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Abstract: In response to the increasing impact of extreme weather on power distribution networks (PDNs), prioritizing 
resilience is imperative. This study introduces an innovative k-means spectral clustering algorithm to define the boundaries of 
microgrids (MGs) within a multi-microgrid (MMG) system. The aim is to improve reliability by clustering PDNs into resilient 
MGs. The power systems are modeled with nodes representing buses, and connections are represented as edges. The analysis 
involves computing the adjacency matrix, degree matrix, Laplacian matrix, and applying k-means clustering to group buses 
based on terminal point features. Silhouette coefficients (SC) are calculated to assess the quality of the clustering. The proposed 
method is tested on three IEEE distribution systems: IEEE 33, 69, and 118 bus systems. Findings reveal distinct clusters within 
each system with SC values above 0.68, particularly emphasizing the significance of terminal points as the basis for assisting 
power engineers in decision-making for predetermined grid partitioning. 
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1. INTRODUCTION 

1.1 Motivation and Incitement 
Weather events are a significant cause of power supply 
outages, as well as reliability and resiliency issues. In 
recent years, the global community has witnessed 
numerous extreme weather events, resulting in power 
outages, blackouts, and economic losses totaling billions 
of dollars. Hurricane Sandy in 2012 in the Eastern United 
States caused power outages for approximately 8,100,000 
consumers. Likewise, the 2014 typhoon Rammasun in the 
Luzon region of the Philippines affected 13,000,000 
customers, and the Blyth Tornado in 2016 impacted 
around 1,700,000 people in South Australia [1]. The 
February 2021 Texas outage demonstrated the profound 
impact a severe winter storm can have on a society, causing 
$195 billion in collateral damage and leaving nearly 4.5 
million homes without electrical power [2]. 

Due to the increasing frequency and intensity of 
catastrophic events, ensuring the resilience of the power 
distribution networks (PDNs) has become a critical 
priority. About 90% of power outages caused by 
hurricanes occur in distribution networks. After 
catastrophic events, certain remote areas may experience 
power outages. Conventional load restoration techniques 
[3-6], which involve grid reconfiguration and require 
energization from the utility, may not ensure uninterrupted 
power supply following catastrophic events, potentially 
leading to prolonged outages for some users [7-8].  

A microgrid (MG) consists of distributed energy 
resources (DERs) like solar panels, wind turbines, and 
interconnected loads that have distinct electrical 
boundaries. It is a locally regulated, independent system 
that is connected to the electrical grid.  This is one method 

of protecting crucial loads (CLs). By enabling connections 
and disconnections from the grid, the MG allows operation 
in both grid-connected and islanded modes [9]. However, 
microgrids have the potential to operate beyond individual 
units, leading to the field of research known as multi-
microgrids (MMGs). MMGs offer enhanced reliability, 
power quality, and flexibility for managing renewable 
energy sources (RESs). However, efficient 
implementation necessitates an innovative approach to 
their formation and management. 

1.2 Clustering Power Distribution Network to 
Multiple Microgrids 

Several methodologies have been proposed for clustering 
PDNs, as documented in Table 1. Studies referenced in 
[10-11], [12-13], and [14] identify the optimal ESD 
location, the optimal sectionalizing switch location, and 
the optimal power utilization as fundamental criteria for 
partitioning the distribution network. 

Study [15] classifies the distribution system into 
partitions that can function as MGs using the k-means 
optimization method, determined by selecting the k-means 
with the maximum Silhouette score through the evaluation 
of the Silhouette approach. Additionally, [16] and [17] 
propose spectral clustering techniques that use dynamic 
weights of the lowest cost and line apparent power, 
respectively, to transform traditional systems into clusters 
of MMGs. The graph partitioning approach in [18] uses 
line susceptance as the weight during the clustering 
process. 

References [19] and [20] utilize the count of generators 
to establish number of clusters, with [19] adopting the 
density-based spatial clustering of applications with noise 
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(DBSCAN) approach and [20] employing a mixed-integer 
linear programming (MILP) model as a different approach. 
In [21], the number of clusters is determined using 
constrained spectral clustering algorithm considering both 
the 'Must-Link' (ML) constraint and a minimum cut cost 
constraint. Meanwhile, the k-medoids spectral clustering 
algorithm used in [18] identifies suitable nodes for 
isolation but requires predefining the number of clusters. 
Reference [22] utilizes a hierarchical spectral clustering 
for determining clusters boundaries, allowing the 
adjustment of the number of clusters formed based on 
stakeholders' prior knowledge. However, this leaves the 
determination of the optimal number of clusters 
unspecified, lacking a specific criterion. 

