
VOL. 23, NO. 2, 2024, 81-91
elektrika.utm.my
ISSN 0128-4428

81

Polishing Machine Control System Based on B-
Spline Curve Trajectory

Qitao Tan1,2, Mohd Ariffanan Mohd Basri1*, Jianbin Wang2

1Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
2Faculty of Computer Science and Software, School of Big Data, Zhaoqing University, 55 Zhaoqing Avenue, Duanzhou,

Zhaoqing, Guangdong, China
*Correspondence: ariffanan@fke.utm.my

Abstract: In this study, a B-spline trajectory control algorithm is presented, showcasing its ability to achieve smooth trajectory
control within an embedded motion control system. Traditional surface machining methods involve converting interpolated
trajectories into G-code using numerical control (NC) software, which is then downloaded and executed on the numerical
control system. This research introduces a specialized third-degree B-spline interpolation method tailored for curved surface
trajectories, aiming to enhance machining efficiency. A significant strength of this project lies in the holistic design of an
embedded system, encompassing both hardware circuitry and software logic. Utilizing the cost-effective STM32 architecture,
a B-spline discrete velocity interpolation algorithm is implemented, validated through experiments conducted on a polishing
machine system. The project involves MATLAB software for data simulations and experiments on a polishing machine using
B-spline curve interpolation, confirming the practicality and effectiveness of the third-degree B-spline algorithm within an
embedded system.

Keywords: B-spline curve interpolation; motion control; embedded system
© 2024 Penerbit UTM Press. All rights reserved

Article History: received 24 January 2024; accepted 16 June 2024; published 29 August 2024

1. INTRODUCTION
Surface machining is a broad category in industrial
automation, and many manufacturing sectors currently
utilize computers or logic controllers for surface
processing, incurring high implementation costs[1] [2] [3].
Conventional computer numerical control (CNC) systems
for machining free-form surfaces require pre-processing
through computer aided design(CAD) and computer-aided
manufacturing (CAM) software [4] [5]. The trajectory of
the free-form surface is generated by CAM software,
converted into G-code, and then imported into the CNC
system. However, this method has several drawbacks:
1.Prior to machining, CAM software must be used to
convert the motion trajectory, and the accuracy of the
machining trajectory depends on the performance of the
CAM software [6]. 2.Numerous pre-processing steps are
involved, making it challenging to adjust the trajectory
during operation. 3.It is categorized as offline
programming, and once the execution process begins, the
trajectory cannot be modified.

B-spline curves provide a means to achieve surface
processing, allowing multi-axis CNC equipment to follow
continuous trajectories by setting control points and feed
speeds. Control points, which can also be referred to as
shape points, can influence the generated curve trajectory.
They find extensive applications in specific machining
scenarios, such as cases involving the surface polishing of
metal vessels [7]. The use of B-spline curves replaces
traditional semi-automatic manual labor, enabling the

automation of continuous polishing for curved metal
vessels, thereby enhancing efficiency and quality [8] [9].
In comparison to other works, this report stands out by
proposing a comprehensive embedded system
solution[10], encompassing hardware diagram design and
software program design. It implements a B-spline discrete
velocity interpolation algorithm using the cost-effective
STM32 chip, validated on a CNC polishing device. The
control board of this system has been successfully applied
in industrial settings.

Extensive research has been conducted by numerous
scholars focusing on the theoretical research on B-spline
curves. In the study by Shuai Ji [11], a non-uniform
rational B-spline (NURBS) curve was introduced, along
with a forecasting model derived from Newton's
interpolating polynomial. The foundation of this equation
lies in the interpolated calculation of the correlation
between chord length and arc length. The target parameter
"u" for each interpolation cycle is determined through
Taylor's expansion. Xu Dua's [12] research demonstrated
that utilizing the bi-chord error test leads to a substantial
decrease in the quantity of control points. In the
autonomous adjustment process of both the quantity and
positions of control points for the active spline curve,
Huaiping Yang [13] incorporated squared distance
minimization (SDM). Jean Marie Langeron [14] employed
B-spline curves within CAM software to create a tool path.
This research focused on the geometric calculation of the
tool path. These investigations primarily focused on

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

82

foundational research, encompassing the analysis of the
method for estimating velocity, algorithm based on Taylor
interpolation, and various aspects related to spline curves.

