench. Water was 
drizzled on each tree using a 180-microjet spray. For 
optimal root absorption, water was dispersed within the 
tree's canopy during irrigation [3]. Figures 4 and 5 depict 
the farm's terrace configuration and microjet irrigation. 
 

 
Figure 3. Arial view for MIE Durian Farm and Sub-block 

B2 (highlighted) 

 
Figure 4. Terrace setup for durian plantation 

 

Figure 5. Microject Irrigation Spray 

3.2 Soil Moisture and Weather Station 
The soil moisture sensors were installed within sub-block 
B2's five (5) terraces, each containing four trees. Each tree 
was fitted with a sensor to verify the soil moisture data. As 
depicted in Figure 6, they were planted at a depth of 10 cm, 
corresponding to the tree's current root zone depth. 
Individual RS-485 connections were made between the 
sensors and the LoRa controller. Each hour, data was 
transmitted to the cloud system. 

A UBIQ Davis Vantage Pro 2 weather station was 
installed at the highest point of the land to capture 
meteorological data by measuring the temperature, 
humidity, wind speed, wind direction, precipitation, and 
solar radiation. It is powered by a battery with a solar 
charging module to replenish the onboard supercapacitor; 
during the day, the weather station is powered by a 
capacitor and at night, by batteries [40]. The station is 
mounted on a 2-meter-tall pole that extends from the 
ground. Figure 7 illustrates the installation of the station. 
Weather station data is uploaded to the cloud via the 3G 
Network to a gateway every fifteen minutes. Figure 8 
depicts the installation architecture for the soil moisture 
sensor and the weather station. 

 

 
Figure 6. The installed soil moisture sensor 
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Figure 7. Weather Station install at the farm. 

 

Figure 8. Sensor installation architecture. 

3.3 Ant Colony Optimization- Support Vector 
Regression (ACO-SVR) 

Support Vector Regression (SVR) requires tuning 
hyperparameters to ensure model precision. The procedure 
of the fine-tuning is known as Optimization. As this work 
implements the Gaussian Radial Basis Function (RBF) 
Kernel, three (3) hyperparameters, namely Constraints (C), 
Boundary Line (ε) and γ, must be configured. The 
hyperparameter values selection reflects the error rate of 
the model. The lower the hyperparameter values will 
produce the less error and vice versa. However, this rule of 
thumb is not universal and only occasionally pertains to 
specific datasets. Figure 9 below shows the general graph 
for SVR model and its hyperparameters. 

 

Figure 9. SVR general model and hyperparameters 

The C, ε and γ parameters are pivotal in determining the 
behavior and performance of the SVR model. The C 
parameter balances the trade-off between a smooth 
decision boundary and accurately classifying training 
points. A lower C value results in a smoother, more 
straightforward decision surface. In contrast, a higher C 

value aims for the correct classification of all training data 
by allowing the model to choose more complex 
boundaries. Nevertheless, a high C value can cause 
overfitting due to the model's excessive proximity to the 
training data, while a low value can result in underfitting. 
The ε parameter governs the epsilon-tube's width, 
penalizing points outside the tube. A larger ε value 
incorporates more points into the tube, making the model 
less sensitive to errors and thus less precise with training 
data. Conversely, a higher ε value makes the model overly 
sensitive to training data noise. Given the RBF kernel's 
usage in the model, fine-tuning the Gamma value is crucial 
for achieving optimal SVR performance. A higher γ value 
increases the decision boundary's sensitivity to nearby data 
points, leading to a more complex boundary that aims for 
correct classification, potentially causing overfitting. 
Conversely, a low γ value yields a smoother decision 
boundary with less influence from individual data points, 
risking underfitting. 

