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Abstract: In this study, a B-spline trajectory control algorithm is presented, showcasing its ability to achieve smooth trajectory 
control within an embedded motion control system. Traditional surface machining methods involve converting interpolated 
trajectories into G-code using numerical control (NC) software, which is then downloaded and executed on the numerical 
control system. This research introduces a specialized third-degree B-spline interpolation method tailored for curved surface 
trajectories, aiming to enhance machining efficiency. A significant strength of this project lies in the holistic design of an 
embedded system, encompassing both hardware circuitry and software logic. Utilizing the cost-effective STM32 architecture, 
a B-spline discrete velocity interpolation algorithm is implemented, validated through experiments conducted on a polishing 
machine system. The project involves MATLAB software for data simulations and experiments on a polishing machine using 
B-spline curve interpolation, confirming the practicality and effectiveness of the third-degree B-spline algorithm within an 
embedded system. 
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1. INTRODUCTION 
Surface machining is a broad category in industrial 
automation, and many manufacturing sectors currently 
utilize computers or logic controllers for surface 
processing, incurring high implementation costs[1] [2] [3]. 
Conventional computer numerical control (CNC) systems 
for machining free-form surfaces require pre-processing 
through computer aided design(CAD) and computer-aided 
manufacturing (CAM) software [4] [5]. The trajectory of 
the free-form surface is generated by CAM software, 
converted into G-code, and then imported into the CNC 
system. However, this method has several drawbacks: 
1.Prior to machining, CAM software must be used to 
convert the motion trajectory, and the accuracy of the 
machining trajectory depends on the performance of the 
CAM software [6]. 2.Numerous pre-processing steps are 
involved, making it challenging to adjust the trajectory 
during operation. 3.It is categorized as offline 
programming, and once the execution process begins, the 
trajectory cannot be modified.  

B-spline curves provide a means to achieve surface 
processing, allowing multi-axis CNC equipment to follow 
continuous trajectories by setting control points and feed 
speeds. Control points, which can also be referred to as 
shape points, can influence the generated curve trajectory. 
They find extensive applications in specific machining 
scenarios, such as cases involving the surface polishing of 
metal vessels [7]. The use of B-spline curves replaces 
traditional semi-automatic manual labor, enabling the 

automation of continuous polishing for curved metal 
vessels, thereby enhancing efficiency and quality [8] [9]. 
In comparison to other works, this report stands out by 
proposing a comprehensive embedded system 
solution[10], encompassing hardware diagram design and 
software program design. It implements a B-spline discrete 
velocity interpolation algorithm using the cost-effective 
STM32 chip, validated on a CNC polishing device. The 
control board of this system has been successfully applied 
in industrial settings. 

Extensive research has been conducted by numerous 
scholars focusing on the theoretical research on B-spline 
curves. In the study by Shuai Ji [11], a non-uniform 
rational B-spline (NURBS) curve was introduced, along 
with a forecasting model derived from Newton's 
interpolating polynomial. The foundation of this equation 
lies in the interpolated calculation of the correlation 
between chord length and arc length. The target parameter 
"u" for each interpolation cycle is determined through 
Taylor's expansion. Xu Dua's [12] research demonstrated 
that utilizing the bi-chord error test leads to a substantial 
decrease in the quantity of control points. In the 
autonomous adjustment process of both the quantity and 
positions of control points for the active spline curve, 
Huaiping Yang [13] incorporated squared distance 
minimization (SDM). Jean Marie Langeron [14] employed 
B-spline curves within CAM software to create a tool path. 
This research focused on the geometric calculation of the 
tool path. These investigations primarily focused on 
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foundational research, encompassing the analysis of the 
method for estimating velocity, algorithm based on Taylor 
interpolation, and various aspects related to spline curves.  