Mohammad Mahdi Emami [15] proposed a trajectory
prediction generation method. By computing the estimated
distance between two trajectory points and performing
reverse interpolation within the interpolation cycle, the
deceleration moment is determined. In the research
conducted by Xianbing Liu [16], a module for lookahead
angle prediction was developed, allowing adaptive
adjustments to feed rates within a small turning radius
range. Simplifying the accelerate (ACC) and decelerate
(DEC) algorithms, as proposed by Hepeng Ni [17],
ensured compensation for rounding errors. Consequently
ensuring the smoothness of the jerk profile. Daoshan Du’s
[18] study focused on mitigating sudden
acceleration/deceleration changes in regions with high
curvature. In the proposal by Shingo Tajima [19] , a new
interpolation algorithm was suggested, enabling real-time
trajectory interpolation within defined intervals and with
minimal computational cost. Marco Riboli [20] present a
motion planning method for dual-arm Cartesian robots,
utilizing fifth-degree B-splines and quadratic
programming to minimize trajectory curvature and ensure
smooth, collision-free paths. The method also optimizes
motion profiles through iso-parametric trajectory planning,
demonstrating its application in a laser machine sorting
system. Guangwen Yan [21] develop a CNC machining
corner rounding technique using asymmetrical B-spline
curves to independently adjust transition lengths,
effectively minimizing curvature and enhancing feedrate
by eliminating overlaps. This method results in smoother
and faster machining processes, as demonstrated through
extensive simulations and practical experiments. Fengcai
Huo [22] propose a smooth path planning method for
Ackermann mobile robots using an improved ant colony
algorithm and B-spline curves. This approach integrates
multi-objective optimization to handle path length and
smoothness constraints, incorporates a refined ant colony
algorithm with enhanced pheromone updates, and employs
B-spline curve adjustments to comply with kinematic
limits, significantly improving path efficiency and
adherence to curvature constraints. Xiangfei Li [23]
developed a Cartesian trajectory planning method for
industrial robots utilizing triple NURBS curves to
synchronously describe and plan the robot's position and
orientation trajectories while ensuring limited linear jerk
and continuous bounded angular velocity, even in the
absence of an optimization process. Keith Ng [24]
introduce a deflection-limited trajectory planning method
for robotic milling that employs B-spline curves to ensure
smooth and precise curvilinear paths. By integrating real-
time feedback and adjusting feed rates based on calculated
deflections, this approach enhances machining accuracy
and efficiency. In their study, Kang Min [25] and
colleagues introduce an innovative force control
architecture for robotic abrasive belt grinding of complex
curved blades, which integrates smooth trajectories using
cubic B-spline and C2 continuous quaternion spline curves.
This method significantly improves the grinding process
by ensuring continuous and smooth movement, thus

enhancing the surface quality of the blades. Hexiong Li
[26] developed a Cartesian trajectory planning method for
industrial robots using triple NURBS curves, enhancing
motion precision by controlling linear jerk and bounded
angular velocity, without optimization procedures.
Shengqian Li and Xiaofan Zhang [27] introduce a
trajectory planning method for underwater vision welding
robots using quintic B-spline curves. This method
interpolates joint angles to ensure smooth transitions and
utilizes sequential quadratic programming to optimize
trajectory time, significantly enhancing movement
accuracy and efficiency. Yuanjian Lv [28] developed an
adaptive trajectory planning algorithm for robotic belt
grinding, utilizing a material removal profile model and
NURBS curves. This approach dynamically adjusts the
grinding paths based on changes in material curvature and
elastic deformation, enhancing the grinding efficiency and
accuracy as demonstrated through simulations and
experiments.

Drawing on the investigations conducted by the
aforementioned researchers, this paper conducts unique
research, primarily focusing on the foundational theory of
B-spline curves and the expansion analysis of constant
velocity control.

The contributions of this work encompass the following
aspects:
1. Analysis of the B-spline control algorithm, employing

control points for the generation of smooth trajectory
running curves.

2. Study the constant velocity control strategy for
trajectories and validate it through simulation and
experimentation.

3. Developed an embedded motion control system,
including hardware schematic design, circuit design,
software architecture design, algorithm development,
and debugging. The system was validated in a physical
polishing machine, demonstrating high efficiency and
stability.

2. SYSTEM DESIGN

2.1 Principle of B-spline Curve Interpolation
The order of B-spline curves determines the smoothness of
the curve, while the degree determines the number of basis
functions. Adjusting these parameters allows control over
the complexity and smoothness of the curve. This project
investigates third-order B-spline curves, and the
mathematical derivation of a third-order B-spline curve is
as follows:

𝑃𝑃𝑖𝑖(𝑢𝑢) = �𝐵𝐵𝑗𝑗,4(𝑢𝑢)
3

𝑗𝑗=0

𝑃𝑃𝑖𝑖+𝑗𝑗

=
1
6

[1 𝑢𝑢 𝑢𝑢2 𝑢𝑢3] �
1 4 1 0
−3 0 3 0
3
−1

−6
3

3
−3

0
1

� �

𝑃𝑃𝑖𝑖
𝑃𝑃𝑖𝑖+1
𝑃𝑃𝑖𝑖+2
𝑃𝑃𝑖𝑖+3

� (1)

The control point Pi exhibits multiple spline feature
deformations, where i denotes the control point sequence
number. The basis function of the cubic spline, denoted as

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

83

Bj,4, is associated with the basis function sequence number
j. The expansion of Bj,4 is articulated as follows:

𝐵𝐵𝑗𝑗,4(𝑢𝑢) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐵𝐵0,4(𝑢𝑢) =

1
6

(1 − 𝑢𝑢)3

𝐵𝐵1,4(𝑢𝑢) =
1
6

(4 − 6𝑢𝑢2 + 3𝑢𝑢3)