Ant Colony Optimization (ACO) depicts the behavior 
of ant colonies, in which ants exist collectively instead of 
independently. Their behavior is determined by the goal of 
colony survival rather than individual survival. When 
searching for food, ants randomly investigate the area 
encircling their nest. As they travel, ants leave behind a 
chemical trail of pheromones. Ants can detect the 
pheromones of others. Probabilistically, they tend to 
choose paths with high pheromone concentrations. When 
an ant discovers a food source, it evaluates its abundance 
and quality before transporting a portion back to its habitat. 
On the return journey, the quantity of pheromones may 
depend on the quantity and quality of food ingested. The 
pheromone trails will lead other ants to the food source 
[41]. As many ants use the same path, more pheromones 
will be updated on the path. If the food source is far away, 
the quantity of pheromones will decrease due to 
evaporation. The movement cycle of ants from their 
colony to their food source and back is shown in Figures 
10 (a) to (f) below. 

 

 
Figure 10. Ants’ movement from the colony to the food 

source and return 

The analysis of ant movement architecture reveals that 
pheromone plays a crucial role in the ants' ability to 
effectively choose the most efficient path. The Mean 
Squared Error (MSE) is employed in this study to establish 
the quantity of pheromone. Additionally, in this work the 
pheromone level was set to reduce over-time if the trail 
was no longer in used. The input variables utilized in the 
model for predicting soil moisture are temperature, 
humidity, solar radiation, evapotranspiration, and terrace 
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height. The site consists of a total of five terraces. For 
training, data from the first three terraces (Terrace 1 to 
Terrace 3) is utilized, while data from the last two terraces 
(Terrace 4 and Terrace 5) is employed for testing. The 
following pseudo-code demonstrates the application of 
ACO-SVR in this study for determining the optimal 
hyperparameter values. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Each pheromone's deposit level, total pheromone 

update and path probability are stored in a table, and the 
content of the table will be updated accordingly as per ant 
movement. During ants' initialization at the start, to ease 
the computability process, pheromones deposit level, total 
pheromone update and path probability are set to one (1), 
and the values will decrease until the process terminates. 
The pheromone vaporization rate in ACO is critical, 
preventing the algorithm from becoming entrenched in 
suboptimal solutions as the artificial pheromone trails 
naturally diminish over time. A higher evaporation rate 
fosters algorithmic exploration, while a lower rate 
enhances exploitation. Determining the ideal pheromone 
vaporization rate hinges on the specific problem and may 
necessitate experimentation. Although values typically 
range between 0.1 and 0.5, these are not rigid guidelines. 
Investigating the problem domain's characteristics, scale, 
and the desired balance between exploration and 
exploitation is crucial. Fine-tuning an ACO algorithm for 
a specific application involves adjusting the pheromone 
evaporation rate. Researchers and practitioners typically 
conduct experiments to identify the values that yield 
optimal results for their problem instances. 

Table 1.0 below shows the equation proposed in this 
work to calculate pheromone deposit level, total 
pheromone update and path probability in applying ACO-
SVR to predict the soil moisture with vaporization rate is 
set to 0.5. 

Table 1. Formula for ACO-SVR applied to predict the 
soil moisture. 

Pheromone deposit level 1
𝑀𝑀𝑀𝑀𝑀𝑀

 

Total Pheromone update [(1 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
× 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒]
+ 𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡)] 

Path probability 𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
∑  𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐𝑒𝑒𝑑𝑑

 

3.4 Soil Moisture Balance Irrigation System 
Ensuring the survival and health of trees is contingent upon 
providing appropriate water levels. Inadequate or 
excessive irrigation can harm the growth and vitality of 
trees. Understanding the Chequebook Deficit is crucial to 
determining the precise irrigation needs. This metric 
represents the percentage difference between the soil 
moisture content at field capacity and the current soil 
moisture content in the root zone. It quantifies the amount 
of water required to reach field capacity in the root zone. 
Therefore, the first step necessary for adequate irrigation 
is determining the area's soil water. This can be 
accomplished using either manual or scientific techniques 
[42].  

As the objective of this study is to provide a precise 
irrigation system for durian farming, the soil sample was 
sent to a laboratory for analysis. This examination was 
conducted to discover the components and characteristics 
of the soil. The actual soil type is defined based on the 
percentage of each soil component in the soil which are 
Clay, Sand, and Silt. Figure 11 shows a soil triangle used 
to select the final type of soil based on these components. 