Despite extensive research into methods on establishing 
clusters within the distribution network, certain aspects of 
this process remain unaddressed in existing literature. 
Notably absent is a discussion on the predetermination of 
microgrid boundaries, especially concerning the optimal 
number of clusters (k) and their alignment with network 
topological characteristics. In contrast, this paper aims to 
bridge this gap by proposing an innovative approach for 
determining MG boundaries during the design phase. 

Utilizing the k-means clustering algorithm, our method 
introduces an innovative k selection technique based on 
total number of terminal points and Silhouette global 
coefficient. Additionally, the resulting cluster structure is 
improved through the incorporation of bi-layered filter 
approach.  

Terminal points in a power grid are critical due to the 
potential of significant consequences resulting from 
disturbances at these points, which make them vulnerable 
as they are the farthest points with only one connection. 
Examining the clustering of terminal points assists in 
identifying network areas requiring special attention for 
resilience planning.  

Unlike restoration and reconfiguration methods that 
address operations after an event, this study proposes pre-
planning microgrid boundaries to optimize the utilization 
of DERs within those boundaries. This not only enhances 
energy efficiency and sustainability but also lays the 
groundwork for improved microgrid performance. 
Predefined microgrid boundaries enable efficient load 
distribution and minimize the need for extensive 
reconfiguration during outages, ultimately reducing grid 
congestion and facilitating faster response times.

Table 1. Comparison of the proposed method to other comparable works in the field of MMG partitioning 

Ref. 13 16 11 18 19 17 20 21 22 Proposed 
approach Year 2019 2019 2020 2022 2022 2023 2023 2023 2023 

MMG 
partitioning 
method 

Optimum sectionalizing 
switch location  - - - - - - - - - 

Improved spectral 
clustering -  - - - - - - - - 

Optimum ESD location - -  - - - - - - - 
Line susceptance with 
k-mediod spectral 
clustering 

- - -  - - - - - - 

DBSCAN spatial 
clustering - - - -  - -  - - 

Apparent power 
weighted graph 
partitioning approach 

- - - - -  - - - - 

Constrained MILP - - - - - -  - - - 
Constrained spectral 
clustering algorithm - - - - - - -  - - 

Hierarchical spectral 
clustering - - - - - - - -  - 

Terminal spectral 
clustering algorithm - - - - - - - - -  

Type of 
weights 

Static - - -  - - - -   

Dynamic -  - - -  -   - 

2. FORMATION OF MICROGRIDS WITH 
BOUNDARIES  

2.1 Terminal Spectral Clustering Algorithm 
Spectral graph analysis has been employed to tackle 
challenges related to microgrids formation [23-28] and 
assess the stability of power networks [24]. The electricity 

grid can be intentionally clustered into smaller grids when 
there is an increasing risk of a cascade failure. Clustering 
the grid into separate, stable microgrids allows for the 
implementation of a complex procedure known as 
islanding, which helps mitigate the impact of cascading 
sequences on the electricity grid [28-30]. 
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Figure 1. Proposed concept to partition existing distribution network to clusters of MMGs

This paper proposes a clustering approach [18] based on 
the terminal spectral clustering algorithm. The concept of 
the proposed methodology is presented in Figure 1. With 
this clustering method, the adjacency matrix (𝑊𝑊) displays 
the connections between buses in a graph as binary 
relationships, as seen below: 

 
𝑊𝑊[𝑖𝑖, 𝑗𝑗] = 𝑊𝑊[𝑗𝑗, 𝑖𝑖]  

= �1,
0,   

𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑖𝑖𝑏𝑏 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎
𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑒𝑒𝑒𝑒𝑖𝑖𝑏𝑏𝑐𝑐

 

(1) 

 
In this case, if bus 𝑖𝑖 is connected to bus 𝑗𝑗, the element 

W[i,j] represents the connection weight 𝑖𝑖𝑗𝑗, or 0 if there is 
no direct connection. The weights of the existing 
connections between different buses are indicated by the 
non-null elements of the adjacency matrix, a 𝑁𝑁×𝑁𝑁 
symmetric matrix. 

