
 

VOL. 23, NO. 2, 2024, 157-162 
elektrika.utm.my 

ISSN 0128-4428 

 

 

 

157 

Obfuscated Computer Malware Classification 

Based on Significant Opcode 

Yu Chii Heng and Ismahani Ismail* 

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. 

*Corresponding author: ismahani@utm.my 

Abstract: Computer malware has greatly impacted the computer network securities and even personal computer users. 

Signature-based detection is incapable to recognize the obfuscated computer malware since it is being covered by the 

obfuscation techniques. Therefore, machine learning is being explored and equipped in the malware detection to withstand the 

threaten of malware. In fact, there are many features available, i.e., text string to be implemented for malware classification. 

Nevertheless, opcode could be one of the features owing to its relative smaller data size compared to the text string. In this 

research, the significant opcodes of executable malware files which referring to the prevalent content from malware-to-

malware generation are extracted as training dataset. Several machine learning classifiers are generated and compared in terms 

of classification accuracy and speed, as well as the comparison is done with text string-based detection and signature-based 

detection. From the finding, it is shown that machine learning detection performs more than 2 times better than signature based 

and machine learning generated based-on significant opcode features is able to detect obfuscated malware over 10 times faster 

than text string feature and still achieve up to 98% of accuracy. 
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1. INTRODUCTION 

Malicious software is the computer software that spreads 

automatically over the network from machine to machine 

to serves for malicious purpose. National Institute of 

Standards and Technology (NIST) reported that malwares 

are the most common external threat to most hosts which 

result in widespread damage, disruption and necessitating 

extensive recovery efforts within most organizations [1]. 

According to the report by Accenture, the estimated 

financial loss that caused by the malware attack is around 

$2.6 million [2].  

Malware could be categories into many types i.e virus, 

worm, trojan house, rootkit, spyware, adware, botnet, 

keylogger, and ransomware. The malware has evolved so 

that they could hide or cover themselves from being 

detected by the antimalware software. The obfuscated 

computer malware is where the malware that able to 

change its binary code while preserving the malware 

functionality so that it would not be detected by the anti-

malware software. Much more advanced obfuscation 

techniques have been invented by the hackers to protect 

their malwares from being captured by the antimalware 

software. In order to detect the malware and protect the 

computer or system being attacked by the hackers, 

machine learning is equipped to the malware detection 

methodology to enhance the detection ability [3].  

According to the study of [4], its result proven that by 

using machine learning could enhance the robustness in 

malware detection application. There are various kinds of 

feature which available to be used as training features, such 

as opcode, text string and byte code. In research [5], text 

string feature was involved to train machine learning 

classifier. Text string was selected in this research owing 

to its informative and small memory size. Instead of using 

text string as the features to train the machine learning 

classifier, other features such as byte code, PE header, API 

calls and opcode are available for this purpose. In research 

[6], text string is also used as the feature to train and test 

the machine learning classifier for detecting obfuscated 

malware.  

New malware variant can carry some prevalent content 

from the previous malware variant. Based on this 

hypothesis, this work is proposed where the significant 

opcode is referring to the prevalent content. In this paper, 

the opcode is chosen as the features to be trained by 

machine learning since it is informative and the data size 

is relatively smaller. N significant opcodes where n=10, 

20, 30, 40 and 50 are extracted from the malware assembly 

code files which originally from the malware executable 

files. Based on machine learning classifier models that are 

generated using these significant features, the performance 

in term of accuracy and time taken between classifiers is 

observed to detect obfuscated malware. Then, using the 

best observed model, its performance is benchmarked by 

using text string features. The novelty in this work is by 

only training the significant opcode, the machine learning 

model is able to detect the malware kind with a promising 

performance. 
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2. LITERATURE REVIEW  