Saturation (θs), Field Capacity (θfc) and Wilting Point 
(θwp) are the aspects of soil moisture content that are crucial 
for irrigation systems. In saturation state, the soil is filled 
with water and no air is available. Thus, significant surface 
runoff will occur at this stage. At field capacity, the amount 
of water and air in the soil is balanced. Therefore, the soil 
is in a stable state and the plant roots manage to expend 
and absorb water from the soil freely. At Wilting Point 
state, the soil is filled with air with zero amount of water. 
The soil is extremely dry, and it is insufficient for plant 
roots to extract water from it [43]. The values of the three 
variables are soil dependent and can be observed from 
specific soil standard, such as Malaysia Soil Standard [44] 
and USDA Soil Standard [45] 

 

 
Figure 11. Soil Triangle (source: “Soil Types – 

RainMachine,” n.d.) 

In this work, the irrigation proposed is based on Field 
Capacity and Wilting Point value. The amount of irrigation 
volume required is calculated as in the steps below: 

 

1. Initialize the ants with hyperparameters. 
2. Start Iteration: 
3.   Repeat until termination criteria is met: 
4.   For each ant: 
5.      Apply SVR to the data to predict the Soil Moisture. 
6.     Calculate MSE of the model. 
7.     Get pheromone deposit level. 
8.     Update pheromone level with vaporization. 
9.     Calculate the probability of the path. 
10.   Move the end based on the probability. 
11.   Update the best solution. 
12. End of iteration 
13. Return the best solution found. 
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• Step 1: Calculate the soil threshold value, θx by using 
the Eq. 1 below. 

 
𝜃𝜃𝑥𝑥 = 𝜃𝜃𝑓𝑓𝑓𝑓 − (𝐴𝐴𝑀𝑀𝑀𝑀𝐴𝐴 𝑥𝑥 (𝜃𝜃𝑓𝑓𝑓𝑓 − 𝜃𝜃𝑤𝑤𝑤𝑤 ) (1) 

 
where ASMD is Available Soil Moisture Deficit which the 
allowance allowed for the trees before they are in deficit 
state. Assuming ASMD durian tree is 0.2 which is 20%. 
 
• Step 2: Calculate weighted average soil moisture, θa at 

root zone level by using Eq. 2. 
 

𝜃𝜃𝑎𝑎 = (𝜃𝜃𝑆𝑆𝑆𝑆 𝑥𝑥 𝐴𝐴𝑠𝑠)/𝑅𝑅𝑅𝑅𝐴𝐴 (2) 
 
Where θSM is the predicted soil moisture value from the 
sensor, Ds is Sensor Depth and RZD is the Root Zone 
Depth, where RZD for less than 1-year durian tree is 0.1-
meter depth. 
 
• Step 3: Compare θx and θa values. If θa is lower than θx, 

calculate the irrigation volume as in Step 4. If higher, 
no irrigation is required. 

 
• Step 4: Calculate the irrigation volume, Virr by using 

Eq. 3 below. 
 
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = �𝜃𝜃𝑓𝑓𝑓𝑓 − 𝜃𝜃𝑎𝑎� ∗ 𝑅𝑅𝑅𝑅𝐴𝐴 ∗ 1000  (3) 

 
where the Virr is in liter. 

4. RESULTS AND DISCUSSION 
This section presents the results obtained using the Ant 
Colony Optimization-Support Vector Regression (ACO-
SVR) method, along with a comparison to other 
optimization techniques. In addition, the irrigation volume 
determined using the proposed approach is also provided. 

4.1 Collected Data 
This section provides an overview of the on-site data, 
encompassing weather data such as temperature, humidity, 
solar radiation, and rainfall. Additionally, soil moisture 
sensor data for Terrace 1 to Terrace 5 is included. It is 
essential to highlight that soil moisture information for 
Terrace 1 to Terrace 3 serves as training data, while 
Terrace 4 and Terrace 5 are designated for testing 
purposes. The data collection period spans from 3 
November 2020 to 30 August 2023, and all values are 
based on average daily data. Figure 12 and Figure 13 show 
weather data collected at site which consist of Daily 
Average Temperature, Daily Average Humidity, Daily 
Total ET, and Daily Total Rain. 
 

