
VOL. 23, NO. 2, 2024, 123-129 
elektrika.utm.my 

ISSN 0128-4428 

 

 

   

123 

An Integrated Hybrid Convolutional-Support 

Vector Machine (CSVM) Model with the CWT 

Method for Hearing Disorder Detection using AEP 

Signals 

Md Nahidul Islam1*, Norizam Sulaiman1 and Mahfuzah Mustafa2 

1Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, 26600, 

Malaysia. 

*Corresponding author: nahidul76.edu@gmail.com 

Abstract: Hearing disorder is the most widespread sensory disability worldwide, impairing human communication and 

learning. An early and accurate hearing disorder detection system using an electroencephalogram (EEG) is the appropriate 

technique for dealing with this concern. The most significant modality for diagnosing hearing deficiency among EEG control 

signals is the auditory evoked potential (AEP), which is generated in the cortical region of the brain through auditory stimulus. 

This study aims to develop an efficient approach for detecting hearing disorders. For this purpose, this study has designed a 

hybrid model based on the convolutional operation of CNN and the SVM classifier. Initially, the CWT method was utilized to 

transform the raw AEP signals into time-frequency images. Then, the extracted features were classified using the proposed 

CSVM model. To test the robustness of the proposed model, this study also implemented a convolutional neural network 

(CNN) and support vector machine (SVM) with the same parameters. The experimental results with the hybrid CSVM model 

showed superior performance on the publicly available AEP dataset by achieving 94.48% testing accuracy, 96.40% precision, 

92.96% recall, 94.65% F1 score, 88.95% Cohen Kappa score, which indicates that the proposed hybrid model could be used 

for early hearing disorder detection. Future enhancements will concentrate on identifying different hearing-signal-based data 

and the cloud-based, automated classification of AEP signals. 
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1. INTRODUCTION 

Hearing disorder is the most common physical impairment 

in humans, characterized by a partial or full inability to 

hear a sound, resulting in communication and learning 

difficulties. The World Health Organization (WHO) 

reported that 466 million individuals had hearing loss 

globally in 2018. By 2030, it is estimated to reach 630 

million and more than 900 million by 2050 [1]. Therefore, 

an efficient diagnostic system is crucial to address this 

issue and prevent hearing loss through timely intervention. 

However, traditional testing methods are time-consuming, 

require clinical expertise, and rely on direct responses from 

individuals. 

Researchers nowadays have provided a range of testing 

methods for hearing disorders. In these, auditory evoked 

potential (AEP) signals are commonly utilized for the 

diagnosis of hearing disorders [2][3]. Currently, the AEP 

signal's outcomes are often employed in a variety of brain-

computer interface (BCI) technologies [4][5] and brain 

hearing issues [6]. Developing an intelligent system with 

high performance in BCI depends on some standard 

procedures. This approach is often divided into four stages: 

data collecting, pre-processing, feature extraction and 

selection, and classification [7]. Traditionally, feature 

extraction has been achieved by extracting information 

from raw signals using time, frequency, or time-frequency 

domain techniques. After that, the extracted characteristics 

are utilized to train the deep learning (DL) or machine 

learning (ML) model. Extraction of significant and 

discriminative features from EEG data is also critical for 

characterizing and categorizing patterns of brain activity 

[8]. Moreover, conventional hearing disorder diagnosis 

methods have some drawbacks. For instance, previous 

hearing deficiency detection methods are frequently 

focused on manual feature selection [9]. As a result, if the 

manually selected characteristics are inadequate for the 

task classification, the performance of hearing deficiency 

will decrease significantly. Moreover, a concise decision 

(DW) provides less data for categorization, challenging 

high performance. However, it aids in early hearing loss 

detection and accelerates architecture by reducing 

computing complexity. However, a few studies have 

explored the necessity of concise DW for real-world 

applications [10]. 

DL strategies, on the other hand, may be able to 
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overcome the limitations because of their excellent 

capabilities to learn features [11][12]. Several hidden 

layers in the DL architecture enable them to learn 

hierarchical representations explicitly. However, some 

issues remain with DL models, although they have been 

employed effectively in hearing loss diagnostic tasks 

previously. Only a few studies have been performed for 

identifying hearing disorders using DL algorithms with 

more than ten hidden layers [13] [14]. For the hearing 

condition diagnosis, some recent studies [3][15] have 

widely used the SVM algorithm. Despite several 

fundamental advantages of the SVM algorithm in the 

neurological sector, most research produced poorer results 

in identifying hearing disorders. In addition, feature 

scaling (normalization or standardization) is required prior 

to applying the SVM algorithm to any dataset; otherwise, 

the SVM algorithm may generate incorrect predictions. 