𝐵𝐵2,4(𝑢𝑢) =
1
6

(1 + 3𝑢𝑢 + 3𝑢𝑢2 − 3𝑢𝑢3)

𝐵𝐵3,4(𝑢𝑢) =
1
6
𝑢𝑢3

 (2)

Given the need to apply B-spline curves in real-time
embedded systems in this study, it is essential to ensure the
system possesses efficient real-time performance.
Therefore, the calculation method for B-spline curves must
be discretized. Assuming the interpolation period is Ts, the
control parameter u must be computed within the
interpolation period through a simple calculation, as all
computations for a third-degree B-spline curve are
functions of the parameter u, making direct calculation
feasible.

The interpolation algorithm for this project is as follows:
within each interpolation period Ts, establish a constant-
speed increment ∆uk for the parameter, then, using a
discrete interpolation formula, calculate the next velocity
increment ∆uk+1. The function expression for the third-
degree B-spline curve associated with control point
number i can be derived based on the parameter u.

 P(u) = R3u3+R2u2 + R1u+R0 (3)

The parameters R0, R1, R2 and R3 are defined as follows:

⎩
⎪
⎨

⎪
⎧R3 = �1

6� �(−P1 + 3Pi+1 − 3Pi+2 + Pi+3)

R2 = �1
6� �(3Pi − 6Pi+1 + 3Pi+2)

R1 = �1
6� �(−3Pi + 3Pi+2)

R0 = �1
6� �(Pi + 4Pi+1 + Pi+2)

 (4)

To maintain constant velocity in spline interpolation, it is
necessary to determine the contour step within a single
interpolation cycle based on the given speed and map it
into the parameter space to obtain the parameter increment
∆u𝑘𝑘 . Substituting ∆u𝑘𝑘 into the spline curve for
interpolation calculations allows the computation of the
control points P(u𝑘𝑘) for each Ts period.. The calculation
for ∆u in each constant velocity interpolation cycle is as
follows:

 ∆u𝑘𝑘 =
V ∙ Ts

|
dPi(u)

du |u=uk
 (5)

As the parameter increment u is determined by the given

speed and interpolation cycle, the chord length between the
trajectory space points generated in each cycle remains
constant, ensuring a constant feed rate throughout the
entire trajectory.

2.2 B-Spline interpolation process
The trajectory of the B-spline curve is fitted through
control points Pi(x, y), and the choice of control points
influences the overall shape of the curve fit. According to
the derived formula, k is a variable controlling the accuracy
of the curve, and altering this variable will adjust the
degree of fitting of the spline curve. The smaller the value
of k, the higher the fitting accuracy.

The B-spline curve control in this project is fitted using
a discrete approach. Before conducting the curve fitting, it
is necessary to determine whether it is an open or closed
curve. If it is a closed curve, the first two control points are
sequentially added after the control sequence. If it is an
open curve, the first and last two endpoints are processed
and each control point is added, denoted as begin and end.
The midpoint between begin and the original first control
point is the original second control point, and the midpoint
between end and the original penultimate last control point
is the original penultimate control point. B-spline
interpolation flow chart is shown in Figure 1.

Figure 1. B-spline curve interpolation flow chart

2.3 Velocity control strategy
B-spline trajectories are divided into i segments based on
control points, and different running velocity can be set for
each trajectory segment[29]. In this project, velocity
variations are achieved using S-shaped curves for velocity
rate regulation. The use of S-shaped velocity control
enhances the overall smoothness and fluidity of the entire
B-spline trajectory. The formula for implementing the S-

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

84

curve is as follows:

𝑠𝑠(𝑡𝑡)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑣𝑣𝑠𝑠𝜏𝜏1 + 𝐽𝐽𝜏𝜏13 6⁄ 0 ≤ 𝑡𝑡 < 𝑡𝑡1
𝑠𝑠01 + 𝑣𝑣01𝜏𝜏2 + 𝐽𝐽𝑇𝑇1𝜏𝜏22 2⁄ 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
𝑠𝑠02 + 𝑣𝑣02𝜏𝜏3 + 𝐽𝐽𝑇𝑇1𝜏𝜏32 2⁄ − 𝐽𝐽𝜏𝜏33 6⁄ 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
𝑠𝑠03 + 𝑣𝑣03𝜏𝜏4 𝑡𝑡3 ≤ 𝑡𝑡 < 𝑡𝑡4
𝑠𝑠04 + 𝑣𝑣04𝜏𝜏5 − 𝐽𝐽𝜏𝜏53 6⁄ 𝑡𝑡4 ≤ 𝑡𝑡 < 𝑡𝑡5
𝑠𝑠05 + 𝑣𝑣05𝜏𝜏6 − 𝐽𝐽𝑇𝑇5𝜏𝜏62 2⁄ 𝑡𝑡5 ≤ 𝑡𝑡 < 𝑡𝑡6
𝑠𝑠06 + 𝑣𝑣06𝜏𝜏7 + 𝐽𝐽𝑇𝑇5𝜏𝜏72 2⁄ + 𝐽𝐽𝜏𝜏73 6⁄ 𝑡𝑡6 ≤ 𝑡𝑡 < 𝑡𝑡7