 
Figure 12. Average Daily Temperature and Humidity 

from 3 Nov 2020 to 30 Aug 2023 

 

Figure 13. Total Daily ET and Rain from 3 Nov 2020 to 
30 Aug 2023 

The data collected for this study reveals consistent daily 
average temperatures and humidity levels, ranging from 
23℃ to 30℃ and 55% to 95%, respectively. Noteworthy 
is the absence of significant fluctuations in temperature 
and humidity throughout the data collection period. 
Evapotranspiration (ET) readings remained within the 
average daily range of 4 mm to 6 mm, aligning with 
Malaysia's established average daily ET [46]. However, a 
deviation occurred in February 2023, with a recorded value 
exceeding 7 mm/day. Rainfall quantities at the research 
site exhibited regularity, with a consistent daily average of 
20 mm on certain days. Monthly observations indicated 
precipitation every month, although 2023 experienced 
reduced rainfall compared to the preceding year. Notably, 
there was a less absence of rain between February and 
March 2023, constituting a departure from the typical 
weather patterns. A singular instance of heavy rainfall (60 
mm) was observed in June 2023. 
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Figure 14. Daily Average Soil Moisture for Terrace 1 to 
Terrace 3 from 3 Nov 2020 to 30 Aug 2023 

 

Figure 15. Daily Average Soil Moisture for Terrace 4 and 
Terrace 5 from 3 Nov 2020 to 30 Aug 2023. 

Figure 14 and Figure 15 above show the average soil 
moisture values collected from site at Terrace 1 to Terrace 
5 in sub-block B2. The data was gathered between 3 
November 2020 and 31 August 2023. Each tree in each 
row was equipped with four (4) sensors, and the average 
soil moisture was calculated daily to represent the average 
soil moisture in that row. According to the data, all 
terraces' maximum soil moisture content is less than 40%, 
and the minimum is less than 20%. There is inconsistency 
in the data, with some rows displaying greater values than 
others. This is because the height of the rows differs, with 
Terrace 1 being the highest and Terrace 5 being the lowest. 
This is because the irrigation reservoir was located at 
Terrace 1, so water flowed from the high (Terrace 1) to the 
low (Terrace 5) during irrigation. Considering water runoff 
and flow, the soil moisture reading for the lower row will 
be greater than the upper row. 

 

 

4.2 ACO-SVR Soil Moisture 
ACO-SVR is a memory- hungry algorithm that requires a 
lot of memory resources to complete the process. The total 
cycle duration in the algorithm exhibits a strong 
dependency on the configuration of both the total number 
of ants and the number of iterations as mentioned in 
Section 3.3 with minimum two (2) ants per process. For 
instance, an ACO-SVR configuration employing 10 ants 
with five (5) iterations results in 50 cycles, demonstrating 
a comparable total cycle duration to that of five (5) ants 
with 10 iterations. Notably, ACO-SVR operates as a multi-
processing algorithm, necessitating the simultaneous 
execution of all ants. Consequently, an increased number 
of ants imposes greater demands on processing resources, 
highlighting the resource-intensive nature of the algorithm. 
A bigger quantity of ants with a smaller number of 
iterations requires higher computational resources, while a 
smaller quantity of ants with more iterations results in a 
longer processing time with less resources. Figure 15 
below shows the different amount of time required to run 
ACO-SVR for 120 cycles with different total ants and 
iteration setup as shown in Table 2.0. Noted that the model 
ran in Python and the process was executed using Intel 
Processor i9-13900H with GPU NVIDIA GForce RTX 
4050 with 40GB RAM on-board memory. 