Integrating two or more classifiers might be an effective 

alternative to a single classifier for performing error-free 

classification tasks, given the limitations of some single 

classifiers. The researchers have created several hybrid 

strategies that integrate many algorithms for this goal. In 

[16][17], the research employed hybrid models and 

effectively integrated the strengths of two models, which 

deliver higher performance than a single classifier in some 

situations. 

In this study, a hybrid model with time-frequency 

images is presented for hearing disorder detection. In the 

hybrid model, the convolutional operation is used to detect 

the hidden local information in neural activity, whereas the 

SVM is used to classify and extract the features. The 

following is a summary of the paper's key contributions: 

 

• In the proposed approach, a hybrid model (CSVM) 

based on integrating the convolutional operation of 

CNN with an SVM classifier is designed to improve 

hearing disorder detection performance. 

• This experiment is performed within a shorter 

decision window, which minimizes the effect of 

additional features and decreases time consumption, 

demonstrating the robustness and adaptability of the 

system in real-time scenarios. 

• In addition, the AEP signals have been evaluated with 

CNN and SVM classifiers, and the proposed model 

demonstrates higher performance in detecting hearing 

disorders. 

 

The remaining sections of the paper are organized as 

follows: Section 2 represents the Materials and methods, 

including data description, pre-processing, feature 

extraction technique, and proposed hybrid classification 

model. Section 3 explores the findings of the experimental 

analysis and discussion. Finally, Chapter 4 summarizes the 

study's findings, contribution, and recommendations for 

future work. 

2. METHODOLOGY 

This study aims to design a high-performance hearing 

disorder detection system. For this purpose, a publicly 

available AEP dataset is used. First, the raw AEP signals 

are segmented into a 2s decision window to prepare the 

observations. Then, time-frequency images are generated 

using the CWT method. Finally, the CWT images are 

classified using the proposed CSVM model. The overall 

procedure of the proposed approach is illustrated in Figure 

1. 

 

Figure 1. Flow chart of the proposed approach for hearing 

disorder detection. 

2.1 Data Description 

Experimental AEP datasets are provided by ExpORL, 

Dept. Neurosciences, KULeuven, and Dept. Electrical 

Engineering (ESAT), KULeuven [18].  The AEP data were 

gathered at an 8196 Hz sampling rate utilizing a 64-

channel BioSemi Active Two device. The whole dataset 

was collected from 16 subjects, and each individual 

underwent the trial 20 times. Using Etymotic ER3, 

earphones with a 4 kHz cut-off frequency were inserted, 

and the auditory stimuli were delivered at 60 dBA. APEX 

3 was used as simulation software [19]. In each trial, 

participants were given two different stories to hear. To 

overcome the lateralization bias described by [20], the 

attended ear was switched between trials to ensure that 

each ear received equal data. The dataset contains (72-

minutes × 16-subjects) minutes of EEG recording. The 

trials in this investigation were down-sampled from 8192 

Hz to 128 Hz. 

2.2 Data Preprocessing 

After collecting the publicly available online dataset, the 

dataset has been segmented to prepare the observations. To 

prepare the observations, we segmented each subject's data 
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into a two-second decision window (DW). Analyzing this 

shorter DW and achieving high performance is challenging 

but highly effective for real-time applications. The raw 

AEP segmented data for subject-1 channel-1 is shown in 

Figure 2.  

After preparing the observations, a time-frequency 

feature extraction method, continuous wavelet transform 

(CWT), was used to extract time-frequency characteristics 

that facilitate multi-scale signal amplification using scaling 

and translating techniques [21]. The segmented dataset is 

transferred from raw signals to the time-frequency images. 

 

Figure 2. Raw AEP signals: (A) hear auditory stimulus 

with the left ear and (B) hear auditory stimulus with the 

right ear. 

The wavelet set is created by scaling and translating the 

mother wavelet, which is a family of wavelets ψ(t), shown 

in equations 1 and 2 [21]. 

𝜓𝑆,𝜏(𝑡) =
1

√𝑆
𝜓 (

𝑡 − 𝜏

𝑆
) (1) 

In this study, the symbol S is used to denote the scale 

parameter, which is inversely proportional to frequency, 

while the symbol 𝜏 represents the translation parameter. 

The variable "t" represents the time domain. It denotes the 

continuous variable over which the wavelet function is 

defined and applied. The signal x(t) can be achieved by a 

complex conjugate convolution operation, mathematically 

defined by equation 2 [22]. 

