

VOL. 23, NO. 2, 2024, 157-162
elektrika.utm.my

ISSN 0128-4428

157

Obfuscated Computer Malware Classification

Based on Significant Opcode

Yu Chii Heng and Ismahani Ismail*

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

*Corresponding author: ismahani@utm.my

Abstract: Computer malware has greatly impacted the computer network securities and even personal computer users.

Signature-based detection is incapable to recognize the obfuscated computer malware since it is being covered by the

obfuscation techniques. Therefore, machine learning is being explored and equipped in the malware detection to withstand the

threaten of malware. In fact, there are many features available, i.e., text string to be implemented for malware classification.

Nevertheless, opcode could be one of the features owing to its relative smaller data size compared to the text string. In this

research, the significant opcodes of executable malware files which referring to the prevalent content from malware-to-

malware generation are extracted as training dataset. Several machine learning classifiers are generated and compared in terms

of classification accuracy and speed, as well as the comparison is done with text string-based detection and signature-based

detection. From the finding, it is shown that machine learning detection performs more than 2 times better than signature based

and machine learning generated based-on significant opcode features is able to detect obfuscated malware over 10 times faster

than text string feature and still achieve up to 98% of accuracy.

Keywords: Computer Malware, Machine Learning, Obfuscated Malware, Opcode

© 2024 Penerbit UTM Press. All rights reserved

Article History: received 23 April 2024; accepted 9 July 2024; published 29 August 2024

1. INTRODUCTION

Malicious software is the computer software that spreads

automatically over the network from machine to machine

to serves for malicious purpose. National Institute of

Standards and Technology (NIST) reported that malwares

are the most common external threat to most hosts which

result in widespread damage, disruption and necessitating

extensive recovery efforts within most organizations [1].

According to the report by Accenture, the estimated

financial loss that caused by the malware attack is around

$2.6 million [2].

Malware could be categories into many types i.e virus,

worm, trojan house, rootkit, spyware, adware, botnet,

keylogger, and ransomware. The malware has evolved so

that they could hide or cover themselves from being

detected by the antimalware software. The obfuscated

computer malware is where the malware that able to

change its binary code while preserving the malware

functionality so that it would not be detected by the anti-

malware software. Much more advanced obfuscation

techniques have been invented by the hackers to protect

their malwares from being captured by the antimalware

software. In order to detect the malware and protect the

computer or system being attacked by the hackers,

machine learning is equipped to the malware detection

methodology to enhance the detection ability [3].

According to the study of [4], its result proven that by

using machine learning could enhance the robustness in

malware detection application. There are various kinds of

feature which available to be used as training features, such

as opcode, text string and byte code. In research [5], text

string feature was involved to train machine learning

classifier. Text string was selected in this research owing

to its informative and small memory size. Instead of using

text string as the features to train the machine learning

classifier, other features such as byte code, PE header, API

calls and opcode are available for this purpose. In research

[6], text string is also used as the feature to train and test

the machine learning classifier for detecting obfuscated

malware.

New malware variant can carry some prevalent content

from the previous malware variant. Based on this

hypothesis, this work is proposed where the significant

opcode is referring to the prevalent content. In this paper,

the opcode is chosen as the features to be trained by

machine learning since it is informative and the data size

is relatively smaller. N significant opcodes where n=10,

20, 30, 40 and 50 are extracted from the malware assembly

code files which originally from the malware executable

files. Based on machine learning classifier models that are

generated using these significant features, the performance

in term of accuracy and time taken between classifiers is

observed to detect obfuscated malware. Then, using the

best observed model, its performance is benchmarked by

using text string features. The novelty in this work is by

only training the significant opcode, the machine learning

model is able to detect the malware kind with a promising

performance.