 (6)

S(t) describes the entire acceleration-deceleration process
divided into 7 transition stages, where the number of stages
is represented by n, and n = 1, 2 ... 7. tn represents the
transition moments for each speed change stage, τ
represents the local time coordinate when each stage's
starting point is taken as the zero point, and Tn represents
the duration of each stage's operation. Assuming the
number of control points for the B-spline curve is i, the
number of segments in the trajectory is k, namely k = i-1.
The S-curve acceleration-deceleration algorithm is used to
achieve speed transitions for each trajectory segment, as
shown in Figure 2.

Figure 2. Velocity planning diagram

2.4 Embedded system design

2.4.1 Hardware system design
Based on our assessment of different embedded systems,
employing Digital Signal Processor(DSP) for system
design guarantees high algorithm operation efficiency but
comes with a high implementation cost. If an Field
Programmable Gate Array(FPGA) is utilized for system
design, achieving algorithm logic design becomes
challenging, and the system may experience limited
scalability [30, 31]. In order to have a cost advantage in
design and ensure a high cost-performance ratio, this study
adopts a CPU from the Advanced RISC Machine (ARM)
system as the core control chip[32], with the specific
model being STM32F407ZGT6.

We selected a Cortex-M4 ARM-based CPU as the main
chip, known for its high performance and low power
consumption. This chip is widely used in embedded
system development, offering robust functionality and
flexible configuration options. The peripheral devices in
our system design include PWM control, digital
input/output, communication interfaces, power output, and
other features. The specific hardware design block diagram
is illustrated in Figure 3. Figure 4 depicts the hardware
circuit board.

Figure 3. Hardware architecture schematic

Figure 4. Hardware circuit board

2.4.2 Software system design
The hardware architecture of this project is designed using
the STM32 embedded system. The software program
needs to be implemented on the STM32 chip. Due to the
high real-time requirements of embedded systems and the
fact that STM32 is a compact single-threaded chip, there
are stringent demands on the software framework design.
To achieve high real-time multi-axis interpolation motion
control, a FIFO queue is utilized in the software
architecture. The software implementation framework is
described as follows:
1. Input control points P.
2. A discrete algorithm for B-spline curves, as depicted in

Figure 1, is designed. The interpolation period is set to
Ts=1ms, meaning the computation is performed every
Ts period.

3. A discrete trajectory generation program is designed to
calculate the control parameters of the spline curve: R0,
R1, R2, R3.

4. An S-curve velocity program is designed to calculate

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

85

the displacement adjustment quantity Δu by setting the
velocity variable V.

5. A servo drive function is designed. Due to the real-time
requirements of embedded systems, the program
architecture employs an advanced First-In-First-Out
(FIFO) queue for management. In the fourth step, each
servo displacement adjustment quantity ΔX, ΔY, ΔZ is
generated into the queue. Through queue operations,
the output pulses ΔPx, ΔPy, ΔPz for each axis are
generated in each Ts period.

6. Output to the servo system for execution, and the
software framework along with the implementation
process are depicted in Figure 5.

Figure 5. Software Framework and Implementation
Process

3. SIMULATION
This study aims to verify the real-time applicability of the
third-degree B-spline curve in embedded systems.
MATLAB is employed as the analytical tool for theoretical
simulations, validating the discrete algorithm of the B-

spline curve. The simulation consists of two experiments:
first, the simulation of a two-dimensional B-spline curve
in the x-y coordinate plane, followed by the simulation of
a three-dimensional B-spline curve in the x-y-z Cartesian
coordinate plane. During the simulation, the trajectory's
operating speed is set at 100 mm/s, and the interpolation
period Ts is configured as 1ms. Table 1 presents the
parameters for the operation of the two-dimensional B-
spline curve, and Figure 6 illustrates its simulated
operation. Table 2 provides the parameters for the
operation of the three-dimensional B-spline curve, and
Figure 7 depicts its simulated operation.

Table 1. B-spline curve parameter configuration

Content Parameters

Control points 19

Axis numbers 2

x-axis
coordinate

(0 20 25 40 55 80 90 100 120
150 165 180 185 190 205 220

247 268 295)

y-axis
coordinate

(0 10 15 30 45 50 80 88 90 95
100 102 103 107 108 110 130

145 150)

Figure 6. B-spline curve Simulation (2D)

From the simulated curves, it can be observed that the
discrete algorithm and process of the B-spline curve
effectively track the specified control points. This enables
the trajectory to follow the planned path along the control
points. Moreover, at the turning positions of the control
points, it achieves a smooth transition.