Mohammad Mahdi Emami [15] proposed a trajectory 
prediction generation method. By computing the estimated 
distance between two trajectory points and performing 
reverse interpolation within the interpolation cycle, the 
deceleration moment is determined. In the research 
conducted by Xianbing Liu [16], a module for lookahead 
angle prediction was developed, allowing adaptive 
adjustments to feed rates within a small turning radius 
range. Simplifying the accelerate (ACC) and decelerate 
(DEC) algorithms, as proposed by Hepeng Ni [17], 
ensured compensation for rounding errors. Consequently 
ensuring the smoothness of the jerk profile. Daoshan Du’s 
[18] study focused on mitigating sudden 
acceleration/deceleration changes in regions with high 
curvature. In the proposal by Shingo Tajima [19] , a new 
interpolation algorithm was suggested, enabling real-time 
trajectory interpolation within defined intervals and with 
minimal computational cost. Marco Riboli [20] present a 
motion planning method for dual-arm Cartesian robots, 
utilizing fifth-degree B-splines and quadratic 
programming to minimize trajectory curvature and ensure 
smooth, collision-free paths. The method also optimizes 
motion profiles through iso-parametric trajectory planning, 
demonstrating its application in a laser machine sorting 
system. Guangwen Yan [21] develop a CNC machining 
corner rounding technique using asymmetrical B-spline 
curves to independently adjust transition lengths, 
effectively minimizing curvature and enhancing feedrate 
by eliminating overlaps. This method results in smoother 
and faster machining processes, as demonstrated through 
extensive simulations and practical experiments. Fengcai 
Huo [22] propose a smooth path planning method for 
Ackermann mobile robots using an improved ant colony 
algorithm and B-spline curves. This approach integrates 
multi-objective optimization to handle path length and 
smoothness constraints, incorporates a refined ant colony 
algorithm with enhanced pheromone updates, and employs 
B-spline curve adjustments to comply with kinematic 
limits, significantly improving path efficiency and 
adherence to curvature constraints. Xiangfei Li [23] 
developed a Cartesian trajectory planning method for 
industrial robots utilizing triple NURBS curves to 
synchronously describe and plan the robot's position and 
orientation trajectories while ensuring limited linear jerk 
and continuous bounded angular velocity, even in the 
absence of an optimization process. Keith Ng [24] 
introduce a deflection-limited trajectory planning method 
for robotic milling that employs B-spline curves to ensure 
smooth and precise curvilinear paths. By integrating real-
time feedback and adjusting feed rates based on calculated 
deflections, this approach enhances machining accuracy 
and efficiency. In their study, Kang Min [25] and 
colleagues introduce an innovative force control 
architecture for robotic abrasive belt grinding of complex 
curved blades, which integrates smooth trajectories using 
cubic B-spline and C2 continuous quaternion spline curves. 
This method significantly improves the grinding process 
by ensuring continuous and smooth movement, thus 

enhancing the surface quality of the blades. Hexiong Li  
[26] developed a Cartesian trajectory planning method for 
industrial robots using triple NURBS curves, enhancing 
motion precision by controlling linear jerk and bounded 
angular velocity, without optimization procedures. 
Shengqian Li and Xiaofan Zhang [27] introduce a 
trajectory planning method for underwater vision welding 
robots using quintic B-spline curves. This method 
interpolates joint angles to ensure smooth transitions and 
utilizes sequential quadratic programming to optimize 
trajectory time, significantly enhancing movement 
accuracy and efficiency. Yuanjian Lv [28] developed an 
adaptive trajectory planning algorithm for robotic belt 
grinding, utilizing a material removal profile model and 
NURBS curves. This approach dynamically adjusts the 
grinding paths based on changes in material curvature and 
elastic deformation, enhancing the grinding efficiency and 
accuracy as demonstrated through simulations and 
experiments. 

Drawing on the investigations conducted by the 
aforementioned researchers, this paper conducts unique 
research, primarily focusing on the foundational theory of 
B-spline curves and the expansion analysis of constant 
velocity control. 

The contributions of this work encompass the following 
aspects: 
1. Analysis of the B-spline control algorithm, employing 

control points for the generation of smooth trajectory 
running curves. 

2. Study the constant velocity control strategy for 
trajectories and validate it through simulation and 
experimentation. 

3. Developed an embedded motion control system, 
including hardware schematic design, circuit design, 
software architecture design, algorithm development, 
and debugging. The system was validated in a physical 
polishing machine, demonstrating high efficiency and 
stability. 