Table 2. Ants and Iteration combination for 120 cycles 

Total Ants Total Iterations Total cycle 
2 60 120 
3 40 120 
4 30 120 
5 24 120 
6 20 120 
8 15 120 

10 12 120 
 

 
Figure 16. CPU Usage and Time Processing reflecting 

total ants and iterations for 120 cycles. 

Figure 16 illustrates the correlation between total ants, 
CPU usage, total iterations, and processing time. 
Combining two ants with 60 iterations requires 0.2% CPU 
and 9.1 seconds to complete the process while using 10 
ants with 12 iterations demands 1.5% CPU and 4.2 
seconds. The disparity indicates that a higher number of 
ants will increase CPU usage due to multi-processing, as 
all ants are seeking better Mean Squared Error (MSE) 
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based on previous pheromone values left by their 
predecessors. However, if fewer ants are set with higher 
iterations, each ant will execute more episodes in path 
searching, consequently taking much longer to meet the 
termination criteria. Since this research employs the latest 
processor and GPU versions, memory usage and 
processing time are less significant concerns. 
Nevertheless, achieving the correct combination of ants 
and iterations is imperative to ensure a smooth process. 

 

 
Figure 17. Calculated MSE for six (6) ants with 20 

iterations 

Figure 17 illustrates the Mean Squared Error (MSE) 
computed for six (6) ants across 20 iterations in this study. 
The MSE values represent the accuracy between the actual 
and predicted data for the test dataset. Initially, as 
hyperparameters are randomly assigned, the MSE values 
differ among ants during the first iteration. However, by 
the fifth iteration, the calculated MSE starts decreasing, 
with Ant 3 and Ant 5 achieving the lowest MSE, leading 
to updates in total pheromone values and path probability 
values. Eventually, by the 9th iteration, all ants converge 
at the lowest MSE values. At this point, ants cease 
searching for new hyperparameters, having identified the 
optimal MSE values for the training dataset. Despite 
reaching the lowest MSE, the process continues without 
updating the best hyperparameters until it reaches the 
termination state at the 20th iteration. 

The optimization of Support Vector Regression (SVR) 
parameters is a topic addressed in the literature, with four 
typically employed strategies. GridSearch Support Vector 
Regression (SVR), Genetic Algorithm (GA-SVR), and 
Particle Swarm Optimization (PSO-SVR) are among the 
most recognized optimization approaches employed by 
researchers. The primary aim of the optimization technique 
is to ascertain the best value for the Regularization Value 
(C), as well as the distances between the hyperplane and 
vectors (ε), and the impacts of the hyperplane and vectors 
(γ), all of which are dependent on the training dataset. The 
experimental data was subjected to using the Radial Basis 
Function (RBF) as the kernel.  

In Table 3.0, a comparison is shown between the Mean 
Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), and Mean Squared Error (MSE) as evaluation 
metrics for the optimization process. Furthermore, the 
Random (Unoptimized) SVR was subjected to random 
assignment of hyper-parameter values to evaluate its 

performance compared to the Optimized SVR, employing 
the previously mentioned evaluation metrics. 