The degree matrix (D) is a diagonal matrix in which the 
number of connections of bus i is represented by each 
diagonal element D[i,j]. It is formed based on the 
adjacency matrix, as shown in Equation (2). 

 
 𝐷𝐷[𝑖𝑖, 𝑗𝑗] =  �𝑊𝑊[𝑖𝑖, : ] (2) 

 
The distinction between the degree matrix and the 

adjacency matrix is explained in the definition of the 
Laplacian matrix (L) in Equation (3). The Laplacian matrix 
aids in understanding the local structure of the graph.  

 
 𝐿𝐿 =  𝐷𝐷 −  𝑊𝑊 (3) 

 
The connection described in Equation (4) can be 

determined by calculating the eigenvalues (λ) and 
eigenvectors (v) of the Laplacian matrix. The eigenvalues 
and associated eigenvectors produced by this process 
guide the spectral embedding procedure. 

 
 𝐿𝐿 × 𝑣𝑣 =  𝜆𝜆 × 𝑣𝑣 (4) 

 
In spectral embedding, the initial eigenvectors with the 

lowest eigenvalues are selected. By using these 
eigenvectors, a new matrix X is created, in which a bus is 

represented by each row and a feature generated from the 
eigenvectors is represented by each column. 

The spectral embedding matrix X undergoes k-means 
clustering to group buses into clusters. The cluster number 
(k) was determined by considering the properties of the 
terminal points; the total number of buses with only one 
connection forms the basis for the clustering process. 
Figure 2 illustrates the overall proposed MMG clustering 
process. 

2.2 Clustering Evaluation 
To validate the clustering outcome, the Silhouette 
Coefficient (SC) [15] is utilized as a quality assessment 
metric. The formula for SC for a single data point is as 
follows: 
 

 𝑏𝑏(𝑖𝑖) =  
𝑏𝑏(𝑖𝑖) − 𝑎𝑎(𝑖𝑖)

𝑚𝑚𝑎𝑎𝑚𝑚{𝑎𝑎(𝑖𝑖), 𝑏𝑏(𝑖𝑖)} (5) 

where s(i) is the SC for data point i, a(i) is the average 
distance from the i-th data point to other data points in the 
same cluster (cohesion), and b(i) is the smallest average 
distance from the i-th data point to data points in a different 
cluster (separation). 

Equation (6) represents the average silhouette score for 
cluster c, while equation (7) formulates the overall average 
silhouette score for the entire set of data points.  
 

𝐴𝐴𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐) =  
∑𝑏𝑏(𝑖𝑖)

𝑎𝑎𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒 𝑐𝑐𝑖𝑖 𝑖𝑖 𝑖𝑖𝑎𝑎 𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐
 

 
(6) 

 

𝑂𝑂𝑣𝑣𝑐𝑐𝑒𝑒𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴 =  
∑𝑏𝑏(𝑖𝑖)

𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 𝑎𝑎𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒 𝑐𝑐𝑖𝑖 𝑖𝑖
 (7) 

 
The interpretations of the interval coefficient, as shown 

in Table 2, can be used to evaluate the results of SC 
interpretation. 

Table 2. Interpretation of silhouette coefficient 

Type 
Interval 

silhouette 
coefficient 

Interpretation 

1 0.71 – 1.0 Robust structure 
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2 0.51 – 0.70 Satisfactory structure 

3 0.26 – 0.50 Weak structure 

4 < 0.25 No significant structure 
discovered 

 

Figure 2. Terminal spectral clustering algorithm process 
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Figure 3. IEEE 33-bus test system 

 
Figure 4. IEEE 69-bus test system
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Figure 5. IEEE 118-bus test system

3. CASE STUDY 
Three test systems [31-34] were used to evaluate the 
performance of the proposed algorithm. The line and bus 
data for the three test systems can be found in Appendices 
A to F. Test systems with different sizes were chosen to 
verify the computational efficiency of the proposed 
algorithm and its applicability to standard grid systems. 
Figures 3 to 5 show the initial conditions of the test 
systems. 