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

86

Table 2. B-spline curve parameter configuration

Content Parameters

Control points 13

Axis numbers 3

x-axis
coordinate

(1.5 7.17 9.99 6.75 -0.58 -7.56 -
9.96 -6.31 1.16 7.93 9.89 5.84 -

1.74)

y-axis
coordinate

(10 6.96 -0.29 -7.37 -9.98 -
6.53 0.87 7.75 9.93 6.08 -1.45 -

8.11 -9.84)

z-axis
coordinate

(0.5 0.8 1.6 2.4 3.2 4.0 4.8 5.6
6.4 7.2 8.0 8.8 9.6)

Figure 7. B-spline curve Simulation (3D)

For traditional polishing machines, trajectory
programming is typically accomplished using CNC control
systems and G-code. For this project, which requires
complex surface machining, writing G-code necessitates
the use of CAD/CAM software, a standard practice in
conventional CNC programming. CAD/CAM software
plays a crucial role in precisely mapping the machining
paths, allowing programmers to customize and optimize
the trajectory in detail to meet specific processing
requirements. Using G-code in conjunction with
CAD/CAM software not only ensures that the machine can
perform high-precision and complex polishing tasks but
also enables accurate trajectory interpolation. The
interpolation points for the polishing trajectory of this
project are generated using MATLAB software and are
displayed in Figure 8.

Figure 8. Polishing trajectory planning (CNC)

Taking 13 points on the CNC trajectory curve, these points
are used as control points to generate a B-spline trajectory
curve. The comparative plot between the generated B-
spline curve and the CNC trajectory curve is depicted in
Figure 9. The trajectories and trajectory error curves for
the x-axis, y-axis, and z-axis are shown in Figure 10, 11
and 12, respectively.

 Figure 9. B-spline curve and the CNC trajectory curve
(13 points)

 Figure 10. x-axis trajectory and error curve (13 points)

 Figure 11. y-axis trajectory and error curve (13 points)

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

87

 Figure 12. z-axis trajectory and error curve (13 points)

Selecting 29 points from the CNC trajectory curve as
control points generated a new B-spline trajectory curve.
The comparative plot between the new B-spline curve and
the CNC trajectory curve is depicted in Figure 13. The
trajectories and trajectory error curves for each axis are
shown in Figure 14, 15 and 16, respectively.

 Figure 13. B-spline curve and the CNC trajectory curve
(29 points)

 Figure 14. x-axis trajectory and error curve (29 points)

 Figure 15. y-axis trajectory and error curve (29 points)

 Figure 16. z-axis trajectory and error curve (29 points)

The comparison of the two simulation experiments is
depicted in Table 3. From the data comparison, it is evident
that the B-spline curve can effectively track the control
points, and the curve transitions smoothly and seamlessly,
showcasing the high effectiveness of the B-spline control
algorithm in this project. In the analysis of the error curves,
significant errors are observed in the latter half of the
trajectory for each axis. When the B-spline curve is set
with 12 control points, the errors are ex=1.364, ey =0.582,
ez =0.362. When the B-spline curve is set with 29 control
points, the errors are ex=1.242, ey =1.191, ez =0.323.
Therefore, it can be observed that the more closely spaced
the control points are, the closer the generated trajectory is
to the ideal trajectory.

When adjacent control points result in a small turning
radius, causing the B-spline curve to deviate from the
theoretical curve, it is advisable to add an extra control
point at that position to make the trajectory curve closer to
the ideal curve.

Table 3. B-spline curve parameter configuration

Content Simulation 1 Simulation 2

Control
points

13 29

Axis
numbers

3 3

x-axis
coordinate

(200 187 171 154
136 116 95 73 51

28 5 -18 -21)

(200 195 190 184
178 171 165 158
151 143 136 128
120 112 103 95
86 77 69 60 51

41 32 23 14 5 -4 -
13 -21)

y-axis
coordinate

(400 382 365 350
337 325 316 309
304 302 302 304

305)

(400 393 386 379
372 365 359 353
347 342 337 332
328 323 320 316
313 310 308 306
304 303 302 302
302 302 303 304

305)

z-axis
coordinate

(20 26 32 38 44 49
55 61 67 73 79 85

86)

(20 22 25 27 29
32 34 36 39 41
44 46 48 51 53
55 58 60 63 65

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

88

67 70 72 74 77
79 82 84 86)

x-axis
max error

1.364mm 1.242mm

y-axis
max error

0.582mm 0.191mm

z-axis
max error

0.362° 0.323°

4. EXPERIMENT
The polishing machine utilized in this research comprises
three axes: x-axis, y-axis, and z-axis (rotation axis). These
three axes operate as servo motion systems, collectively
forming a Cartesian coordinate motion system in spatial
linkage. The tool center point of the coordinate system's
movement corresponds to the installation position of the
polishing workpiece. In other words, the workpiece can
undergo horizontal and rotational movements within the
Cartesian space, while the grinding wheel remains fixed on
the positioning axis. Specifically, the wax servo device is
employed to apply polishing wax to the grinding wheel
during the polishing process. This ensures that the metal
vessels do not overheat or become discolored during the
polishing operation. As shown in Figure 17.