 

         𝑊(𝑠, 𝜏) = ⟨𝑥(𝑡), 𝜓𝑆,𝜏⟩ =  
1

√𝑠
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝜏

𝑆
) 𝑑𝑡     (2) 

 

Where,  𝜓∗ denotes the complex conjugate of the above 

function, and this operation decomposes the signal in a 

series of wavelet coefficients. 

This study utilized the wavelet basis functions (Mother 

Wavelets). After that, the proposed model is fed with time-

frequency images. Figure 3 illustrates the time-frequency 

CWT images. This study is conducted using the publicly 

available dataset. The device used for collecting the 

experimental dataset has 64 channels, producing the data 

from 64 channels simultaneously. For that reason, each 

channel's raw data is first converted into time-frequency 

images using the CWT. Then, all images were 

concatenated and considered as observations. After 

concatenation, each observation provides the time-

frequency information of 64 channels. 

 

Figure 3. The CWT images: (A) hear auditory stimulus 

with the left ear, (B) hear auditory stimulus with the right 

ear.   

2.3 The Proposed Hybrid CSVM Model 

This study effectively integrated two methods to construct 

the presented CSVM model, improving the performance 

for the identification of hearing disorders. The developed 

CSVM model includes two convolution layers and an 

SVM classifier.  The convolutional layers include a variety 

of kernel sizes, pooling layers, and one dropout layer. The 

discriminating features are extracted using the 

convolutional process, and the extracted features are then 

classified using the SVM. 

The architecture begins by applying the CWT to raw 

AEP data, transforming these signals into time-frequency 

images. This image serves as the input for the subsequent 

convolutional processes. Figure 4 in the paper visually 

represents this sophisticated model, illustrating the 

seamless flow from data input to diagnostic output, 

showcasing the synergy between advanced convolutional 

processing and machine learning classification. 

The initial convolutional layer employs 32 kernels of 

size (5 x 5), which are essential for capturing fine-grained 

patterns and features from the time-frequency images. The 

convolutional process extracts vital features by applying 

these kernels, and the subsequent max-pooling layer 

significantly reduces the dimensionality of the data from 

(224 x 224 x 32) to (74 x 74 x 32), ensuring that only the 

most salient features are retained. This reduction preserves 

essential information and decreases computational load. 

Following the dimensionality reduction, a dropout layer 

with a dropout rate of 0.6 is strategically placed to prevent 

overfitting. This layer randomly deactivates a portion of 

the neurons during training, forcing the network to learn 

more robust features that are not reliant on any specific set 

of neurons. After this regularization step, another 

convolutional layer with 64 kernels of size (3 x 3 x 64) 

further refines the feature extraction process. 

A second max-pooling layer follows, using a (3 x 3) 

kernel to reduce the data dimensions to (24 x 24 x 64). This 

step intensifies the focus on the most influential features, 

preparing the data for the final classification stage. The 
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processed features are then flattened into a single vector, 

effectively serving as the SVM classifier's input. The 

SVM's role is pivotal as it classifies these features into 

categories indicative of specific hearing disorders. The 

integration of CNN and SVM in the CSVM model 

represents a potent approach to biomedical signal 

processing, leveraging the strengths to achieve superior 

accuracy and reliability in diagnosing hearing 

impairments. 

 

 

Figure 4. Schematic diagram of the proposed CSVM approach.

2.4 Performance Evaluation 

In this experimental analysis, we employ five performance 

evaluation metrics [23] (equations 3 to 7) to measure the 

effectiveness of our proposed model. Accuracy is 

determined by computing the proportion of correctly 

classified observations to the total instances, offering an 

overall measure of the model's performance. Precision 

captures the quality of positive predictions, emphasizing 

the ratio of true positives to all predicted positives. This 

metric is essential when minimizing false positives is 

crucial.  

Recall assesses the model's ability to identify actual 

positives by measuring the proportion of true positives out 

of all actual positive instances, providing valuable insight 

when missing positive cases is costly. The F1 score 

combines precision and recall in a single value, reflecting 

a balanced measure that emphasizes both concerns equally. 

Cohen's Kappa score evaluates the agreement between 

predicted and actual labels, considering both observed and 

expected agreement to deliver a more nuanced 

understanding of performance beyond what random 

chance would predict. These metrics offer a 

comprehensive framework for evaluating the performance 

of classification models in this study. Each model 

implemented in this study has been evaluated using these 

five performance evaluation metrics. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 ×  100% (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100% (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (6) 

𝐾𝑎𝑝𝑝𝑎 𝑠𝑐𝑜𝑟𝑒 =  
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 (7) 

Here, TP is the True Positive Rate, TN is the True 

Negative Rate, FP is the False Positive Rate, FN is the 

False Negative Rate, 𝑃𝑜 is Observed Agreement, and 𝑃𝑒 is 

Expected Agreement. 