4. RESULTS AND DISCUSSIONS 
This section evaluates the efficacy of the proposed method 
by applying it to the IEEE 33-bus, IEEE 69-bus, and IEEE 
118-bus test systems. MATLAB is utilized to simulate the 

clustering process. As outlined subsequently, a new k-
means spectral clustering technique is tested on each of the 
mentioned systems, resulting in a clustering solution. 

4.1 IEEE 33 bus test case 
The effectiveness of the proposed methodology is 
demonstrated through its application to the IEEE 33 bus 
system, where the spectral clustering algorithm efficiently 
determines the partitioning based on identified terminal 
point numbers. As shown in Figure 6, buses 1, 18, 22, 25, 
and 33 are identified as terminal points, distinguished by 
their degree value of one. Consequently, this yields a 
comprehensive clustering outcome, indicating a total of 
five distinct clusters within the IEEE 33 bus system.
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Figure 6. Degree matrix of IEEE 33 bus system 

 
Figure 7. Average Silhouette score per cluster for IEEE 33 bus system

Figure 7 illustrates the average Silhouette score for each 
cluster, serving as a quantitative metric of clustering 
efficacy. Cluster 2 stands out with the highest score of 
0.8481, indicating a well-defined and internally cohesive 
structure. Cluster 5 has the lowest score of 0.5934, 
suggesting a lower level of intra-cluster cohesion. The 
overall average Silhouette score of 0.68911 confirms the 
presence of a satisfactory clustering pattern.  

Notably, the cluster with the highest Silhouette score 
shows a compact structure with minimal inter-node 
distances, emphasizing the cohesiveness within. 
Conversely, the cluster with the lowest score, particularly 

around bus 2, reveals a more branched and potentially 
disparate arrangement.  

To facilitate the practical implementation of the 
proposed MMG partitioning strategy, detailed information 
on the composition of each cluster is provided in Tables 3 
and 4.  These tables offer a comprehensive breakdown, 
with Table 3 detailing the specific buses within each 
cluster and Table 4 focusing on the locations of 
sectionalizing switches. Additionally, Figure 8 visually 
presents the modified IEEE 33 bus system, illustrating the 
identified clusters with total load of each cluster.

Table 3. Network partitioning results for each cluster of the IEEE 33 bus test system 

Clusters Bus index 
Microgrid 1 5, 6, 7, 8, 9, 10, 11, 12, 26, 27 
Microgrid 2 28, 29, 30, 31, 32, 33 
Microgrid 3 13, 14, 15, 16, 17, 18 
Microgrid 4 3, 4, 23, 24, 25 
Microgrid 5 1, 2, 19, 20, 21, 22 
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Table 4. Sectionalizing switch location of the IEEE 33 bus test system 

Clusters Location 
Microgrid 1 Line 4-5, 12-13 
Microgrid 2 Line 27-28 
Microgrid 3 Line 12-13 
Microgrid 4 Line 2-3, 4-5 
Microgrid 5 Line 2-3 

 

 
Figure 8. Proposed MMG formation of IEEE 33 bus test system

4.2 IEEE 69 bus test case 
In the second test case with the IEEE 69 bus system, Figure 
9 demonstrates that buses 1, 27, 35, 46, 50, 52, 65, 67, and 

69 serve as terminal points resulting in a total of nine 
distinct clusters.  

 

 
Figure 9. Degree matrix of IEEE 69 bus system 
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Figure 10. Average Silhouette score per cluster for IEEE 69 bus system 

Figure 10 illustrates the average Silhouette score for 
each cluster, providing a quantitative measure of how 
effectively the clusters are formed. Cluster 7 stands out 
with the highest score of 0.8490, signifying a well-defined 
and internally cohesive structure. In contrast, Cluster 3, 
with the lowest score of 0.5904, indicates a lower level of 
intra-cluster cohesion. The overall average Silhouette 
score of 0.69507 confirms the existence of a recognizable 

clustering pattern. The composition of each cluster is 
further elaborated on in Tables 5 and 6.  Table 5 details bus 
locations, while Table 6 pinpoints the placement of 
sectionalizing switches within each cluster. Examining 
Table 5 and Figure 11, it is evident that the cluster with the 
lowest score exhibits a greater number of buses, while the 
cluster with the highest score displays a smaller number of 
buses. 