Obfuscation is mean uncertain and obscure. Obfuscation 

technique is applied by the malware creator to prevent that 

malware being recognized by the malware detection 

system. The malware could simply bypass the detection by 

rearrange the sequence of the code and insert redundant 

code into it [7]. Malware analysis techniques could be 

classified as static, dynamic and hybrid. Static analysis i.e 

signature-based and machine learning-based techniques 

determine whether a program or code is malicious or not 

without executing the program or code. Signature-based 

detection stores malicious behavior of malware that could 

be represented as signature and is stored in repository. At 

present, the signature-based detection would require the 

expertise to keep the signature database up to date by 

creating the signatures manually. This approach is not able 

to capture the obfuscated malware since the repository 

does not include those signatures [8]. Machine Learning 

(ML) based detection is able to enhance malware detection 

by using several kinds of data, network as well as cloud-

based anti-malware components. According to the 

definition that given by Arthur Samuel, ML is a set of 

methods that enable computers to equip the ability to learn 

without being explicitly programmed. Algorithm is very 

significant to ML where it helps to discover and formalize 

the raw data. ML is also allowed diverse of approaches to 

reach to the desired solution rather than single method [9]. 

In this study, static technique (supervised ML) will be used 

where the technique predicts the value based on previous 

labeled training dataset [10]. The purpose of applying ML 

models is to perform predication via computers to 

accomplish high performance outputs. 

Dynamic analysis refers to the process of analyzing and 

observing the functionality of software while it is being 

executed. A virtual environment is required to observe the 

behavior of executed malicious software. Anomaly-based 

detection is an example of dynamic analysis and is one of 

the common malware detection methods where it could 

implement detection in training and testing phase. It tends 

to learn the normal behavior of the host during training 

phase. The primary advantage of anomaly-based detection 

is its capability to recognize and detect the unknown 

attacks. Nevertheless, this detection approach suffers with 

high false alarm rate as well as its complexity of deciding 

key features to be learned in the training phase [8]. Hybrid 

analysis is an analysis approach which contains both static 

and dynamic characteristics [11].  

Opcode is known as the instruction to the machine or 

hardware [12]. The significant opcode is referring to the 

frequently repeated opcode in the assembly code. In 

research [13], 20 frequently repeated opcodes were 

extracted based on the analysis on total of 100 benign and 

malicious samples. Based on the hypothesis, new or 

unknown malware can carry some prevalent content from 

the previous malware. Hence, significant opcode is 

referring to the prevalent content. In fact, a wide range of 

features are available for computer malware detection. 

Nevertheless, each feature comes with its advantages and 

disadvantages. Table 1 shows the differences between 

several features in terms of size, memory overload, 

runtime as well as information retrieved. Based on the 

comparison as shown in Table 1, byte code and text string 

have larger data size to contain more information as 

compared to opcode. Meanwhile, opcode is a better option 

for its smaller data size and memory overload. 

According to [5], text string that extracted from the 

assembly code was the main feature that used to train the 

classifiers such as Naïve Bayes, Sequential minimal 

optimization (SMO) and J48.  Those classifiers were tested 

with 10-fold cross-validation after training completed.  

The malware dataset and obfuscated malware dataset were 

uploaded to VirusTotal website and found that 86.57% of 

normal malware and 21.43% of obfuscated malware could 

be detected with signature-based detection. Nevertheless, 

the well-trained machine learning classifier in this research 

was capable to detect the obfuscated malware achieve 

99.5% accuracy.   

On the other hand, malware detection based on opcode 

frequency was proposed by [13]. The executable files were 

downloaded from the Sandbox Cuckoo website and 

converted to assembly code by using IDA pro 

disassembler. Instruction Counter Plug-in was used to 

analyze the assembly code to collect frequency of the 

opcodes that found in the assembly code. After that, top 20 

frequently appear opcodes were chosen as the feature 

vectors to train the machine learning algorithms such as 

SVM, RF, BOOST and Decision tree. As a conclusion, the 

proposed methodology in this research could achieved 

96.67% of success rate with RF classifier. 

Table 1. Comparison between different features [5]. 

Features Byte Code Opcode Text string 

Data Size Large Small Medium 

Memory 

Overload 
Large Small Small 

Runtime Slow Fast Fast 

Information 

retrieved 
Full Part Full 

3. METHODOLOGY  

This research methodology involved of two different data 

features which are opcode and text string to compare their 

performance for malware detection in computer devices. 

There are some steps to carry out the research methodology 

such as data collection, data preprocessing, training phase 

(feature extraction and classifier training) and testing 

phase as shown in Figure 1. 

3.1 Data collection 

Benign and malicious executable (exe) files are randomly 

selected and downloaded from diverse resources. Total 

500 benign datasets are obtained from the Window 

Executable files website, NirSoft [14] and EXE files [15]. 