2. SYSTEM DESIGN 

2.1 Principle of B-spline Curve Interpolation 
The order of B-spline curves determines the smoothness of 
the curve, while the degree determines the number of basis 
functions. Adjusting these parameters allows control over 
the complexity and smoothness of the curve. This project 
investigates third-order B-spline curves, and the 
mathematical derivation of a third-order B-spline curve is 
as follows: 
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The control point Pi exhibits multiple spline feature 
deformations, where i denotes the control point sequence 
number. The basis function of the cubic spline, denoted as 
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Bj,4, is associated with the basis function sequence number 
j. The expansion of Bj,4 is articulated as follows: 
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Given the need to apply B-spline curves in real-time 
embedded systems in this study, it is essential to ensure the 
system possesses efficient real-time performance. 
Therefore, the calculation method for B-spline curves must 
be discretized. Assuming the interpolation period is Ts, the 
control parameter u must be computed within the 
interpolation period through a simple calculation, as all 
computations for a third-degree B-spline curve are 
functions of the parameter u, making direct calculation 
feasible.  

The interpolation algorithm for this project is as follows: 
within each interpolation period Ts, establish a constant-
speed increment ∆uk for the parameter, then, using a 
discrete interpolation formula, calculate the next velocity 
increment ∆uk+1. The function expression for the third-
degree B-spline curve associated with control point 
number i can be derived based on the parameter u. 

 
                   P(u) = R3u3+R2u2 + R1u+R0                    (3) 
 
The parameters R0, R1, R2 and R3 are defined as follows: 
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To maintain constant velocity in spline interpolation, it is 
necessary to determine the contour step within a single 
interpolation cycle based on the given speed and map it 
into the parameter space to obtain the parameter increment 
∆u𝑘𝑘 . Substituting ∆u𝑘𝑘  into the spline curve for 
interpolation calculations allows the computation of the 
control points P(u𝑘𝑘) for each Ts period.. The calculation 
for  ∆u in each constant velocity interpolation cycle is as 
follows: 

 

                               ∆u𝑘𝑘 =
V ∙ Ts

|
dPi(u)

du |u=uk
                           (5) 

 
As the parameter increment u is determined by the given 

speed and interpolation cycle, the chord length between the 
trajectory space points generated in each cycle remains 
constant, ensuring a constant feed rate throughout the 
entire trajectory. 

2.2 B-Spline interpolation process 
The trajectory of the B-spline curve is fitted through 
control points Pi(x, y), and the choice of control points 
influences the overall shape of the curve fit. According to 
the derived formula, k is a variable controlling the accuracy 
of the curve, and altering this variable will adjust the 
degree of fitting of the spline curve. The smaller the value 
of k, the higher the fitting accuracy. 

The B-spline curve control in this project is fitted using 
a discrete approach. Before conducting the curve fitting, it 
is necessary to determine whether it is an open or closed 
curve. If it is a closed curve, the first two control points are 
sequentially added after the control sequence. If it is an 
open curve, the first and last two endpoints are processed 
and each control point is added, denoted as begin and end. 
The midpoint between begin and the original first control 
point is the original second control point, and the midpoint 
between end and the original penultimate last control point 
is the original penultimate control point. B-spline 
interpolation flow chart is shown in Figure 1. 

 

Figure 1. B-spline curve interpolation flow chart 

2.3 Velocity control strategy 
B-spline trajectories are divided into i segments based on 
control points, and different running velocity can be set for 
each trajectory segment[29]. In this project, velocity 
variations are achieved using S-shaped curves for velocity 
rate regulation. The use of S-shaped velocity control 
enhances the overall smoothness and fluidity of the entire 
B-spline trajectory. The formula for implementing the S-
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curve is as follows: 
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    (6) 

 
S(t) describes the entire acceleration-deceleration process 
divided into 7 transition stages, where the number of stages 
is represented by n, and n = 1, 2 ... 7. tn represents the 
transition moments for each speed change stage, τ 
represents the local time coordinate when each stage's 
starting point is taken as the zero point, and Tn represents 
the duration of each stage's operation. Assuming the 
number of control points for the B-spline curve is i, the 
number of segments in the trajectory is k, namely k = i-1. 
The S-curve acceleration-deceleration algorithm is used to 
achieve speed transitions for each trajectory segment, as 
shown in Figure 2. 

 

Figure 2. Velocity planning diagram 

2.4 Embedded system design 

2.4.1 Hardware system design 
Based on our assessment of different embedded systems, 
employing Digital Signal Processor(DSP) for system 
design guarantees high algorithm operation efficiency but 
comes with a high implementation cost. If an Field 
Programmable Gate Array(FPGA) is utilized for system 
design, achieving algorithm logic design becomes 
challenging, and the system may experience limited 
scalability [30, 31]. In order to have a cost advantage in 
design and ensure a high cost-performance ratio, this study 
adopts a CPU from the Advanced RISC Machine (ARM) 
system as the core control chip[32], with the specific 
model being STM32F407ZGT6. 