Table 5. Network partitioning results for each cluster of the IEEE 69 bus test system 

Clusters Bus index 
Microgrid 1 41, 42, 43, 44, 45, 46 
Microgrid 2 14, 15, 16, 17, 18, 19, 20, 21 
Microgrid 3 7, 8, 9, 51, 52, 53, 54, 55, 56, 57, 58, 59 
Microgrid 4 1, 2, 3, 4, 28, 29, 5, 6, 36, 37, 38, 39, 40 
Microgrid 5 30, 31, 32, 33, 34, 35 
Microgrid 6 60, 61, 62, 63, 64, 65 
Microgrid 7 10, 11, 12, 13, 66, 67, 68, 69 
Microgrid 8 47, 48, 49, 50 
Microgrid 9 22, 23, 24, 25, 26, 27 

Table 6. Sectionalizing switch location of the IEEE 69 bus test system 

Clusters Location 
Microgrid 1 Line 40-41 
Microgrid 2 Line 13-14, 21-22 
Microgrid 3 Line 6-7, 9-10, 59-60 
Microgrid 4 Line 6-7, 29-30, 40-41 
Microgrid 5 Line 29-30 
Microgrid 6 Line 59-60 
Microgrid 7 Line 9-10, 13-14 
Microgrid 8 Line 4-47 
Microgrid 9 Line 21-22 
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Figure 11. Proposed MMG formation of IEEE 69 bus test system

4.3 IEEE 118 bus test case 
Buses 3, 9, 17, 27, 43, 52, 60, 62, 77, 84, 88, 96, 99, 112, 
117, and 118 are recognised as terminal points in the third 
test scenario, which involves the IEEE 118 bus system. 
Each of these buses is represented by a degree value of one 
in Figure 12. As a result, the IEEE 118 bus system is 
proposed to have 16 different clusters. 

Figure 13 shows that Cluster 10 has the highest score of 
0.8694, suggesting a well-defined and internally consistent 
structure. Cluster 3, however, has the lowest intra-cluster 
cohesion score of 0.3547, indicating a weak structure that 

falls below the desired threshold of 0.51 as interpreted in 
Table 2. 

To improve the cluster structure and ensure all clusters 
have a score above 0.50, a bi-layered filter approach is 
introduced (see Figure 2). The first filter selects the robust 
clusters (SC above 0.7) that connected to weak clusters 
(SC below 0.51). In the second filter, only connected 
clusters with a bus count less than or equal to 5 are 
considered. The connected cluster fulfilling both criteria 
(high SC and low bus count) is then selected for merging 
with the weak cluster. In this case, cluster 7 with an SC of 
0.8614 and 5 buses is chosen for merging with cluster 3. 
The merged cluster has a resulting SC value of 0.5439. 

 

 
Figure 12. Degree matrix of 118 bus system 
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Figure 13. Average Silhouette score per cluster for IEEE 118 bus system  

 

 
Figure 14. Improved average Silhouette score per cluster for IEEE 118 bus system 

Figure 14 shows that the average Silhouette score for 
the IEEE 118 bus system is now above 0.51 for all clusters, 
indicating a satisfactory structure after the improvement 

process. The resulting clustering pattern with 15 clusters 
has an overall average Silhouette score of 0.69339. 

Table 7. Network partitioning results for each cluster of the IEEE 118 bus test system 

Clusters Bus index 
Microgrid 1 38, 39, 40, 41, 42, 43 
Microgrid 2 89, 90, 91, 97, 98, 99 
Microgrid 3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 63 
Microgrid 4 85, 86, 87, 88 
Microgrid 5 92, 93, 94, 95, 96 
Microgrid 6 64, 65, 66, 67, 68, 69, 70, 71, 72, 78, 79 
Microgrid 7 45, 46, 47, 48, 49, 50, 51, 52 
Microgrid 8 73, 74, 75, 76, 77 
Microgrid 9 20, 21, 22, 23, 24, 25, 26, 27 
Microgrid 10 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 44, 53, 61, 62 
Microgrid 11 108, 109, 110, 111, 112, 118   
Microgrid 12 80, 81, 82, 83, 84  
Microgrid 13 113, 114, 115, 116, 117 
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Microgrid 14 54, 55, 56, 57, 58, 59, 60 
Microgrid 15 100, 101, 102, 103, 104, 105, 106, 107 

