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Abstract: Autonomous Mobile Robots (AMRs) are crucial in modern manufacturing for automating material handling and 
transportation. However, optimizing their task scheduling is challenging due to conflicting objectives like minimizing 
makespan and reducing energy consumption. Traditional algorithms such as Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), and Ant Colony Optimization (ACO) often yield suboptimal results. This study proposes an innovative 
Synergistic GA-PSO algorithm that combines the exploratory capabilities of GA with the fast convergence of PSO. 
Experiments conducted in MATLAB demonstrate that the Synergistic GA-PSO algorithm consistently outperforms GA, PSO, 
and ACO, especially in complex environments, by enhancing scheduling accuracy, reducing idle intervals, and lowering 
energy consumption. 

Keywords: Autonomous Mobile Robots, Task Scheduling, Genetic Algorithm, Particle Swarm Optimization, Hybrid 
Algorithm 

© 2024 Penerbit UTM Press. All rights reserved 
Article History: received 21 May 2024; accepted 22 September 2024; published 30 December 2024. 

1. INTRODUCTION 
Autonomous Mobile Robots (AMRs) have become 
increasingly indispensable in modern manufacturing 
processes and are critical in automating material handling 
and transportation functions. Despite their significant 
utility, optimizing their task scheduling poses a complex 
challenge, fraught with conflicting objectives such as 
minimizing makespan and reducing energy consumption. 
Traditional scheduling algorithms often yield suboptimal 
solutions, resulting in operational inefficiencies like 
increased downtime [1], [2]. 

Given this backdrop, this study aims to conduct a 
rigorous comparative evaluation of three AI-based 
optimization algorithms—Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), and Ant Colony 
Optimization (ACO)—to enhance AMR scheduling in 
manufacturing environments. These algorithms are 
selected due to their prominence and proven effectiveness 
in various optimization problems. The evaluation focuses 
on their performance in terms of scheduling accuracy, idle 
interval reduction, and energy consumption. 

The comparative analysis revealed that while each 
algorithm has its strengths, they also have notable 
limitations. GA is robust and adaptable but often struggles 
with scalability in larger systems [3], [4], [5]. PSO offers 

fast convergence and simplicity but may get trapped in 
local optima [6], [7]. ACO is effective for discrete path 
planning but can be computationally intensive and slow to 
converge in real-world scenarios [8], [9]. 

To address these limitations, this study proposes an 
Innovative Synergistic Genetic Algorithm and Particle 
Swarm Optimization (GA-PSO) approach. This 
synergistic method aims to leverage the exploratory 
capabilities of GA and the fast convergence properties of 
PSO, creating a more robust and efficient scheduling 
solution. The synergistic GA-PSO algorithm is designed to 
enhance scheduling accuracy, reduce idle intervals, and 
lower energy consumption by combining the strengths of 
both algorithms. 

The primary objectives of this study are twofold: first, 
to rigorously compare the performance of GA, PSO, and 
ACO in AMR scheduling, and second, to develop and 
validate the proposed Synergistic GA-PSO algorithm. All 
computational modeling and algorithm deployments will 
be executed within the MATLAB environment. 

The organization of this paper is as follows: Following 
this introduction, Section 2 reviews the existing literature 
and theoretical foundations of GA, PSO, and ACO. 
Section 3 details the methodology and experimental setup 
used for the comparative evaluation. Section 4 presents the 
innovative Synergistic GA-PSO algorithm and discusses 
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its development. Section 5 compares the performance of 
the Synergistic algorithm with the traditional methods. 
Section 6 concludes the paper with key insights and 
recommendations for future research. 

2. ALGORITHMIC REVIEW  
Optimizing the scheduling of Autonomous Mobile Robots 
(AMRs) is a critical research area at the intersection of 
manufacturing engineering and artificial intelligence. 
Traditional scheduling algorithms often fall short in the 
increasingly complex environment of modern 
manufacturing, necessitating the use of more advanced 
optimization techniques. While there is a broad array of 
algorithms being explored for AMR scheduling, this study 
focuses on a comparative analysis of three prominent bio-
inspired algorithms: Genetic Algorithm (GA), Particle 
Swarm Optimization (PSO), and Ant Colony Optimization 
(ACO). Although Reinforcement Learning and Neural 
Networks also contribute to this field, the emphasis here is 
on the unique characteristics and applicability of GA, PSO, 
and ACO in optimizing AMR operations[10], [11], [12]. 