Yu Chii Heng et al. / ELEKTRIKA, 23(2), 2024, 157-162

158

2. LITERATURE REVIEW

Obfuscation is mean uncertain and obscure. Obfuscation

technique is applied by the malware creator to prevent that

malware being recognized by the malware detection

system. The malware could simply bypass the detection by

rearrange the sequence of the code and insert redundant

code into it [7]. Malware analysis techniques could be

classified as static, dynamic and hybrid. Static analysis i.e

signature-based and machine learning-based techniques

determine whether a program or code is malicious or not

without executing the program or code. Signature-based

detection stores malicious behavior of malware that could

be represented as signature and is stored in repository. At

present, the signature-based detection would require the

expertise to keep the signature database up to date by

creating the signatures manually. This approach is not able

to capture the obfuscated malware since the repository

does not include those signatures [8]. Machine Learning

(ML) based detection is able to enhance malware detection

by using several kinds of data, network as well as cloud-

based anti-malware components. According to the

definition that given by Arthur Samuel, ML is a set of

methods that enable computers to equip the ability to learn

without being explicitly programmed. Algorithm is very

significant to ML where it helps to discover and formalize

the raw data. ML is also allowed diverse of approaches to

reach to the desired solution rather than single method [9].

In this study, static technique (supervised ML) will be used

where the technique predicts the value based on previous

labeled training dataset [10]. The purpose of applying ML

models is to perform predication via computers to

accomplish high performance outputs.

Dynamic analysis refers to the process of analyzing and

observing the functionality of software while it is being

executed. A virtual environment is required to observe the

behavior of executed malicious software. Anomaly-based

detection is an example of dynamic analysis and is one of

the common malware detection methods where it could

implement detection in training and testing phase. It tends

to learn the normal behavior of the host during training

phase. The primary advantage of anomaly-based detection

is its capability to recognize and detect the unknown

attacks. Nevertheless, this detection approach suffers with

high false alarm rate as well as its complexity of deciding

key features to be learned in the training phase [8]. Hybrid

analysis is an analysis approach which contains both static

and dynamic characteristics [11].

Opcode is known as the instruction to the machine or

hardware [12]. The significant opcode is referring to the

frequently repeated opcode in the assembly code. In

research [13], 20 frequently repeated opcodes were

extracted based on the analysis on total of 100 benign and

malicious samples. Based on the hypothesis, new or

unknown malware can carry some prevalent content from

the previous malware. Hence, significant opcode is

referring to the prevalent content. In fact, a wide range of

features are available for computer malware detection.

Nevertheless, each feature comes with its advantages and

disadvantages. Table 1 shows the differences between

several features in terms of size, memory overload,

runtime as well as information retrieved. Based on the

comparison as shown in Table 1, byte code and text string

have larger data size to contain more information as

compared to opcode. Meanwhile, opcode is a better option

for its smaller data size and memory overload.

According to [5], text string that extracted from the

assembly code was the main feature that used to train the

classifiers such as Naïve Bayes, Sequential minimal

optimization (SMO) and J48. Those classifiers were tested

with 10-fold cross-validation after training completed.

The malware dataset and obfuscated malware dataset were

uploaded to VirusTotal website and found that 86.57% of

normal malware and 21.43% of obfuscated malware could

be detected with signature-based detection. Nevertheless,

the well-trained machine learning classifier in this research

was capable to detect the obfuscated malware achieve

99.5% accuracy.

On the other hand, malware detection based on opcode

frequency was proposed by [13]. The executable files were

downloaded from the Sandbox Cuckoo website and

converted to assembly code by using IDA pro

disassembler. Instruction Counter Plug-in was used to

analyze the assembly code to collect frequency of the

opcodes that found in the assembly code. After that, top 20

frequently appear opcodes were chosen as the feature

vectors to train the machine learning algorithms such as

SVM, RF, BOOST and Decision tree. As a conclusion, the

proposed methodology in this research could achieved

96.67% of success rate with RF classifier.

Table 1. Comparison between different features [5].

Features Byte Code Opcode Text string

Data Size Large Small Medium

Memory

Overload
Large Small Small

Runtime Slow Fast Fast

Information

retrieved
Full Part Full

3. METHODOLOGY

This research methodology involved of two different data

features which are opcode and text string to compare their

performance for malware detection in computer devices.

There are some steps to carry out the research methodology

such as data collection, data preprocessing, training phase

(feature extraction and classifier training) and testing

phase as shown in Figure 1.

3.1 Data collection

Benign and malicious executable (exe) files are randomly

selected and downloaded from diverse resources. Total

500 benign datasets are obtained from the Window

Executable files website, NirSoft [14] and EXE files [15].

On the other hand, total 600 malicious datasets are

downloaded from VxHeaven [16], DasMalwerk [17] and

VirusSign [18].