Table 8. Sectionalizing switch location of the IEEE 118 bus test system 

Clusters Location 
Microgrid 1 Line 37-38 
Microgrid 2 Line 63-89, 91-92 
Microgrid 3 Line 4-28, 19-20, 63-64, 1-100 
Microgrid 4 Line 78-85 
Microgrid 5 Line 91-92 
Microgrid 6 Line 63-64, 72-73, 78-85, 80-81 
Microgrid 7 Line 44-45 
Microgrid 8 Line 72-73 
Microgrid 9 Line 19-20 
Microgrid 10 Line 4-28, 37-38, 44-45, 53-54 
Microgrid 11 Line 107-108 
Microgrid 12 Line 79-80 
Microgrid 13 Line 100-113 
Microgrid 14 Line 53-54 
Microgrid 15 Line 1-100, 107-108 
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Figure 15. Proposed MMG formation of IEEE 118 bus test system

Supporting the practical application of this MMG 
partitioning strategy, Tables 7 and 8 provide a detailed 
breakdown of each cluster's composition.  Specifically, 
Table 7 details the buses belonging to each cluster, and 
Table 8 focuses on the locations of sectionalizing switches. 
As seen in Figure 15, the cluster with the lowest score has 
six branches, whereas the cluster with the greatest score 
has only one branch. 

Table 9 summarizes the required time to execute the 
proposed method using MATLAB R2020a for each of the 
test systems. The simulation is performed using a laptop 
equipped with Windows 11, AMD Ryzen 5 5600H 3.30 
GHz processor and 16 GB RAM.  

 
 
 

Table 9. Computational time required for the proposed 
methodology 

Category Power system Time (s) 

Small IEEE 33-bus test system 0.045 

Medium IEEE 69-bus test system 0.052 

Large IEEE 118-bus test system 0.111 

5. CONCLUSION 
This paper presents an innovative approach to improve the 
resilience of PDNs in the face of increasing challenges 
caused by extreme weather events. The approach involves 
establishing the boundaries of MGs in MMG system by 
utilising k-means spectral clustering algorithm. This 
technique efficiently groups buses based on terminal point 
features, whereas the problem formulation involves an 
extensive modeling of power systems, incorporating nodes 
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and connections through adjacency matrices, degree 
matrices, and Laplacian matrices. 

Assessments of the clustering results are performed 
using Silhouette coefficients. The findings obtained from 
evaluating the proposed method on IEEE 33, 69, and 118 
bus systems demonstrate the presence of distinct clusters 
within each system, with overall average Silhouette score 
consistently exceeding 0.68. The visualisation of 
clustering results emphasises the efficacy of the method, 
demonstrating strong physical connections between buses 
inside each cluster and the absence of isolated buses 
without any physical connections. The importance of 
terminal points as a basic element for decision-making in 
grid partitioning has been demonstrated by these findings. 

By prioritising terminal points in clustering, the 
findings of this paper can assist decision-makers and 
power engineers in optimising grid partitioning thereby 
improving the resilience of PDNs. Overall, this finding 
holds significant potential in minimising the impact of 
severe infrastructure disruptions in PDNs caused by 
extreme weather events.  

While this work establishes the groundwork for MMG 
formation by defining MG boundaries, future studies will 
explore incorporating DERs and islanding constraints for 
a more practical implementation. This may involve 
optimizing DER sizing and developing operational 
strategies for MMG in both grid-connected and islanded 
states. 
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APPENDICES 
 

Appendix A IEEE 33 Line Data 

Branch number Sending end bus Receiving end bus 
1 1 2 
2 2 3 
3 3 4 
4 4 5 
5 5 6 
6 6 7 
7 7 8 
8 8 9 
9 9 10 

10 10 11 
11 11 12 
12 12 13 
13 13 14 
14 14 15 
15 15 16 
16 16 17 
17 17 18 
18 2 19 
19 19 20 
20 20 21 
21 21 22 
22 3 23 
23 23 24 
24 24 25 
25 6 26 
26 26 27 
27 27 28 
28 28 29 
29 29 30 
30 30 31 
31 31 32 
32 32 33 

 
Appendix B IEEE 33 Bus Data 

Bus number P (kW) Q (kVAR) 
1 0 0 
2 100 60 
3 90 40 
4 120 80 
5 60 30 
6 60 20 
7 200 100 
8 200 100 
9 60 20 