We selected a Cortex-M4 ARM-based CPU as the main 
chip, known for its high performance and low power 
consumption. This chip is widely used in embedded 
system development, offering robust functionality and 
flexible configuration options. The peripheral devices in 
our system design include PWM control, digital 
input/output, communication interfaces, power output, and 
other features. The specific hardware design block diagram 
is illustrated in Figure 3. Figure 4 depicts the hardware 
circuit board. 

 

Figure 3. Hardware architecture schematic 

 

Figure 4. Hardware circuit board 

2.4.2 Software system design 
The hardware architecture of this project is designed using 
the STM32 embedded system. The software program 
needs to be implemented on the STM32 chip. Due to the 
high real-time requirements of embedded systems and the 
fact that STM32 is a compact single-threaded chip, there 
are stringent demands on the software framework design. 
To achieve high real-time multi-axis interpolation motion 
control, a FIFO queue is utilized in the software 
architecture. The software implementation framework is 
described as follows: 
1. Input control points P. 
2. A discrete algorithm for B-spline curves, as depicted in 

Figure 1, is designed. The interpolation period is set to 
Ts=1ms, meaning the computation is performed every 
Ts period.  

3. A discrete trajectory generation program is designed to 
calculate the control parameters of the spline curve: R0, 
R1, R2, R3. 

4. An S-curve velocity program is designed to calculate 
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the displacement adjustment quantity Δu by setting the 
velocity variable V. 

5. A servo drive function is designed. Due to the real-time 
requirements of embedded systems, the program 
architecture employs an advanced First-In-First-Out 
(FIFO) queue for management. In the fourth step, each 
servo displacement adjustment quantity ΔX, ΔY, ΔZ is 
generated into the queue. Through queue operations, 
the output pulses ΔPx, ΔPy, ΔPz for each axis are 
generated in each Ts period. 

6. Output to the servo system for execution, and the 
software framework along with the implementation 
process are depicted in Figure 5. 

     

Figure 5. Software Framework and Implementation 
Process  

3. SIMULATION 
This study aims to verify the real-time applicability of the 
third-degree B-spline curve in embedded systems. 
MATLAB is employed as the analytical tool for theoretical 
simulations, validating the discrete algorithm of the B-

spline curve. The simulation consists of two experiments: 
first, the simulation of a two-dimensional B-spline curve 
in the x-y coordinate plane, followed by the simulation of 
a three-dimensional B-spline curve in the x-y-z Cartesian 
coordinate plane. During the simulation, the trajectory's 
operating speed is set at 100 mm/s, and the interpolation 
period Ts is configured as 1ms. Table 1 presents the 
parameters for the operation of the two-dimensional B-
spline curve, and Figure 6 illustrates its simulated 
operation. Table 2 provides the parameters for the 
operation of the three-dimensional B-spline curve, and 
Figure 7 depicts its simulated operation. 

Table 1. B-spline curve parameter configuration 

Content Parameters 

Control points 19 

Axis numbers 2 

x-axis 
coordinate 

(0 20 25 40 55 80 90 100 120 
150 165  180 185 190 205 220 

247 268 295) 

y-axis 
coordinate 

(0 10 15 30 45 50 80 88  90  95  
100 102 103 107 108 110 130 

145 150) 
 

 

Figure 6. B-spline curve Simulation (2D) 

From the simulated curves, it can be observed that the 
discrete algorithm and process of the B-spline curve 
effectively track the specified control points. This enables 
the trajectory to follow the planned path along the control 
points. Moreover, at the turning positions of the control 
points, it achieves a smooth transition. 
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Table 2. B-spline curve parameter configuration 

Content Parameters 

Control points 13 

Axis numbers 3 

x-axis 
coordinate 

(1.5 7.17 9.99 6.75 -0.58 -7.56 -
9.96 -6.31 1.16 7.93 9.89 5.84 -

1.74) 

y-axis 
coordinate 

(10  6.96 -0.29 -7.37 -9.98 -
6.53 0.87 7.75 9.93 6.08 -1.45 -

8.11 -9.84) 

z-axis 
coordinate 

(0.5 0.8 1.6 2.4 3.2 4.0 4.8 5.6 
6.4 7.2 8.0 8.8 9.6) 

 

 