Figure 17. The polishing machine of this project

Figure 18 depicts the schematic diagram of the polishing
machine. The x and y axes are capable of spatial movement
in a two-dimensional plane, while the Z-axis serves as a
rotational axis. The workpiece is mounted on the Z-axis,
allowing rotational movement. During the polishing
process, it is essential to ensure that the workpiece surface
comes into contact with the grinding wheel surface,
enabling the polishing of curved surfaces.

Figure 18. Structure diagram of polishing machine

The system control block diagram is presented in Figure
19. Employing a self-developed embedded board, the
controller utilizes the STM32 as the primary control chip
within the ARM structure system. For servo control, a
pulse-direction differential drive output format is
employed, individually linking with the x-axis, y-axis, z-
axis, and multiple wax servo axes. The control board card
generates a 0~10V analog signal to regulate the frequency
converter, driving the workpiece motor based on the
prescribed speed. Additionally, the control board oversees
the grinding wheel motor, and a current transformer is
positioned on the input cable of the grinding wheel motor.
The real-time measured current value is dynamically fed
back to the control system and serves as a reference for
control.

Figure 19. System logic block diagram

Figure 20 provides a schematic representation of the on-
site teaching procedure for polishing trajectory, illustrating
the relative motion between the polishing wheel and the
workpiece surface, along with the step-by-step
establishment of trajectory points. The horizontal axes,
denoted as x and y, serve as coordinates, while the z-axis
functions as the rotational axis, where its value signifies

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

89

the swing angle of the workpiece. The recorded data during
this process [P1, P2, P3, ..., Pk-1, Pk, Pk+1, ..., Pn-1, Pn]
represent the actual polishing points, serving as the control
points for the B-spline algorithm.

Figure 20. Control point acquisition diagram

The experimental process of this project involves
initially obtaining the control points for the B-spline
trajectory through on-site teaching and configuring the
parameters on the touchscreen. The operating speed of the
system in this experiment is set to 100mm/s, with a system
interpolation period of 1ms. Specific execution parameters
can be found in Table 4.

Upon system startup, the embedded motion controller
executes the B-spline interpolation program, driving the
servo system with pulse commands. This enables the
polishing machine to follow the trajectory based on the
teaching points, while concurrently collecting real-time
position and encoder feedback information from the
drives. The B-spline curve trajectory of this experiment is
presented in Figure 21. The real-time position information
and error data for the x-axis, y-axis, and z-axis are
illustrated in Figures 22, 23, and 24, respectively.

 Figure 21. B-spline curve and the CNC trajectory curve
(20 points)

 Figure 22. x-axis trajectory and error curve (20 points)

 Figure 23. y-axis trajectory and error curve (20 points)

 Figure 24. z-axis trajectory and error curve (20 points)

Table 4. B-spline curve parameter configuration

Content Parameters

Control points 20

Axis numbers 3

x-axis
coordinate

(313 312 310 305 300 295 288
276 262 251 238 218 209 199

188 179 169 164 154 143)

y-axis
coordinate

(845 841 835 827 819 812 804
793 784 778 772 767 765 762

762 762 763 764 767 770)

z-axis
coordinate

(180 178 175 171 168 162 159
152 145 141 133 127 122 111

110 110 100 100 98 94)

In the experiment, we set the running speed to 100

mm/s, with acceleration and deceleration both at 2500
mm/s². The interpolation cycle is 1ms, and the trajectory
error update cycle is 0.125ms. Operational effects are
illustrated in Figures 22, 23, and 24. Figure 22 displays the
x-axis servo's actual trajectory curve, covering a 2.358s run
from 180mm to 94mm. The average error for x-axis
trajectory is 1.098μm, with a maximum of 1.796μm.
Figure 23 showcases the y-axis servo's track curve over
2.358 seconds, ranging from 845mm to 72mm. The
average error for track running is 1.284μm, with a
maximum of 1.489μm. Figure 24 presents the z-axis
servo's trajectory curve, covering a 2.358s run from 180°
to 94°. The maximum absolute error for the z-axis is
0.001685°. Figure 22 displays the motion axis's running
trajectory in a Cartesian coordinate system, representing
the actual system operation. Experimental data are
summarized in Table 5.

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

90

Table 5. B-spline curve parameter configuration

Content x-axis y-axis z-axis

Average
error

1.098μm 1.284μm 0.000876°

Maximum
error

1.796μm 1.489μm 0.001685°

Running
range

180~94mm 845~72mm 180~94°

In the experiment, the B-spline curve control algorithm
was precisely configured and tested for the number of
control points, trajectory errors, and system response
speeds. Table 4 displays the parameter settings for the B-
spline curve in the experimental setup, including the
number of control points, coordinates of each axis, as well
as the operational speed and interpolation period during the
experiment. The purpose of the experiment was to simulate
the polishing process through practical operation and to
observe how the system executes the predetermined B-
spline curve path under real-time conditions.