3. RESULTS AND DISCUSSION 

In this study, we employ the publicly available AEP 

dataset to evaluate the effectiveness of our proposed 

model. The raw signals from the dataset are first converted 

into time-frequency images using the CWT, then 

concatenated across different channels as outlined in 

Section 2.2. These processed images form the basis for 

both training and testing our model. 

The dataset, which includes 6400 images, is allocated 

into training and testing categories at ratios of 70% and 

30%, respectively. This allocation provides 4480 images 

for the training set and 1920 images for the testing set. To 

ensure an unbiased approach in both the training and 

evaluation phases, the dataset maintains a balanced class 

distribution. Specifically, Classes 1 and 2 are equally 

represented, each contributing 2240 images to the training 

set and 960 images to the testing set. This balanced 

allocation is imperative to mitigate any potential model 

bias and to facilitate a comprehensive assessment of the 

model’s ability to generalize across varied types of 

auditory evoked responses.  

This experimental investigation was conducted in 

Python with the assistance of Google Colab, Windows 10, 

Intel(R) Xeon(R) CPU @ 2.30GHz, Tesla K80, CUDA 

Version K80, and CUDA Version 1. 
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3.1 The Experimental Results of the Model 

This study has implemented three distinct models to assess 

the effectiveness of AEP for categorizing hearing 

conditions. In this study, the SVM, CNN, and hybrid 

CSVM models have been implemented. Table 2 compares 

the performance of the three models for diagnosing hearing 

conditions and contrasts the presented model's 

performance with that of the other two models. For each 

subject (s), five performance measuring techniques 

[23][24] (accuracy, precision, recall, F1 score, and Cohen's 

kappa score) have been evaluated to show the effectiveness 

and robustness of the strategy. 

Table 1 illustrates the performance of the three different 

models for hearing disorder detection.  In this experimental 

analysis, the performance of individual subject (s) has been 

calculated. For the experimental analysis with the SVM 

model, the average (AVG) performance, including 

accuracy, precision, recall, F1 score, and Cohen's kappa 

score, are 89.22%, 87.28%, 90.79%, 88.89%, and 78.43%, 

respectively. For the analysis with the CNN model, an 

AVG of 91.98% accuracy, 93.16% precision, 89.80% 

recall score, 91.30% F1 Score, and 83.88% Cohen kappa 

score were achieved. 

Table 1. The performance of three different models. 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Cohen 

Kappa 

(%) 

SVM 89.22 87.28 90.79 88.89 78.43 

CNN 91.98 93.16 89.80 91.30 83.88 

CSVM 94.48 96.40 92.96 94.65 88.95 

 

For the proposed CSVM model, the AVG value of 

accuracy, precision, recall, F1 score, and Cohen's kappa 

score is 94.48%, 96.40%, 92.96%, 94.65%, 88.95%, 

respectively has been achieved. From the analysis result, it 

is demonstrated that the proposed CSVM model has 

achieved 5.26%, 9.12%, 2.17%, 5.76%, and 10.52% 

improvement compared to the SVM model, and 2.50%, 

3.24%, 3.16%, 3.35%, and 5.07% improvement compared 

to the CNN model.  

From Table 1, it is clearly demonstrated that the 

advantages of integrating convolutional layers with SVM 

techniques within our CSVM framework highlight its 

superior performance in detecting auditory disorders. This 

methodological choice utilizes the strengths of SVMs in 

creating robust classification models, particularly 

advantageous in high-dimensional spaces typical of 

medical diagnostic imaging.  

SVMs are preferred for their ability to effectively 

maximize the margin between different classes, a critical 

factor in achieving high classification accuracy. This 

feature is crucial in our application, where precise 

distinction between auditory conditions is necessary. 

Furthermore, SVMs inherently prevent overfitting through 

their regularization approach, ensuring that our model 

generalizes well to new, unseen data—a key requirement 

for reliable clinical diagnostics. 

Our study's performance metrics clearly demonstrate 

the CSVM model's efficacy with higher performance. This 

demonstrates not only the capability of SVMs in handling 

complex datasets but also their suitability for enhancing 

model reliability and diagnostic precision in clinical 

settings. 