2.1 Genetic Algorithm (GA) 
Genetic Algorithms (GAs) are inspired by the principles of 
natural selection and genetics [3]. They are used primarily 
in optimization and search problems, where they evolve a 
population of potential solutions over successive 
generations to find an optimal or near-optimal solution [4], 
[5], [6]. GAs are known for their robustness and 
adaptability, making them suitable for various 
optimization challenges, including AMR scheduling. 
However, their performance can be limited by scalability 
issues, particularly in large, complex systems, as they 
require substantial computational resources and longer 
convergence times. 

2.2 Particle Swarm Optimization (PSO) 
Particle Swarm Optimization (PSO) was introduced by 
Kennedy and Eberhart in 1995 and is modeled after the 
social behaviors of birds flocking or fish schooling [7], [8]. 
Unlike gradient-based optimization methods, PSO relies 
on the collective behavior of a population of particles to 
explore the solution space, guided by the objective 
function [9]. PSO is valued for its simplicity and rapid 
convergence, which make it suitable for real-time 
applications such as AMR scheduling. However, PSO can 
sometimes become trapped in local optima, which limits 
its effectiveness in more complex scenarios. 

2.3 Ant Colony Optimization (ACO) 
Ant Colony Optimization (ACO) is inspired by the 
foraging behavior of ants and was developed in the early 
1990s [10], [11]. It is particularly effective for solving 
combinatorial optimization problems by simulating how 
ants deposit pheromones to find the shortest paths to food 
sources [15], [16]. Despite its strengths, ACO can be 
computationally intensive and slower to converge 
compared to other algorithms, which can hinder its 
performance in dynamic and large-scale manufacturing 
environments [17]. 

3. DESIGN OF THE SYNERGISTIC GA-PSO 
ALGORITHM 
The comparative analysis of GA, PSO, and ACO reveals 
that while each algorithm has distinct advantages, they also 
possess notable limitations. GA is robust and adaptable but 
struggle with scalability. PSO is efficient and fast but 
prone to getting trapped in local optima. ACO excels in 
combinatorial optimization but is computationally 
intensive and slow to converge. These limitations highlight 
the need for an approach that can combine the strengths of 
multiple algorithms while mitigating their weaknesses.  

To address these challenges, this study proposes a 
Combined Genetic Algorithm and Particle Swarm 
Optimization (GA-PSO) Approach. By integrating the 
exploratory capabilities of GA with the fast convergence 
properties of PSO, the GA-PSO algorithm aims to provide 
a more robust and efficient solution for AMR scheduling. 
The combined method allows for an initial broad search of 
the solution space using GA, followed by fine-tuning 
through PSO, thus leveraging the individual strengths of 
each algorithm to overcome their respective limitations. 

This synergistic approach is rooted in past research 
which shows that synergistic of algorithms can lead to 
improved performance. For instance, combining GA with 
local search techniques has been shown to enhance the 
efficiency of finding global optima in complex search 
spaces [18]. Similarly, integrating PSO with other 
optimization methods has demonstrated improvements in 
solution quality and convergence rates. Therefore, the 
proposed GA-PSO approach is designed to synthesize the 
evolutionary capabilities of GA with the social interaction 
dynamics of PSO, aiming for a more effective optimization 
strategy. 