10 60 20 
11 45 30 
12 60 35 
13 60 35 
14 120 80 
15 60 10 
16 60 20 
17 60 20 
18 90 40 
19 90 40 
20 90 40 
21 90 40 
22 90 40 
23 90 50 
24 420 200 
25 420 200 
26 60 25 
27 60 25 

Appendix B (continued) 

28 60 20 
29 120 70 
30 200 600 
31 150 70 
32 210 100 
33 60 40 

 
Appendix C IEEE 69 Line Data 

Branch number Sending end bus Receiving end bus 
1 1 2 
2 2 3 
3 3 4 
4 4 5 
5 5 6 
6 6 7 
7 7 8 
8 8 9 
9 9 10 

10 10 11 
11 11 12 
12 12 13 
13 13 14 
14 14 15 
15 15 16 
16 16 17 
17 17 18 
18 18 19 
19 19 20 
20 20 21 
21 21 22 
22 22 23 
23 23 24 
24 24 25 
25 25 26 
26 26 27 
27 3 28 
28 28 29 
29 29 30 
30 30 31 
31 31 32 
32 32 33 
33 33 34 
34 34 35 
35 3 36 
36 36 37 
37 37 38 
38 38 39 
39 39 40 
40 40 41 
41 41 42 
42 42 43 
43 43 44 
44 44 45 
45 45 46 
46 4 47 
47 47 48 
48 48 49 
49 49 50 
50 8 51 
51 51 52 
52 9 53 
53 53 54 
54 54 55 
55 55 56 
56 56 57 
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Appendix C (continued) 

57 57 58 
58 58 59 
59 59 60 
60 60 61 
61 61 62 
62 62 63 
63 63 64 
64 64 65 
65 11 66 
66 66 67 
67 12 68 
68 68 69 

 
Appendix D IEEE 69 Bus Data 

Bus number P (kW) Q (kVAR) 
6 2.6 2.2 
7 40.4 30 
8 75 54 
9 30 22 

10 28 19 
11 145 104 
12 145 104 
13 8 5 
14 8 5.5 
16 45.5 30 
17 60 35 
18 60 35 
20 1 0.6 
21 114 81 
22 5 3.5 
24 28 20 
26 14 10 
27 14 10 
28 26 18.6 
29 26 18.6 
33 14 10 
34 19.5 14 
35 6 4 
36 26 18.55 
37 26 18.55 
39 24 17 
40 24 17 
41 1.2 1 
43 6 4.3 
45 39.22 26.3 
46 39.22 26.3 
48 79 56.4 
49 384.7 274.5 
50 384.7 274.5 
51 40.5 28.3 
52 3.6 2.7 
53 4.35 3.5 
54 26.4 19 
55 24 17.2 
59 100 72 
61 1244 888 
62 32 23 
64 227 162 
65 59 42 
66 18 13 
67 18 13 
68 28 20 
69 28 20 

 

Appendix E IEEE 118 Line Data 

Branch number Sending end bus Receiving end bus 
1 0 1 
2 1 2 
3 2 3 
4 2 4 
5 4 5 
6 5 6 
7 6 7 
8 7 8 
9 8 9 

10 2 10 
11 10 11 
12 11 12 
13 12 13 
14 13 14 
15 14 15 
16 15 16 
17 16 17 
18 11 18 
19 18 19 
20 19 20 
21 20 21 
22 21 22 
23 22 23 
24 23 24 
25 24 25 
26 25 26 
27 26 27 
28 4 28 
29 28 29 
30 29 30 
31 30 31 
32 31 32 
33 32 33 
34 33 34 
35 34 35 
36 30 36 
37 36 37 
38 29 38 
39 38 39 
40 39 40 
41 40 41 
42 41 42 
43 42 43 
44 43 44 
45 44 45 
46 45 46 
47 35 47 
48 47 48 
49 48 49 
50 49 50 
51 50 51 
52 51 52 
53 52 53 
54 53 54 
55 28 55 
56 55 56 
57 56 57 
58 57 58 
59 58 59 
60 59 60 
61 60 61 
62 61 62 
63 1 63 
64 63 64 
65 64 65 
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Appendix E (continued) 