On the other hand, total 600 malicious datasets are 

downloaded from VxHeaven [16], DasMalwerk [17] and 

VirusSign [18].  

3.2 Data preprocessing 

Data preprocessing involves some processes such as 

conversion the exe files to assembly code and removal of 

redundancy of the code lines. After retrieving the benign 

and malicious executable files from the open source, these 

executable files will be converted into assembly code with 

the disassembler tool [19]. In order to handle multiple files 

without running the command in terminal manually, a Perl 
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script is designed to automate the process of conversion. 

The converted assembly code files will undergo the data 

preprocessing process to remove the redundant lines of 

code. The redundant code such as next line, comment and 

spacing will be removed. By removing the redundant code 

from the assembly code will help to improve the training 

quality and save time for training and testing. In this 

research, there are two types of training set used i.e opcode 

and text string. For opcode features dataset, only opcode 

and its counting will be included in the dataset. The opcode 

counting will be collected with an instruction count script. 

Meanwhile, for text string features dataset will include 

opcode and operand in the dataset. Nevertheless, text string 

feature dataset would need to undergo the data 

preprocessing to remove the line number, and hex number 

in the assembly code. In addition, text string feature dataset 

need to undergo the “StringToWordVector” filter where it 

will convert string attributes into a set of numeric attributes 

to represent word occurrence information from the text 

contained in the strings [20]. This filter is available in 

Weka [21] tool before the text string dataset ready to be 

used as training dataset. 

Total 1100 malware and benign exe files are used in this 

research as mentioned in Section 3.1. 100 out of 600 

malware files are reserved as unknown malware dataset to 

test the classifiers in testing phase. For opcode, the training 

dataset in csv file format is consisting of 500 malware and 

500 benign files, whereas only 300 of malware and 300 of 

benign files were used in the training dataset owing to the 

huge file size. The details of the dataset distribution are 

shown in the Table 2. 

Table 2. Dataset distribution 

Attributes Opcode Text string 

Training set 
500 Malware + 

500 Benign 

300 Malware + 

300 Benign 

Testing set 

100 Unknown 

Malware + 100 

Obfuscated 

Malware + 100 

Benign 

50 Unknown 

Malware + 50 

Obfuscated 

Malware + 100 

Benign 

 

 

Collect executable benign and malware dataset

Opcode + Instruction count

Training set in csv 
format

Summarize top n opcode from 1000 files as 
training set

Train the classifiers with training set

Malicious

Non-Malicious

Training Phase

Testing Phase

Convert executable files into assembly code files

Remove redundant content from the assembly code files

Get top n frequently found opcode from 500 
malware code

Opcode + operand

Filter training dataset with Weka

Convert 600 assembly code files into 
arff format

Classifier model

Testing set in csv 
format

Classification
MaliciousTesting set in arff 

format
Classification

Training set in arff 
format

Classifier model

Train the classifiers with training set

Opcode Text string

Training Phase

Non-Malicious

Testing Phase

Data Collection

Data Preprocessing

 

Figure 1. Flow of work
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3.3 Training phase 

In training phase, features are extracted from the assembly 

codes as the training set. These features are trained to 

generate the classifier models. Based on Figure 1, these 

two types of training set i.e opcode and text string are 

prepared by using different methods. Based on the 

hypothesis, prevalent content could be the content that 

exist in the previous malware variant also could be found 

in the new malware variant. 

This prevalent content is referred as the most significant 

content for this study. Therefore, the instruction count of 

each malware assembly code has been recorded and only 

top 50 most commonly used opcode of each assembly code 

is listed. Then, the list of 50 most commonly used opcode 

from 500 malware assembly code was combined into a 

single file to sort out the global top 50 most commonly 

used opcode from 500 of malware files. After that, the 

instruction count of the top 50 opcode were extracted from 

each malware assembly code and saved into a csv file. The 

steps are repeated for top 10, top 20, top 30 and top 40 most 

commonly used opcode to observe the accuracy of 

classification. 

To benchmark the opcode features classification, other 

type of features is used. Using the same preprocessed 

assembly code files, text string features are extracted as the 

training set. Text string features would gather more 

information as compared to opcode features, however, its 

training file size is larger than the opcode training set. 