We also calculate the confusion matrix on the testing set 

(shown in Figure 5), which provides a detailed 

representation of the classification model's performance in 

identifying auditory stimuli in different ears. This matrix 

organizes predictions into four quadrants: true positives, 

false negatives, true negatives, and false positives, 

illustrating the model's accuracy in distinguishing between 

auditory stimuli in the left and right ears. 

Our CSVM model is evaluated against a dataset 

consisting of 1,008 instances where subjects are expected 

to hear stimuli in the left ear (Class 1) and 912 instances in 

the right ear (Class 2). The model successfully identifies 

937 instances as true positives, confirming its high 

efficiency in detecting auditory stimuli in the left ear. 

Furthermore, it correctly recognizes 877 instances as 

true negatives for stimuli in the right ear, demonstrating its 

robustness in accurately identifying stimuli in the right ear. 

This capability is crucial for applications requiring precise 

lateralization of auditory detection. 

Despite these successes, the matrix also records 71 false 

negatives, where the model fails to detect stimuli in the left 

ear when it is present, and 35 false positives, where it 

incorrectly identifies the presence of stimuli in the left ear 

when the actual stimuli are in the right ear. These errors 

highlight potential refinement in the model’s sensitivity 

and specificity. 

 

Figure 5. The confusion matrix using the proposed model. 

3.2 Performance Comparison with the Related Studies 

Machine learning (ML) algorithms have seen extensive 

utilization in recent years for identifying hearing 

impairments, spurred by advancements in computer 

technology. As computational capabilities have expanded, 

both machine learning and deep learning (DL) techniques 

have been increasingly applied to the early detection of 

hearing abnormalities. This application of technology has 
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enabled researchers and clinicians to leverage 

sophisticated analytical methods to improve diagnostic 

accuracy, providing significant benefits in medical 

interventions and patient care. 

In this section, we benchmark the efficacy of our 

proposed Convolutional Support Vector Machine (CSVM) 

model against a series of studies showcasing its superior 

performance in detecting auditory stimuli. The study [2] 

featured a Bayesian Network classifier that processed 

features extracted using Discrete Wavelet Transform, 

achieving an accuracy of 78.80% with only 8 subjects 

across two classes. Another relevant study [3] achieved an 

85.71% accuracy by employing a Support Vector Machine 

to analyze global and nodal graph features from 32 

subjects. Similarly, a study [15] utilized Wavelet Packet 

Transform with an SVM, reporting a lower accuracy of 

74.7% from a larger cohort of 200 subjects classified into 

three categories. 

A more comparable study [25] used raw Auditory 

Evoked Potential data with a Convolutional Neural 

Network, reaching 94.1% accuracy across 671 

observations. Study [26] applied Scale-Invariant Feature 

Transform with an SVM, achieving an 87% accuracy from 

39 subjects.  

Our CSVM model stands out by integrating Continuous 

Wavelet Transform and a CSVM classifier, reaching a top 

accuracy of 94.48% on a substantial dataset of 6400 

observations in two classes. This extensive testing and the 

high performance show our model's robustness and 

highlight its potential for clinical application, establishing 

a new standard in auditory detection technology. This 

comparative analysis illustrates our model’s leading 

position in the field and its ability to improve existing 

methods significantly. 

Table 2. The performance comparison of the proposed model with related studies. 

 

References 

Data 

Feature Extraction Methods Accuracy 

Subject Class 

[2] 8 2 DWT Bayesian 

Network 

78.80% 

[3] 32 2 Global and nodal graph SVM 85.71% 

[15] 200 3 WPT SVM 74.7% 

[25] Observation: 

671 

2 Raw-AEP CNN 94.1% 

[26] 39 2 SIFT SVM 87% 

Proposed Model 

(CSVM) 

Observation: 

6400 

2 CWT CSVM 94.48% 

 

4. CONCLUSION 

A hearing disorder detection approach based on the CWT 

and proposed CSVM model has been proposed in this 

paper. Firstly, the raw AEP signals have been segmented 

and transferred to time-frequency images using the CWT 

method. Then, the images were classified using the 

proposed CSVM model. The proposed model has been 

evaluated on the publicly available dataset and achieved 

94.48% testing accuracy. This enhancement with a shorter 

decision window (two seconds) demonstrates the efficacy 

and acceptability of the suggested hybrid architecture, 

expedites the analysis, and reduces the computational cost 

of additional features. The focus of our future study will be 

categorizing many AEP-signal-based data. This research 

intends to improve the model's generalization capability, 

the instructional effectiveness of neural networks, and 

therapeutic benefits.  
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