3.2 Data preprocessing

Data preprocessing involves some processes such as

conversion the exe files to assembly code and removal of

redundancy of the code lines. After retrieving the benign

and malicious executable files from the open source, these

executable files will be converted into assembly code with

the disassembler tool [19]. In order to handle multiple files

without running the command in terminal manually, a Perl

Yu Chii Heng et al. / ELEKTRIKA, 23(2), 2024, 157-162

159

script is designed to automate the process of conversion.

The converted assembly code files will undergo the data

preprocessing process to remove the redundant lines of

code. The redundant code such as next line, comment and

spacing will be removed. By removing the redundant code

from the assembly code will help to improve the training

quality and save time for training and testing. In this

research, there are two types of training set used i.e opcode

and text string. For opcode features dataset, only opcode

and its counting will be included in the dataset. The opcode

counting will be collected with an instruction count script.

Meanwhile, for text string features dataset will include

opcode and operand in the dataset. Nevertheless, text string

feature dataset would need to undergo the data

preprocessing to remove the line number, and hex number

in the assembly code. In addition, text string feature dataset

need to undergo the “StringToWordVector” filter where it

will convert string attributes into a set of numeric attributes

to represent word occurrence information from the text

contained in the strings [20]. This filter is available in

Weka [21] tool before the text string dataset ready to be

used as training dataset.

Total 1100 malware and benign exe files are used in this

research as mentioned in Section 3.1. 100 out of 600

malware files are reserved as unknown malware dataset to

test the classifiers in testing phase. For opcode, the training

dataset in csv file format is consisting of 500 malware and

500 benign files, whereas only 300 of malware and 300 of

benign files were used in the training dataset owing to the

huge file size. The details of the dataset distribution are

shown in the Table 2.

Table 2. Dataset distribution

Attributes Opcode Text string

Training set
500 Malware +

500 Benign

300 Malware +

300 Benign

Testing set

100 Unknown

Malware + 100

Obfuscated

Malware + 100

Benign

50 Unknown

Malware + 50

Obfuscated

Malware + 100

Benign

Collect executable benign and malware dataset

Opcode + Instruction count

Training set in csv
format

Summarize top n opcode from 1000 files as
training set

Train the classifiers with training set

Malicious

Non-Malicious

Training Phase

Testing Phase

Convert executable files into assembly code files

Remove redundant content from the assembly code files

Get top n frequently found opcode from 500
malware code

Opcode + operand

Filter training dataset with Weka

Convert 600 assembly code files into
arff format

Classifier model

Testing set in csv
format

Classification
MaliciousTesting set in arff

format
Classification

Training set in arff
format

Classifier model

Train the classifiers with training set

Opcode Text string

Training Phase

Non-Malicious

Testing Phase

Data Collection

Data Preprocessing

Figure 1. Flow of work

Yu Chii Heng et al. / ELEKTRIKA, 23(2), 2024, 157-162

160

3.3 Training phase

In training phase, features are extracted from the assembly

codes as the training set. These features are trained to

generate the classifier models. Based on Figure 1, these

two types of training set i.e opcode and text string are

prepared by using different methods. Based on the

hypothesis, prevalent content could be the content that

exist in the previous malware variant also could be found

in the new malware variant.

This prevalent content is referred as the most significant

content for this study. Therefore, the instruction count of

each malware assembly code has been recorded and only

top 50 most commonly used opcode of each assembly code

is listed. Then, the list of 50 most commonly used opcode

from 500 malware assembly code was combined into a

single file to sort out the global top 50 most commonly

used opcode from 500 of malware files. After that, the

instruction count of the top 50 opcode were extracted from

each malware assembly code and saved into a csv file. The

steps are repeated for top 10, top 20, top 30 and top 40 most

commonly used opcode to observe the accuracy of

classification.

To benchmark the opcode features classification, other

type of features is used. Using the same preprocessed

assembly code files, text string features are extracted as the

training set. Text string features would gather more

information as compared to opcode features, however, its

training file size is larger than the opcode training set.

Therefore, fewer files are used for text string training set.

The text string training set that contains opcode and

operand are converted into Attribute-Relation File Format

(ARFF) files format. Then, the dataset has to be filtered

with “StringToWordVector” filter that available in Weka

before proceed to the training stage. Next, the features are

trained based on machine learning algorithms to generate

the classifier models. The classifier models are generated

separately in Weka according to the types of training set.