Therefore, fewer files are used for text string training set. 

The text string training set that contains opcode and 

operand are converted into Attribute-Relation File Format 

(ARFF) files format. Then, the dataset has to be filtered 

with “StringToWordVector” filter that available in Weka 

before proceed to the training stage. Next, the features are 

trained based on machine learning algorithms to generate 

the classifier models. The classifier models are generated 

separately in Weka according to the types of training set. 

3.4 Testing phase 

The performance of the classifier models would be 

evaluated with the matrixes such as time taken to build 

model, time taken to test model and accuracy. Accuracy is 

defined as the proportion of correct forecasts to total 

predictions as shown in Equation (1) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(1) 

 

where, True Positives (TP) represents the correctly 

identified malware files, True Negatives (TN) represents 

the correctly identified benign files, False Positives (FP) 

represents the benign files that were incorrectly identified 

as malware files while False Negatives (FN) represents the 

malware files that were incorrectly identified as benign 

files.  

By training and testing using the same dataset, 

classifiers that performed better in term of classification 

accuracy were selected to be tested with other supplied test 

set which is obfuscated malware files. The obfuscated 

malware data was prepared in advanced by using Crypto 

Obfuscator [22].  

The supplied test set are categorized also into two 

different types i.e opcode test set and text string test set. 

For opcode feature testing set, 100 unknown malware, 100 

obfuscated malware and 100 benign data are involved to 

validate the performance of the classifiers. The best 

performance of classifier in term of accuracy is observed. 

To benchmark the performance of the classifier, the 

classification is repeated using the text string features. 

Since the file size of text string testing set is too large, only 

50 unknown malware, 50 obfuscated malware and 100 

benign data are included in the testing set. Figure 2 shows 

the overall testing process for both opcode and text string 

features. 

 

Testing set 
(opcode or text string 

features)
Classification

Unknown 
malware

Malware

Benign

Obfuscated 
malware

Benign

 

Figure 2. Testing process for opcode and text string 

feature dataset 

4. RESULT AND DISCUSSION 

4.1 Top 50 opcode in malware 

Table 3 shows the comparison of top 50 opcodes in known 

malware and obfuscated malware. Top 50 frequently used 

opcodes in 500 known malware files and 100 obfuscated 

malware files are mostly similar. Nevertheless, some of the 

opcode in known malware are missing in obfuscated 

malware. On top of that, some new opcodes have been 

found in the obfuscated malware where they are not 

existing in known malware. 

Table 3. Top 50 opcode in known malware and 

obfuscated malware 

Known Malware Obfuscated Malware 

adc, add, and, arpl, bound, 

call, cmp, cmpl, dec, gs, 

imul, in, inc, incl, insb, 

insl, ja, jae, jb, jbe, je, jg, 

jge, jl, jle, jmp, jne, jns, jo, 

js, lea, lods, mov, movb, 

movl, or, out, outsb, outsl, 

pop, push, pushl, ret, sbb, 

scas, stos, sub, test, xchg, 

xor 

adc, add, addr, and, arpl, 

bound, call, cmp, cs, dec, 

es, fs, gs, idiv, imul, in, 

inc, insb, insl, ja, jae, jb, 

jbe, je, jle, jmp, jne, jnp, 

jns, jo, js, lcall, ljmp, lods, 

mov, nopw, or, out, outsb, 

outsl, pop, push, sbb, scas, 

ss, stos, sub, test, xchg, 

xor 
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4.2 Classification accuracy of classifiers 

Total of 34 classifiers have been implemented in the 

research to find the suitable or best classifier which has less 

time taken to build and test model and high accuracy. 

However, only 6 classifiers have been chosen owing to 

their outstanding performance to malware classification 

with 100% accuracy, which are IBk, KStar, Random 

Committee, Randomizable Filter Classifier, Random 

Forest and Random Tree. Top 10 opcodes, top 20 opcodes, 

top 30 opcodes, top 40 opcodes and top 50 opcodes are 

used in the experiment to figure out the dependency of 

number of opcodes to the classification accuracy. As the 

result, some of the classifiers are perform better with the 

incremental of opcodes number. Nevertheless, there are 

few classifiers would have worse performance when the 

number of opcodes increases. 