Figure 7. B-spline curve Simulation (3D) 

For traditional polishing machines, trajectory 
programming is typically accomplished using CNC control 
systems and G-code. For this project, which requires 
complex surface machining, writing G-code necessitates 
the use of CAD/CAM software, a standard practice in 
conventional CNC programming. CAD/CAM software 
plays a crucial role in precisely mapping the machining 
paths, allowing programmers to customize and optimize 
the trajectory in detail to meet specific processing 
requirements. Using G-code in conjunction with 
CAD/CAM software not only ensures that the machine can 
perform high-precision and complex polishing tasks but 
also enables accurate trajectory interpolation. The 
interpolation points for the polishing trajectory of this 
project are generated using MATLAB software and are 
displayed in Figure 8. 

  

Figure 8. Polishing trajectory planning (CNC) 

Taking 13 points on the CNC trajectory curve, these points 
are used as control points to generate a B-spline trajectory 
curve. The comparative plot between the generated B-
spline curve and the CNC trajectory curve is depicted in 
Figure 9. The trajectories and trajectory error curves for 
the x-axis, y-axis, and z-axis are shown in Figure 10, 11 
and 12, respectively. 

 

 Figure 9. B-spline curve and the CNC trajectory curve 
(13 points) 

 

 Figure 10. x-axis trajectory and error curve (13 points) 

 

 Figure 11. y-axis trajectory and error curve (13 points) 
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 Figure 12. z-axis trajectory and error curve (13 points) 

Selecting 29 points from the CNC trajectory curve as 
control points generated a new B-spline trajectory curve. 
The comparative plot between the new B-spline curve and 
the CNC trajectory curve is depicted in Figure 13. The 
trajectories and trajectory error curves for each axis are 
shown in Figure 14, 15 and 16, respectively. 

 

 Figure 13. B-spline curve and the CNC trajectory curve 
(29 points) 

 

 Figure 14. x-axis trajectory and error curve (29 points) 

 

 Figure 15. y-axis trajectory and error curve (29 points) 

 

 Figure 16. z-axis trajectory and error curve (29 points) 

The comparison of the two simulation experiments is 
depicted in Table 3. From the data comparison, it is evident 
that the B-spline curve can effectively track the control 
points, and the curve transitions smoothly and seamlessly, 
showcasing the high effectiveness of the B-spline control 
algorithm in this project. In the analysis of the error curves, 
significant errors are observed in the latter half of the 
trajectory for each axis. When the B-spline curve is set 
with 12 control points, the errors are ex=1.364, ey =0.582, 
ez =0.362. When the B-spline curve is set with 29 control 
points, the errors are ex=1.242, ey =1.191, ez =0.323. 
Therefore, it can be observed that the more closely spaced 
the control points are, the closer the generated trajectory is 
to the ideal trajectory. 

When adjacent control points result in a small turning 
radius, causing the B-spline curve to deviate from the 
theoretical curve, it is advisable to add an extra control 
point at that position to make the trajectory curve closer to 
the ideal curve. 

Table 3. B-spline curve parameter configuration 

Content Simulation 1 Simulation 2 

Control 
points 

13 29 

Axis 
numbers 

3 3 

x-axis 
coordinate 

(200 187 171 154 
136 116 95 73 51 

28 5 -18 -21) 

(200 195 190 184 
178 171 165 158 
151 143 136 128 
120 112 103 95 
86 77 69 60 51 

41 32 23 14 5 -4 -
13 -21) 

y-axis 
coordinate 

(400 382 365 350 
337 325 316 309 
304 302 302 304 

305) 

(400 393 386 379 
372 365 359 353 
347 342 337 332 
328 323 320 316 
313 310 308 306 
304 303 302 302 
302 302 303 304 

305) 

z-axis 
coordinate 

(20 26 32 38 44 49 
55 61 67 73 79 85 

86) 

(20 22 25 27 29 
32 34 36 39 41 
44 46 48 51 53 
55 58 60 63 65 
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67 70 72 74 77 
79 82 84 86) 

x-axis 
max error 

1.364mm 1.242mm 

y-axis 
max error 

0.582mm 0.191mm 

z-axis 
max error 

0.362° 0.323° 

 

4. EXPERIMENT 
The polishing machine utilized in this research comprises 
three axes: x-axis, y-axis, and z-axis (rotation axis). These 
three axes operate as servo motion systems, collectively 
forming a Cartesian coordinate motion system in spatial 
linkage. The tool center point of the coordinate system's 
movement corresponds to the installation position of the 
polishing workpiece. In other words, the workpiece can 
undergo horizontal and rotational movements within the 
Cartesian space, while the grinding wheel remains fixed on 
the positioning axis. Specifically, the wax servo device is 
employed to apply polishing wax to the grinding wheel 
during the polishing process. This ensures that the metal 
vessels do not overheat or become discolored during the 
polishing operation. As shown in Figure 17. 
 