3.4 Testing phase

The performance of the classifier models would be

evaluated with the matrixes such as time taken to build

model, time taken to test model and accuracy. Accuracy is

defined as the proportion of correct forecasts to total

predictions as shown in Equation (1)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(1)

where, True Positives (TP) represents the correctly

identified malware files, True Negatives (TN) represents

the correctly identified benign files, False Positives (FP)

represents the benign files that were incorrectly identified

as malware files while False Negatives (FN) represents the

malware files that were incorrectly identified as benign

files.

By training and testing using the same dataset,

classifiers that performed better in term of classification

accuracy were selected to be tested with other supplied test

set which is obfuscated malware files. The obfuscated

malware data was prepared in advanced by using Crypto

Obfuscator [22].

The supplied test set are categorized also into two

different types i.e opcode test set and text string test set.

For opcode feature testing set, 100 unknown malware, 100

obfuscated malware and 100 benign data are involved to

validate the performance of the classifiers. The best

performance of classifier in term of accuracy is observed.

To benchmark the performance of the classifier, the

classification is repeated using the text string features.

Since the file size of text string testing set is too large, only

50 unknown malware, 50 obfuscated malware and 100

benign data are included in the testing set. Figure 2 shows

the overall testing process for both opcode and text string

features.

Testing set
(opcode or text string

features)
Classification

Unknown
malware

Malware

Benign

Obfuscated
malware

Benign

Figure 2. Testing process for opcode and text string

feature dataset

4. RESULT AND DISCUSSION

4.1 Top 50 opcode in malware

Table 3 shows the comparison of top 50 opcodes in known

malware and obfuscated malware. Top 50 frequently used

opcodes in 500 known malware files and 100 obfuscated

malware files are mostly similar. Nevertheless, some of the

opcode in known malware are missing in obfuscated

malware. On top of that, some new opcodes have been

found in the obfuscated malware where they are not

existing in known malware.

Table 3. Top 50 opcode in known malware and

obfuscated malware

Known Malware Obfuscated Malware

adc, add, and, arpl, bound,

call, cmp, cmpl, dec, gs,

imul, in, inc, incl, insb,

insl, ja, jae, jb, jbe, je, jg,

jge, jl, jle, jmp, jne, jns, jo,

js, lea, lods, mov, movb,

movl, or, out, outsb, outsl,

pop, push, pushl, ret, sbb,

scas, stos, sub, test, xchg,

xor

adc, add, addr, and, arpl,

bound, call, cmp, cs, dec,

es, fs, gs, idiv, imul, in,

inc, insb, insl, ja, jae, jb,

jbe, je, jle, jmp, jne, jnp,

jns, jo, js, lcall, ljmp, lods,

mov, nopw, or, out, outsb,

outsl, pop, push, sbb, scas,

ss, stos, sub, test, xchg,

xor

Yu Chii Heng et al. / ELEKTRIKA, 23(2), 2024, 157-162

161

4.2 Classification accuracy of classifiers

Total of 34 classifiers have been implemented in the

research to find the suitable or best classifier which has less

time taken to build and test model and high accuracy.

However, only 6 classifiers have been chosen owing to

their outstanding performance to malware classification

with 100% accuracy, which are IBk, KStar, Random

Committee, Randomizable Filter Classifier, Random

Forest and Random Tree. Top 10 opcodes, top 20 opcodes,

top 30 opcodes, top 40 opcodes and top 50 opcodes are

used in the experiment to figure out the dependency of

number of opcodes to the classification accuracy. As the

result, some of the classifiers are perform better with the

incremental of opcodes number. Nevertheless, there are

few classifiers would have worse performance when the

number of opcodes increases.

4.3 Testing result of classifiers

In this research, top 50 most commonly used opcode could

help to enhance the accuracy of classification, therefore

top 50 opcode are taken as the primary features for training

and testing of classifiers. Based on the classification result

that described in Section 4.2, several classifiers have

outstanding performance in classifying the malware,

where their classification accuracy are 100%. Hence, all

these classifiers have been listed out and tested with

supplied testing set to find out their testing performance.