Recent advancements in hybrid optimization methods 
further support the potential of combining GA and PSO. In 
particular, hybrid algorithms have been shown to 
outperform their standalone counterparts in complex, 
multi-objective optimization problems, where multiple 
conflicting criteria must be balanced simultaneously. 
Studies have demonstrated that hybrid GA-PSO 
algorithms are especially effective in avoiding premature 
convergence by maintaining a balance between the global 
search capabilities of GA and the local refinement 
strengths of PSO. Moreover, hybrid methods provide a 
more adaptive search process, adjusting their exploration 
and exploitation mechanisms based on real-time feedback 
from the solution space. This adaptability is particularly 
beneficial in dynamic environments like AMR scheduling, 
where task priorities and constraints can change frequently. 
By utilizing the complementary strengths of both GA and 
PSO, the proposed approach can achieve superior 
performance in terms of convergence speed, solution 
accuracy, and robustness to varying problem scales and 
complexities. 

The flowchart in Figure 1 illustrates the detailed steps of 
the synergistic GA-PSO algorithm, from parameter 
definition and population initialization to fitness 
evaluation, selection, crossover, mutation, velocity update, 
and position update. This iterative process ensures 
continuous improvement and convergence towards the 
optimal solution. 
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Table 1. Algorithms Comparison [18], [19], [19] 

 

 
Figure 1. Synergistic GA-PSO algorithm flow chart 

The following table 1 summarizes the characteristics 
and performance metrics of GA, PSO, ACO, and the 
proposed GA-PSO algorithm in the context of AMR 
scheduling: 

4. EXPERIMENTAL SETUP AND RESULTS 

4.1 Experimental Setup 
The experimental setup aimed to evaluate the performance 
of the proposed Synergistic GA-PSO algorithm compared 
to traditional GA, PSO, and ACO algorithms. The 
experiments used three types of logical maps—simple, 
moderate, and complex—to represent different levels of 
task scheduling difficulty. Figures 2 illustrate these logical 
maps. 
 

 
Figure 2. Logical maps 

The simulation process was implemented using 
MATLAB. It begins with inputting data and setting up the 
environment, followed by executing the optimization 
scheduling algorithms. This algorithms updates the best 
solution based on fitness values over 100 iterations, 
resulting in path planning visualized through robot 
operation simulations and Gantt charts. 

Three types of simulation maps were used: simple, 
moderate, and complex. The number of robots (2, 5, and 

Criteria 
Genetic 
Algorithm 
(GA) 

Particle Swarm 
Optimization 
(PSO) 

Ant Colony 
Optimization 
(ACO) 

Combined 
GA-PSO 

Computat
ional 
Complexi
ty (Big O 
Notation) 

O(N2) 
suitable for 
medium-scale 
AMR systems 

O(N) suitable for 
real-time AMR 
systems 

O(N2logN) 
suited for 
discrete path 
planning 

O(N) suitable 
for scalable 
AMR systems 

Paramete
r 
Sensitivit
y 

High (fine-
tuning needed 
for time-
windows) 

Moderate (few 
parameters ease 
AMR-specific 
adjustments) 

High (requires 
tuning for AMR 
constraints) 

Moderate 
(leverages 
strengths of 
GA and PSO) 

Memory 
Requirem
ent 

Moderate 
(due to 
population, 
may slow 
down real-
time tasks) 

Low (better for real-
time AMR systems) 

Moderate 
(pheromone 
matrix may 
consume 
memory) 

Moderate 
(optimized 
memory 
usage) 

Converge
nce Rate 
(Iteration
s) 

500-2000 
(longer for 
complex 
AMR 
scenarios) 

100-1000 (fast, 
suitable for real-
time scheduling) 

200-5000 
(slower for real-
world AMR 
tasks) 

200-1000 
(balanced 
convergence) 

Optimalit
y Gap for 
AMR 
Schedulin
g (%) 

3-7% 1-4% 2-6% 
1-3% 
(improved 
optimality) 

Paralleliz
ability 

High 
(individual 
routes can be 
computed in 
parallel) 

Moderate (parallel 
but interdependent 
updates) 

Low to moderate 
(bottleneck at 
global 
pheromone 
update) 

High 
(combines 
parallel 
capabilities) 

Robustne
ss in 
Dynamic 
Environm
ents (%) 

75-85% 80-95% 70-85% 
85-95% 
(enhanced 
robustness) 

Flexibility 
to AMR-
specific 
Constrain
ts 

Moderate 
(requires 
encoding for 
time-
windows, 
load capacity 
etc.) 