Table 3. Result comparison among all tested optimization 
 ACO-

SVR 
Random 

SVR 
GridSearch 

SVR 
GA-
SVR 

PSO-
SVR 

𝐶𝐶 7.7 10 0.1 1 14.495 
ε 0.16 15 0.003 1.988 1.0 
γ 1.0 5 0.1 1.435 2.796 

𝑀𝑀𝑀𝑀𝑀𝑀 0.391 7.639 3.054 3.055 2.282 
𝑀𝑀𝐴𝐴𝑀𝑀 0.567 2.477 1.474 1.587 1.210 

𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 (%) 0.02 9.2 5.3 5.8 4.4 
 

Theoretically, a Mean Squared Error (MSE) score of 0 
indicates an entirely accurate model. Therefore, as the 
model demonstrates enhancement, the related value 
exhibits a drop. The analysis of the MSE reveals that the 
ACO-SVR model demonstrates the lowest MSE values, 
signifying its greater precision in forecasting absolute soil 
moisture levels. The PSO-SVR and GridSearch-SVR 
models subsequently follow this. However, the difference 
in MSE between GridSearch-SVR and GA-SVR is 
substantial, which means that both are comparable in 
performance. In contrast to the approach mentioned above, 
it is seen that the MAE for ACO-SVR exhibits the lowest 
value, followed by PSO-SVR and GridSearch-SVR. Of all 
five models examined, all demonstrated MAPE values that 
were below 10%. The models exhibit a notable degree of 
precision in the predictions they produce. Hence, by the 
integration of these data, it can be inferred that ACO-SVR 
exhibits the highest level of performance, followed by 
PSO-SVR, GridSearch SVR, PSO-SVR, and Random 
SVR, in terms of their prediction capacities for soil 
moisture. 

4.3 Irrigation Volume 
The calculation of irrigation volume is determined by 

the soil moisture levels and the soil characteristics, which 
vary depending on the kind of soil. The present study 
utilized Sandy Clay Loam soil, with a field capacity (θfc) 
value of 0.36 and a wilting point (θwp) value of 0.16. The 
durian tree's age at the time of the experiment was six 
months. The trees' Root Zone Depth (RZD) was measured 
to be 0.1 meters in depth. The sensors were positioned at a 
depth of 0.1 meters, equivalent to the level of the RZD. 
The water pressure generated by the microjet irrigation 
system was quantified at a rate of 0.5 liters per minute. 

The ACO-SVR algorithm has superior accuracy in 
predicting results. Therefore, using ACO-SVR is deemed 
appropriate for devising the irrigation schedule. Figures 18 
and 19 compare the difference irrigation volume between 
the Actual Soil Moisture and the Predicted Soil Moisture 
obtained by implementing the ACO-SVR technique for 
Terrace 4 and Terrace 5. The maximum difference 
between the irrigation calculated using ACO-SVR and 
actual soil moisture reading is 4.5 liters for Terrace 4 and 
3.8 liters for Terrace 5. The average difference for Terrace 
4 and Terrace 5 is 0.94 liters and 0.72 liters accordingly. 
The difference between the anticipated and actual values is 
minimal and acceptable, as depicted in the figures. 
Therefore, the relevance of utilizing ACO-SVR to forecast 
data to plan the irrigation schedule is evident. 
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Figure 18. Irrigation volume difference for Terrace 4 

 
Figure 19. Irrigation volume difference for Terrace 5 

5. CONCLUSION 
The study utilized climate data from an on-site weather 
station to predict the soil moisture content. The prediction 
was made using climate data obtained from the weather 
station in conjunction with the height of the terrace. The 
methodology involved utilizing Ant Colony Optimization 
to optimize Support Vector Regression in defining best 
hyperparameter values, evaluated using Mean Squared 
Error (MSE). The prediction accuracy generated by ACO-
SVR was compared with other optimization techniques 
which are Random SVR, GridSearch SVR, GA-SVR and 
PSO-SVR, and the irrigation volume was calculated based 
on the predicted soil moisture data. The performance of the 
proposed ACO-SVR is evaluated using statistical methods. 
The study demonstrates that the proposed ACO-SVR 
model with pheromone evaporation achieves highest 
accuracy among other optimization techniques in 
predicting soil moisture. Apart from that, including terrace 
height as part of the input variable is highly relevant to 
predict different soil moisture levels at various heights. It 
is particularly significant in precision agriculture, where 
accurate soil moisture data is crucial for efficient water 
management. Additionally, the irrigation volume using 
Checkbook method calculated using the soil moisture 
ACO-SVR model closely aligns with the irrigation volume 
calculated using actual soil moisture. This alignment 
emphasizes the model's accuracy and dependability in 

measuring soil moisture levels at different terrace heights. 
Thus, the ACO-SVR model proposed in this work is highly 
relevant for large-scale agricultural operations, where 
installing many soil moisture sensors is impractical. Its 
ability to predict soil moisture accurately with minimal 
physical sensor deployment makes it a valuable tool for 
optimizing irrigation practices and enhancing water 
resource management in precision agriculture. 
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