 

Figure 17. The polishing machine of this project 

Figure 18 depicts the schematic diagram of the polishing 
machine. The x and y axes are capable of spatial movement 
in a two-dimensional plane, while the Z-axis serves as a 
rotational axis. The workpiece is mounted on the Z-axis, 
allowing rotational movement. During the polishing 
process, it is essential to ensure that the workpiece surface 
comes into contact with the grinding wheel surface, 
enabling the polishing of curved surfaces. 

 

Figure 18. Structure diagram of polishing machine 

The system control block diagram is presented in Figure 
19. Employing a self-developed embedded board, the 
controller utilizes the STM32 as the primary control chip 
within the ARM structure system. For servo control, a 
pulse-direction differential drive output format is 
employed, individually linking with the x-axis, y-axis, z-
axis, and multiple wax servo axes. The control board card 
generates a 0~10V analog signal to regulate the frequency 
converter, driving the workpiece motor based on the 
prescribed speed. Additionally, the control board oversees 
the grinding wheel motor, and a current transformer is 
positioned on the input cable of the grinding wheel motor. 
The real-time measured current value is dynamically fed 
back to the control system and serves as a reference for 
control. 

 

Figure 19. System logic block diagram 

Figure 20 provides a schematic representation of the on-
site teaching procedure for polishing trajectory, illustrating 
the relative motion between the polishing wheel and the 
workpiece surface, along with the step-by-step 
establishment of trajectory points. The horizontal axes, 
denoted as x and y, serve as coordinates, while the z-axis 
functions as the rotational axis, where its value signifies 
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the swing angle of the workpiece. The recorded data during 
this process [P1, P2, P3, ..., Pk-1, Pk, Pk+1, ..., Pn-1, Pn] 
represent the actual polishing points, serving as the control 
points for the B-spline algorithm. 

 

Figure 20. Control point acquisition diagram 

The experimental process of this project involves 
initially obtaining the control points for the B-spline 
trajectory through on-site teaching and configuring the 
parameters on the touchscreen. The operating speed of the 
system in this experiment is set to 100mm/s, with a system 
interpolation period of 1ms. Specific execution parameters 
can be found in Table 4. 

Upon system startup, the embedded motion controller 
executes the B-spline interpolation program, driving the 
servo system with pulse commands. This enables the 
polishing machine to follow the trajectory based on the 
teaching points, while concurrently collecting real-time 
position and encoder feedback information from the 
drives. The B-spline curve trajectory of this experiment is 
presented in Figure 21. The real-time position information 
and error data for the x-axis, y-axis, and z-axis are 
illustrated in Figures 22, 23, and 24, respectively.  

 

 Figure 21. B-spline curve and the CNC trajectory curve 
(20 points) 

 

 Figure 22. x-axis trajectory and error curve (20 points) 

 

 Figure 23. y-axis trajectory and error curve (20 points) 

 

 Figure 24. z-axis trajectory and error curve (20 points) 

Table 4. B-spline curve parameter configuration 

Content Parameters 

Control points 20 

Axis numbers 3 

x-axis 
coordinate 

(313 312 310 305 300 295 288 
276 262 251 238 218 209 199 

188 179 169 164 154 143) 

y-axis 
coordinate 

(845 841 835 827 819 812 804 
793 784 778 772 767 765 762 

762 762 763 764 767 770) 

z-axis 
coordinate 

(180 178 175 171 168 162 159 
152 145 141 133 127 122 111 

110 110 100 100 98 94) 
 