High (easier to 
implement AMR-
specific rules) 

Moderate 
(problem-
specific rules 
needed for tasks 
like deadlock 
avoidance) 

High 
(adaptable to 
various 
constraints) 

Implemen
tation 
Complexi
ty for 
AMR 

Moderate-
High (due to 
encoding/dec
oding tasks) 

Low-Moderate 
(simpler models 
often suffice) 

Moderate-High 
(due to 
pheromone 
updating and 
complex 
decision-making) 

Moderate 
(balances 
complexity 
and efficienc 
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10) and tasks varied, and three types of fitness selection 
(time, distance, and time x distance) were considered. Two 
types of path generation were employed: sequential task 
allocation and simultaneous task allocation. Path planning 
utilized the A* algorithm due to its simplicity and 
efficiency [20]. Simulations were conducted on a computer 
with an i7-10875H CPU, RTX2070 GPU, and 32 GB 
RAM. 

In the experimental setup, the Genetic Algorithm (GA) 
was configured with a population size of 50, a crossover 
rate of 0.8, and a mutation rate of 0.05, using tournament 
selection. For Particle Swarm Optimization (PSO), we 
used a population of 50 particles, an inertia weight starting 
at 0.9 and decreasing linearly to 0.4, and cognitive and 
social coefficients both set at 1.5. The Ant Colony 
Optimization (ACO) algorithm was configured with 50 
ants, an evaporation rate of 0.5, pheromone influence (α) 
set at 1.0, and heuristic influence (β) set at 2.0. Finally, the 
Synergistic GA-PSO algorithm combined GA and PSO, 
using GA’s population size of 50, a crossover rate of 0.8, 
and a mutation rate of 0.05, followed by a PSO phase with 
50 particles, using the same inertia, cognitive, and social 
parameters as in standalone PSO. All algorithms were run 
for a maximum of 1000 iterations or until convergence. 

4.2 Results and Analysis 
The results are presented in terms of average distance, 
travel time, processing time, and maximum travel distance 
for each robot. The performance of the Synergistic GA-
PSO algorithm was compared with traditional GA, PSO, 
and ACO algorithms across different fitness functions and 
path generation types. Lower fitness values indicate a 
better performance of the algorithm. 
 
Path Generation Type 1 (Tasks Follow Sequence) 
 Fitness Using Time: The results for different 

environments using time as the fitness function are 
shown in Figure 3 to 5. The Synergistic GA-PSO 
algorithm performed similarly to GA with fewer 
robots but improved significantly as the number of 
robots increased. 
 

 
Figure 3. Results by Fitness Using Time in simple map 

 
Figure 4. Results by Fitness Using Time in moderate map 

 
Figure 5. Results by Fitness Using Time in complex map 

 Fitness Using Distance: Figures 6 to 8 present the 
results using distance as the fitness function. The 
Synergistic GA-PSO algorithm consistently 
outperformed GA with more robots, demonstrating 
its effectiveness in minimizing travel distance. 
 

 
Figure 6. Results by Fitness Using Distance in simple 

map 
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Figure 7. Results by Fitness Using Distance in moderate 

map 

 
Figure 8. Results by Fitness Using Distance in complex 

map 

 Fitness Using Time x Distance: Figures 9 to 11 
illustrate the results using a combination of time and 
distance as the fitness function. The Synergistic GA-
PSO algorithm showed superior performance, 
particularly in complex environments, effectively 
balancing both travel time and distance. 
 

 
Figure 9. Results by Distance*Time in simple map 

 
Figure 10. Results by Distance*Time in moderate map 

 
Figure 11. Results by Distance*Time in complex map 

Path Generation Type 2 (All Tasks Together) 
 Fitness Using Time x Distance: For the scenario 

where all tasks are assigned simultaneously, the 
results in Figure 12 to 14 demonstrate that the 
Synergistic GA-PSO algorithm performs the best in 
complex environments, optimizing for both time and 
distance. 

 
Figure 12. Results by Distance*Time in simple map All 

task 
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Figure 13. Results by Distance*Time in moderate map 

All task 

 
Figure 14. Results by Distance*Time in complex map All 

task. 