Table 5 presents detailed error data for the x-axis, y-axis,
and z-axis in the experiment, highlighting both average
and maximum errors. Specifically, the x-axis exhibited an
average error of 1.098 μm and a maximum error of 1.796
μm, the y-axis showed an average error of 1.284 μm with
a maximum of 1.489 μm, and the z-axis experienced a
maximum absolute error of 0.001685 degrees. These errors
were primarily due to the real-time response capabilities of
the servo motors and the execution accuracy of the actual
equipment. Despite the system achieving high precision in
following the B-spline curve, these significant
discrepancies across various axes suggest a need for
further refinement in the control strategy, aiming to
enhance the servo motor responses and reduce execution
inaccuracies in the equipment.

Furthermore, the experimental data demonstrated that
the system could maintain stable performance at high
speeds (100 millimeters per second) and short
interpolation periods (1 millisecond). This confirms the
applicability of the B-spline curve algorithm in industrial
applications requiring high speed and precision. The
experiment not only verified the theoretical feasibility of
the B-spline algorithm but also showcased its efficiency
and reliability in actual industrial applications.

In summary, the combination of experimental results
and simulation data clearly demonstrated the advantages of
the B-spline curve control algorithm in practical
applications, particularly in precisely controlling complex
trajectories. This lays a solid foundation for the future
application of such algorithms in more high-precision
manufacturing scenarios.

5. CONCLUSION
This paper investigates real-time interpolation algorithms
for B-spline curves and simulates the algorithms in
MATLAB to validate their feasibility. An embedded
motion control system based on STM32 is designed, and

experiments involving B-spline curve trajectory execution
are conducted on a polishing machine, confirming the
practical application of the B-spline algorithm in the field
of motion control.

Two simulation experiments are performed, involving
the generation of B-spline trajectories with 13 and 29
control points, respectively. The results demonstrate the
effectiveness of the B-spline curve algorithm, as the
trajectory gradually approximates the ideal path with an
increasing number of control points. However, in
trajectories with very small corner radii of control points,
deviations between the actual and ideal trajectories may
occur.

The project implements an embedded control system
based on STM32 and conducts experiments on a polishing
machine. The B-spline curve algorithm is discretized and
executed in the embedded system, generating pulse signals
to drive servo motors for trajectory planning on the
polishing machine. Experimental results show that the B-
spline curve can discretely operate in the embedded
system, achieving high precision in position calculations.
The embedded motion control system operates stably on
the polishing machine, enabling the machine to perform
specified actions along the given trajectory.

Through simulation and experimentation, this project
validates the efficiency of B-spline curves in trajectory
control. The concise and clear mathematical description of
B-spline curves facilitates their implementation in a
computer environment. Their flexibility to adapt to various
complex shapes, including curves and surfaces, makes
them easily applicable in computational and simulation
aspects of industrial production.

ACKNOWLEDGMENT
The authors would like to thank Universiti Teknologi
Malaysia under UTMFR (Q.J130000.3823.22H67) for
supporting this research.

REFERENCES
[1] Campos, J.G. and L.R. Miguez, Standard process

monitoring and traceability programming in
collaborative CAD/CAM/CNC manufacturing
scenarios. Computers in Industry, 2011. 62(3): p.
311-322.

[2] Dubovska, R., J. Jambor, and J. Majerik,
Implementation of CAD/CAM System CATIA V5 in
Simulation of CNC Machining Process. Procedia
Engineering, 2014. 69: p. 638-645.

[3] Pawan Kumar, N., R. Mangey, and Y. Om Prakash,
7 CNC Machine Programming Codes (G-Codes and
M-codes), in Basics of CNC Programming. 2018,
River Publishers. p. 73-128.

[4] Xu, X.W., W. Lihui, and R. Yiming, STEP-NC and
function blocks for interoperable manufacturing.
IEEE Transactions on Automation Science and
Engineering, 2006. 3(3): p. 297-308.

[5] Pacheco, N.d.O., Use neutral data interfaces for
Numerical Controllers Computerized. IEEE Latin
America Transactions, 2017. 15(6): p. 1212-1218.

[6] Cheng, M.Y., M.C. Tsai, and J.C. Kuo, Real-time
NURBS command generators for CNC servo

Qitao Tan et al. / ELEKTRIKA, 23(2), 2024, 81-91

91

controllers. International Journal of Machine Tools
and Manufacture, 2002. 42(7): p. 801-813.

[7] Tsai, M.J., C. Jou-Lung, and H. Jian-Feng,
Development of an automatic mold polishing system.
IEEE Transactions on Automation Science and
Engineering, 2005. 2(4): p. 393-397.

[8] Erwinski, K., et al., Comparison of NURBS
trajectory interpolation algorithms for high-speed
motion control systems, in 2021 IEEE 19th
International Power Electronics and Motion Control
Conference (PEMC). 2021. p. 527-533.

[9] Wang, X.D., et al., Global smoothing for five-axis
linear paths based on an adaptive NURBS
interpolation algorithm. International Journal of
Advanced Manufacturing Technology, 2021. 114(7-
8): p. 2407-2420.