In the experiment, we set the running speed to 100 

mm/s, with acceleration and deceleration both at 2500 
mm/s². The interpolation cycle is 1ms, and the trajectory 
error update cycle is 0.125ms. Operational effects are 
illustrated in Figures 22, 23, and 24. Figure 22 displays the 
x-axis servo's actual trajectory curve, covering a 2.358s run 
from 180mm to 94mm. The average error for x-axis 
trajectory is 1.098μm, with a maximum of 1.796μm. 
Figure 23 showcases the y-axis servo's track curve over 
2.358 seconds, ranging from 845mm to 72mm. The 
average error for track running is 1.284μm, with a 
maximum of 1.489μm. Figure 24 presents the z-axis 
servo's trajectory curve, covering a 2.358s run from 180° 
to 94°. The maximum absolute error for the z-axis is 
0.001685°. Figure 22 displays the motion axis's running 
trajectory in a Cartesian coordinate system, representing 
the actual system operation. Experimental data are 
summarized in Table 5.  
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Table 5. B-spline curve parameter configuration 

Content x-axis y-axis z-axis 

Average 
error 

1.098μm 1.284μm 0.000876° 

Maximum 
error 

1.796μm 1.489μm 0.001685° 

Running 
range 

180~94mm 845~72mm 180~94° 

 
In the experiment, the B-spline curve control algorithm 
was precisely configured and tested for the number of 
control points, trajectory errors, and system response 
speeds. Table 4 displays the parameter settings for the B-
spline curve in the experimental setup, including the 
number of control points, coordinates of each axis, as well 
as the operational speed and interpolation period during the 
experiment. The purpose of the experiment was to simulate 
the polishing process through practical operation and to 
observe how the system executes the predetermined B-
spline curve path under real-time conditions. 

Table 5 presents detailed error data for the x-axis, y-axis, 
and z-axis in the experiment, highlighting both average 
and maximum errors. Specifically, the x-axis exhibited an 
average error of 1.098 μm and a maximum error of 1.796 
μm, the y-axis showed an average error of 1.284 μm with 
a maximum of 1.489 μm, and the z-axis experienced a 
maximum absolute error of 0.001685 degrees. These errors 
were primarily due to the real-time response capabilities of 
the servo motors and the execution accuracy of the actual 
equipment. Despite the system achieving high precision in 
following the B-spline curve, these significant 
discrepancies across various axes suggest a need for 
further refinement in the control strategy, aiming to 
enhance the servo motor responses and reduce execution 
inaccuracies in the equipment. 

Furthermore, the experimental data demonstrated that 
the system could maintain stable performance at high 
speeds (100 millimeters per second) and short 
interpolation periods (1 millisecond). This confirms the 
applicability of the B-spline curve algorithm in industrial 
applications requiring high speed and precision. The 
experiment not only verified the theoretical feasibility of 
the B-spline algorithm but also showcased its efficiency 
and reliability in actual industrial applications. 

In summary, the combination of experimental results 
and simulation data clearly demonstrated the advantages of 
the B-spline curve control algorithm in practical 
applications, particularly in precisely controlling complex 
trajectories. This lays a solid foundation for the future 
application of such algorithms in more high-precision 
manufacturing scenarios. 

5. CONCLUSION 
This paper investigates real-time interpolation algorithms 
for B-spline curves and simulates the algorithms in 
MATLAB to validate their feasibility. An embedded 
motion control system based on STM32 is designed, and 

experiments involving B-spline curve trajectory execution 
are conducted on a polishing machine, confirming the 
practical application of the B-spline algorithm in the field 
of motion control. 

Two simulation experiments are performed, involving 
the generation of B-spline trajectories with 13 and 29 
control points, respectively. The results demonstrate the 
effectiveness of the B-spline curve algorithm, as the 
trajectory gradually approximates the ideal path with an 
increasing number of control points. However, in 
trajectories with very small corner radii of control points, 
deviations between the actual and ideal trajectories may 
occur. 

The project implements an embedded control system 
based on STM32 and conducts experiments on a polishing 
machine. The B-spline curve algorithm is discretized and 
executed in the embedded system, generating pulse signals 
to drive servo motors for trajectory planning on the 
polishing machine. Experimental results show that the B-
spline curve can discretely operate in the embedded 
system, achieving high precision in position calculations. 
The embedded motion control system operates stably on 
the polishing machine, enabling the machine to perform 
specified actions along the given trajectory. 

Through simulation and experimentation, this project 
validates the efficiency of B-spline curves in trajectory 
control. The concise and clear mathematical description of 
B-spline curves facilitates their implementation in a 
computer environment. Their flexibility to adapt to various 
complex shapes, including curves and surfaces, makes 
them easily applicable in computational and simulation 
aspects of industrial production. 
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