IBk, KStar, RandomCommittee, Randomizable Filter

Classifier, Random Forest and Random Tree are tested

with supplied 100 obfuscated malware, 100 unknown

malware and 100 benign files (as shown in Table 2). Table

4 shows the top performance classifiers in testing dataset

classification. As a result, Random Forest has spectacular

performance in testing phase where its accuracy is 98.67%.

Based on the obtained result as shown in Table 4, evenly

distribution on benign and malware dataset still able to

contribute good classification accuracy.

Table 4. Top performance classifiers in testing dataset

classification

Algorithm

Time to

build

model

(s)

Time

to test

model

(s)

FP

Rate

(%)

Accuracy

(%)

IBk 0.00 0.03 4.00 96.00

KStar 0.00 2.33
10.0

0
90.00

Random

Committee
0.04 0.01 2.33 97.67

Randomizable

FilterClaasifier
0.00 0.02 5.33 94.67

RandomForest 0.23 0.01 1.33 98.67

RandomTree 0.01 0.01 8.67 91.33

4.4 Opcode vs Text string features

The performance of Random Forest classifiers that trained

with opcode feature and text string feature are being

compared since it performed outstanding in classification

accuracy while relatively still shows less time taken to

build and test the model. Total amount of dataset is being

used in training and testing stages are not identical for

opcode feature and text string feature (as shown in Table

2). This is owing to the constraint of file size where text

string feature dataset is too large to be managed. Based on

the result as shown in Table 5, classification using opcode

features is still resulting an acceptable accuracy even

though around 2% less compared using text string features.

However, total time of the classification is more than 10

times faster than using the text string features.

Table 5. Performance of Opcode and Text string features

Classifier Attributes Opcode
Text

string

Random

Forest

Training

Time taken

to build

model (s)

0.23 1.96

Testing

Accuracy

(%)
98.67 100

Time taken

to test

model (s)

0.01 0.85

4.5 Performance of signature-based detection

In order to know the performance of signature-based

classifier, 100 of known malware and 100 of obfuscated

malware have been tested with VirusTotal [23]. The result

shows that the known malware executable files could be

detected with detection rate of around 42% whereas, the

obfuscated malwares executable files are around 20%. In

another word, VirusTotal has difficulty to detect the

obfuscated malware.

4.6 Related works comparison

In research [5] and [6], text string feature is the primary

feature that being used for classifiers training and testing.

However, research [5] and [6] had different total numbers

of malware and benign samples. Total of 500 benign and

500 malware samples have been used in research [6].

While research [5] only utilize 150 benign and 150

malware samples for classifier training and testing. SMO

classifier in research [5] able to achieve 98% of testing

accuracy within 0.08s. Nevertheless, SMO classifier in

research [6] is able to achieve 99.1% of testing accuracy

within 0.47s. The Random Forest classifier used in this

research is substantially more slowly than the classifiers

used in studies [5] and [6]. However, Random Forest

classifier has a higher testing accuracy than the SMO

classifier.

5. CONCLUSION

Obfuscated malware is barely detected by the signature-

based detection application, VirusTotal, where only

around 20% detection rate. Machine learning classifiers

are performed far better than the signature-based detection

with more than 98% of accuracy. On the other hand, the

machine learning classifiers that trained with text string

and opcode are obviously different in term of time taken to

build and test the model. From this study, it is observed

that the performance of the classifier that is trained with

significant opcode features only is as good as the classifier

that is trained with more informative features such as text

string features. For the future woks, instead of using

opcode and text string as main features to train the

Yu Chii Heng et al. / ELEKTRIKA, 23(2), 2024, 157-162

162

classifiers, other features could be used to observe their

performance in malware classification.

ACKNOWLEDGMENT

The authors would like to thank Elektrika Editor Team for

their helpful feedback and support.

REFERENCES

[1] L. E. S. Jaramillo, “Malware Threats Analysis and

Mitigation Techniques for Compromised Systems,”

Journal of Information Systems Engineering &

Management, vol. 4, no. 1, Mar. 2019, doi:

10.29333/jisem/5742.

[2] A. Darem, J. Abawajy, A. Makkar, A. Alhashmi, and

S. Alanazi, “Visualization and deep-learning-based

malware variant detection using OpCode-level

features,” Future Generation Computer Systems, vol.

125, pp. 314–323, Dec. 2021, doi:

10.1016/j.future.2021.06.032.