[10] Fei, J., et al., Research on Embedded CNC Device
Based on ARM and FPGA. Procedia Engineering,
2011. 16: p. 818-824.

[11] Ji, S.A., et al., A NURBS curve interpolator with
small feedrate fluctuation based on arc length
prediction and correction. International Journal of
Advanced Manufacturing Technology, 2020. 111(7-
8): p. 2095-2104.

[12] Du, X., et al., An error-bounded B-spline curve
approximation scheme using dominant points for
CNC interpolation of micro-line toolpath. Robotics
and Computer-integrated Manufacturing, 2020. 64.

[13] Yang, H.P., W.P. Wang, and J.G. Sun, Control point
adjustment for B-spline curve approximation.
Computer-aided Design, 2004. 36(7): p. 639-652.

[14] Langeron, J.M., et al., A new format for 5-axis tool
path computation, using Bspline curves. Computer-
Aided Design, 2004. 36(12): p. 1219-1229.

[15] Emami, M.M. and B. Arezoo, A look-ahead
command generator with control over trajectory and
chord error for NURBS curve with unknown arc
length. Computer-aided design, 2010. 42(7): p. 625-
632.

[16] Liu, X.B., et al., Adaptive interpolation scheme for
NURBS curves with the integration of machining
dynamics. International Journal of Machine Tools &
Manufacture, 2005. 45(4-5): p. 433-444.

[17] Ni, H.P., et al., Feedrate Scheduling of NURBS
Interpolation Based on a Novel Jerk-Continuous
ACC/DEC Algorithm. IEEE Access 2018. 6: p.
66403-66417.

[18] Du, D.S., et al., An accurate adaptive parametric
curve interpolator for NURBS curve interpolation.
International Journal of Advanced Manufacturing
Technology, 2007. 32(9-10): p. 999-1008.

[19] Tajima, S. and B. Sencer, Online interpolation of 5-
axis machining toolpaths with global blending.
International Journal of Machine Tools and
Manufacture, 2022. 175: p. 103862.

[20] Riboli, M., et al., Collision-free and smooth motion
planning of dual-arm Cartesian robot based on B-
spline representation. Robotics and Autonomous
Systems, 2023. 170: p. 104534.

[21] Yan, G., et al., Asymmetrical transition-based corner
rounding method driven by overlap elimination for
CNC machining of short-segmented tool path.
Journal of Manufacturing Processes, 2022. 76: p.
624-637.

[22] Yang, J., et al., An analytical tool path smoothing
algorithm for robotic machining with the
consideration of redundant kinematics. Robotics and
Computer-Integrated Manufacturing, 2024. 89: p.
102768.

[23] Li, X., et al., A novel cartesian trajectory planning
method by using triple NURBS curves for industrial
robots. Robotics and Computer-Integrated
Manufacturing, 2023. 83: p. 102576.

[24] Ng, K., et al., Deflection-limited trajectory planning
in robotic milling. Journal of Manufacturing
Processes, 2024. 120: p. 1180-1191.

[25] Min, K., F. Ni, and H. Liu, Robotic abrasive belt
grinding of complex curved blades based on a novel
force control architecture integrating smooth
trajectories. Journal of Manufacturing Processes,
2023. 107: p. 447-458.

[26] Li, H., et al., An integrated trajectory smoothing
method for lines and arcs mixed toolpath based on
motion overlapping strategy. Journal of
Manufacturing Processes, 2023. 95: p. 242-265.

[27] Li, S. and X. Zhang, Research on planning and
optimization of trajectory for underwater vision
welding robot. Array, 2022. 16: p. 100253.

[28] Lv, Y., et al., An adaptive trajectory planning
algorithm for robotic belt grinding of blade leading
and trailing edges based on material removal profile
model. Robotics and Computer-Integrated
Manufacturing, 2020. 66: p. 101987.

[29] Heng, M. and K. Erkorkmaz, Design of a NURBS
interpolator with minimal feed fluctuation and
continuous feed modulation capability. International
Journal of Machine Tools & Manufacture, 2010.
50(3): p. 281-293.

[30] Ponce, P., et al., Experimental study for FPGA PID
position controller in CNC micro-machines. IFAC-
PapersOnLine, 2015. 48(3): p. 2203-2207.

[31] 22. De Santiago-Perez, J.J., et al., FPGA-based
hardware CNC interpolator of Bezier, splines, B-
splines and NURBS curves for industrial
applications. Computers & Industrial Engineering,
2013. 66(4): p. 925-932.

[32] Zhang, H.-f. and W. Kang, Design of the Data
Acquisition System Based on STM32. Procedia
Computer Science, 2013. 17: p. 222-228.

	1. INTRODUCTION
	2. SYSTEM DESIGN
	2.1 Principle of B-spline Curve Interpolation
	2.2 B-Spline interpolation process
	2.3 Velocity control strategy
	2.4 Embedded system design
	2.4.1 Hardware system design
	2.4.2 Software system design

	3. SIMULATION
	4. EXPERIMENT
	5. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