4.3 Testing result of classifiers 

In this research, top 50 most commonly used opcode could 

help to enhance the accuracy of classification, therefore 

top 50 opcode are taken as the primary features for training 

and testing of classifiers. Based on the classification result 

that described in Section 4.2, several classifiers have 

outstanding performance in classifying the malware, 

where their classification accuracy are 100%. Hence, all 

these classifiers have been listed out and tested with 

supplied testing set to find out their testing performance. 

IBk, KStar, RandomCommittee, Randomizable Filter 

Classifier, Random Forest and Random Tree are tested 

with supplied 100 obfuscated malware, 100 unknown 

malware and 100 benign files (as shown in Table 2). Table 

4 shows the top performance classifiers in testing dataset 

classification. As a result, Random Forest has spectacular 

performance in testing phase where its accuracy is 98.67%. 

Based on the obtained result as shown in Table 4, evenly 

distribution on benign and malware dataset still able to 

contribute good classification accuracy.  

Table 4. Top performance classifiers in testing dataset 

classification 

Algorithm 

Time to 

build 

model 

(s) 

Time 

to test 

model 

(s) 

FP 

Rate 

(%) 

Accuracy 

(%) 

IBk 0.00 0.03 4.00 96.00 

KStar 0.00 2.33 
10.0

0 
90.00 

Random 

Committee 
0.04 0.01 2.33 97.67 

Randomizable 

FilterClaasifier 
0.00 0.02 5.33 94.67 

RandomForest 0.23 0.01 1.33 98.67 

RandomTree 0.01 0.01 8.67 91.33 

4.4 Opcode vs Text string features 

The performance of Random Forest classifiers that trained 

with opcode feature and text string feature are being 

compared since it performed outstanding in classification 

accuracy while relatively still shows less time taken to 

build and test the model. Total amount of dataset is being 

used in training and testing stages are not identical for 

opcode feature and text string feature (as shown in Table 

2). This is owing to the constraint of file size where text 

string feature dataset is too large to be managed. Based on 

the result as shown in Table 5, classification using opcode 

features is still resulting an acceptable accuracy even 

though around 2% less compared using text string features. 

However, total time of the classification is more than 10 

times faster than using the text string features. 

Table 5. Performance of Opcode and Text string features 

Classifier Attributes Opcode 
Text 

string 

Random 

Forest 

Training 

Time taken 

to build 

model (s) 

0.23 1.96 

Testing 

Accuracy 

(%) 
98.67 100 

Time taken 

to test 

model (s) 

0.01 0.85 

4.5 Performance of signature-based detection 

In order to know the performance of signature-based 

classifier, 100 of known malware and 100 of obfuscated 

malware have been tested with VirusTotal [23]. The result 

shows that the known malware executable files could be 

detected with detection rate of around 42% whereas, the 

obfuscated malwares executable files are around 20%. In 

another word, VirusTotal has difficulty to detect the 

obfuscated malware. 

4.6 Related works comparison 

In research [5] and [6], text string feature is the primary 

feature that being used for classifiers training and testing. 

However, research [5] and [6] had different total numbers 

of malware and benign samples. Total of 500 benign and 

500 malware samples have been used in research [6]. 

While research [5] only utilize 150 benign and 150 

malware samples for classifier training and testing. SMO 

classifier in research [5] able to achieve 98% of testing 

accuracy within 0.08s. Nevertheless, SMO classifier in 

research [6] is able to achieve 99.1% of testing accuracy 

within 0.47s. The Random Forest classifier used in this 

research is substantially more slowly than the classifiers 

used in studies [5] and [6]. However, Random Forest 

classifier has a higher testing accuracy than the SMO 

classifier. 

5. CONCLUSION 

Obfuscated malware is barely detected by the signature-

based detection application, VirusTotal, where only 

around 20% detection rate. Machine learning classifiers 

are performed far better than the signature-based detection 

with more than 98% of accuracy. On the other hand, the 

machine learning classifiers that trained with text string 

and opcode are obviously different in term of time taken to 

build and test the model. From this study, it is observed 

that the performance of the classifier that is trained with 

significant opcode features only is as good as the classifier 

that is trained with more informative features such as text 

string features. For the future woks, instead of using 

opcode and text string as main features to train the 
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classifiers, other features could be used to observe their 

performance in malware classification. 
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