66 65 66 
67 66 67 
68 67 68 
69 68 69 
70 69 70 
71 70 71 
72 71 72 
73 72 73 
74 73 74 
75 74 75 
76 75 76 
77 76 77 
78 64 78 
79 78 79 
80 79 80 
81 80 81 
82 81 82 
83 82 83 
84 83 84 
85 84 85 
86 79 86 
87 86 87 
88 87 88 
89 65 89 
90 89 90 
91 90 91 
92 91 92 
93 92 93 
94 93 94 
95 94 95 
96 91 96 
97 96 97 
98 97 98 
99 98 99 
100 1 100 
101 100 101 
102 101 102 
103 102 103 
104 103 104 
105 104 105 
106 105 106 
107 106 107 
108 107 108 
109 108 109 
110 109 110 
111 110 111 
112 111 112 
113 112 113 
114 100 114 
115 114 115 
116 115 116 
117 116 117 
118 117 118 

 
Appendix F IEEE 118 Bus Data 

Bus number P (kW) Q (kVAR) 
1 0 0 
2 133.84 101.14 
3 16.214 11.292 
4 34.315 21.845 
5 73.016 63.602 
6 144.2 68.604 
7 104.47 61.725 
8 28.547 11.503 
9 87.56 51.073 

Appendix F (continued) 

10 198.2 106.77 
11 146.8 75.995 
12 26.04 18.687 
13 52.1 23.22 
14 141.9 117.5 
15 21.87 28.79 
16 33.37 26.45 
17 32.43 25.23 
18 20.234 11.906 
19 156.94 78.523 
20 546.29 351.4 
21 180.31 164.2 
22 93.167 54.594 
23 85.18 39.65 
24 168.1 95.178 
25 125.11 150.22 
26 16.03 24.62 
27 26.03 24.62 
28 594.56 522.62 
29 120.62 59.117 
30 102.38 99.554 
31 513.4 318.5 
32 475.25 456.14 
33 151.43 136.79 
34 205.38 83.302 
35 131.6 93.082 
36 448.4 369.79 
37 440.52 321.64 
38 112.54 55.134 
39 53.963 38.998 
40 393.05 342.6 
41 326.74 278.56 
42 536.26 240.24 
43 76.247 66.562 
44 53.52 39.76 
45 40.328 31.964 
46 39.653 20.758 
47 66.195 42.361 
48 73.904 51.653 
49 114.77 57.965 
50 918.37 1205.1 
51 210.3 146.66 
52 66.68 56.608 
53 42.207 40.184 
54 433.74 283.41 
55 62.1 26.86 
56 92.46 88.38 
57 85.188 55.436 
58 345.3 332.4 
59 22.5 16.83 
60 80.551 49.156 
61 95.86 90.758 
62 62.92 47.7 
63 478.8 463.74 
64 120.94 52.006 
65 139.11 100.34 
66 391.78 193.5 
67 27.741 26.713 
68 52.814 25.257 
69 66.89 38.713 
70 467.5 395.14 
71 594.85 239.74 
72 132.5 84.363 
73 52.699 22.482 
74 869.79 614.775 
75 31.349 29.817 
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Appendix F (continued) 

76 192.39 122.43 
77 65.75 45.37 
78 238.15 223.22 
79 294.55 162.47 
80 485.57 437.92 
81 243.53 183.03 
82 243.53 183.03 
83 134.25 119.29 
84 22.71 27.96 
85 49.513 26.515 
86 383.78 257.16 
87 49.64 20.6 
88 22.473 11.806 
89 62.93 42.96 
90 30.67 34.93 
91 62.53 66.79 
92 114.57 81.748 
93 81.292 66.526 
94 31.733 15.96 
95 33.32 60.48 
96 531.28 224.85 
97 507.03 367.42 
98 26.39 11.7 
99 45.99 30.392 
100 100.66 47.572 
101 456.48 350.3 
102 522.56 449.29 
103 408.43 168.46 
104 141.48 134.25 
105 104.43 66.024 
106 96.793 83.647 
107 493.92 419.34 
108 225.38 135.88 
109 509.21 387.21 
110 188.5 173.46 
111 918.03 898.55 
112 305.08 215.37 
113 54.38 40.97 
114 211.14 192.9 
115 67.009 53.336 
116 162.07 90.321 
117 48.785 29.156 
118 33.9 18.98 
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