[3] D. Gibert, C. Mateu, and J. Planes, “The rise of

machine learning for detection and classification of

malware: Research developments, trends and

challenges,” Journal of Network and Computer

Applications, vol. 153. Academic Press, Mar. 01,

2020. doi: 10.1016/j.jnca.2019.102526.

[4] W. Fleshman, E. Raff, R. Zak, M. Mclean, and C.

Nicholas, “Static Malware Detection & Subterfuge:

Quantifying the Robustness of Machine Learning and

Current Anti-Virus”, 2018 13th International

Conference on Malicious and Unwanted Software

(MALWARE), Nantucket, MA, USA, 2018, pp. 1-10,

doi: 10.1109/MALWARE.2018.8659360.

[5] T. H. Xin, I. Ismail, and B. M. Khammas,

“Obfuscated Computer Virus Detection using

Machine Learning Algorithm,” Bulletin of Electrical

Engineering and Informatics, vol. 8, no. 4, pp. 1383–

1391, Dec. 2019, doi: 10.11591/eei.v8i4.1584.

[6] M. Hasan A. Ali, Metamorphic Malware Detection

Using Machine Learning, Master’s Thesis, Faculty

of Engineering, Universiti Teknologi Malaysia,

2020.

[7] J. Singh and J. Singh, “Challenges of Malware

Analysis: Obfuscation Techniques”, International

Journal of Information Security Science, Vol. 7, No.

3, pp. 100-110, 2018.

[8] N. Idika and A. P. Mathur, A Survey of Malware

Detection Techniques, Technical Report, Department

of Computer Science, Purdue University, 2007.

[9] K. Eugene, “Machine Learning for Malware

Detection”. Accessed on: Dec. 15, 2021.

[Online].Available:

https://media.kaspersky.com/en/enterprise-

security/Kaspersky-Lab-Whitepaper-Machine-

Learning.pdf

[10] Kateryna Chumachenko, Machine Learning Methods

for Malware Detection and Classification,

Bachelor’s Thesis, Information Technology,

University of Applied Sciences, Berlin, Germany,

March 2017.

[11] R. Tahir, “A Study on Malware and Malware

Detection Techniques,” International Journal of

Education and Management Engineering, vol. 8, no.

2, pp. 20–30, Mar. 2018, doi:

10.5815/ijeme.2018.02.03.

[12] B. Ashutosh, “What is Opcode”. Accessed on: Jan.

29, 2022. [Online]. Available:

https://www.engineersgarage.com/what-is-opcode/

[13] A. Yewale and M. Singh, “Malware detection based

on opcode frequency,” in Proceedings of 2016

International Conference on Advanced

Communication Control and Computing

Technologies, ICACCCT 2016, Jan. 2017, pp. 646–

649. doi: 10.1109/ICACCCT.2016.7831719.

[14] “NirSoft”. Accessed on: Jun. 02, 2024. [Online].

Available: https://www.nirsoft.net/

[15] “EXE Files”. Accessed on: Jun. 02, 2024. [Online].

Available: https://www.exefiles.com/en/

[16] “VX Heaven”. Accessed on: Jun. 02, 2024. [Online].

Available:

https://vxug.fakedoma.in/archive/VxHeaven/

[17] “DasMalwerk”. Accessed on: Jun. 02, 2024.

[Online]. Available: https://dasmalwerk.eu/

[18] “VirusSign”. Accessed on: Jun. 02, 2024. [Online].

Available:

https://www.virussign.com/downloads.html

[19] “objdump”. Accessed on: Dec. 15, 2021. [Online].

Available: https://command-not-found.com/objdump

[20] “Class StringToWordVector”. Accessed May. 19,

2022. [Online]

https://weka.sourceforge.io/doc.dev/weka/filters/uns

upervised/attribute/StringToWordVector.html

[21] “Weka 3”. Accessed Jan. 15, 2022. [Online]

https://www.cs.waikato.ac.nz/ml/weka/

[22] “Crypto Obfuscator For .Net”. Accessed Jan. 15,

2022. [Online]

https://www.ssware.com/cryptoobfuscator/obfuscato

r-net.htm

[23] “VirusTotal”. Accessed Jan. 15, 2007. [Online].

Available:

https://www.virustotal.com/gui/home/upload