4.3 Summary of Results 
Based on the experiments, the Synergistic GA-PSO 
algorithm consistently outperformed traditional GA, PSO, 
and ACO algorithms, especially in complex environments 
and with an increasing number of robots. It effectively 
balances trade-offs between time and distance, making it a 
robust solution for optimizing AMR scheduling. While the 
ACO algorithm has the fastest processing time, its 
performance in terms of travel distance and time is inferior. 

The analysis concludes that the Synergistic GA-PSO 
algorithm provides enhanced scheduling accuracy, 
reduced idle intervals, and lower energy consumption, 
addressing the limitations of using GA or PSO 
independently and resulting in improved overall 
performance. 

5.  DISCUSSION AND CONCLUSION 

5.1 Discussion 
The experimental results provide valuable insights into the 
performance of the Synergistic Genetic Algorithm and 
Particle Swarm Optimization (GA-PSO) for scheduling 
optimization in mobile robots, compared to traditional GA, 
PSO, and ACO algorithms. 

Ant Colony Optimization (ACO): Despite its fast 
processing time, ACO showed the weakest performance in 
terms of fitness value and task completion time. ACO's 
limitations are due to its need for a higher number of 

iterations to achieve optimal performance, as it does not 
utilize a population-based approach like GA or PSO. 
Consequently, ACO's effectiveness diminishes in 
scenarios with limited iterations. 

Genetic Algorithm (GA): GA demonstrated strong 
performance, particularly in simpler environments and 
with fewer robots. Its robustness and adaptability allowed 
it to achieve low fitness values. However, GA's scalability 
issues became apparent in more complex scenarios with a 
larger number of robots and tasks, where it required more 
computational resources and longer convergence times. 

Particle Swarm Optimization (PSO): PSO offered 
rapid convergence and was effective in real-time 
applications. However, it was prone to getting trapped in 
local optima, which limited its performance in more 
complex environments. The algorithm's simplicity and fast 
convergence were advantageous, but its overall 
effectiveness was compromised when compared to the 
synergistic approach. 

Synergistic GA-PSO: The Synergistic GA-PSO 
algorithm excelled in balancing the trade-offs between 
exploration and exploitation. It consistently achieved the 
lowest fitness values and effectively minimized both travel 
time and travel distance. The Gantt charts for the complex 
environment showed that while GA-PSO had slightly 
longer travel times in some cases, it significantly reduced 
the maximum travel distance, leading to more efficient and 
balanced task scheduling. The primary drawback of GA-
PSO was its higher processing time, which highlights the 
need for further optimization. 

Fitness Selection Analysis: The experiments revealed 
that distance-based fitness minimized the maximum travel 
distance but did not control travel time effectively, leading 
to inefficiencies. Time-based fitness reduced travel time 
but failed to control the maximum travel distance, 
potentially shortening the robots' operational lifespan. The 
combined time x distance fitness function provided the 
most balanced and effective optimization, reducing both 
travel time and distance and thereby enhancing overall 
efficiency and robot longevity. 

Overall, the Synergistic GA-PSO algorithm emerged as 
the most robust and efficient solution, effectively 
addressing the limitations of GA and PSO when used 
independently. It demonstrated superior performance in 
diverse and complex scheduling scenarios, making it a 
highly effective approach for optimizing mobile robot 
scheduling in manufacturing environments. 

5.2 Conclusion 
This study aimed to develop and validate an innovative 
Synergistic Genetic Algorithm and Particle Swarm 
Optimization (GA-PSO) for scheduling optimization in 
mobile robots. The primary objectives were to design an 
AI-based scheduling simulation system, compare the 
performance of GA, PSO, and ACO algorithms, and 
develop a synergistic GA-PSO algorithm. 

The AI-based scheduling simulation system was 
successfully developed using MATLAB, incorporating 
GA, PSO, and ACO algorithms. The comparative analysis 
revealed that while each algorithm has distinct strengths, 
the Synergistic GA-PSO algorithm provided the most 
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robust and efficient scheduling solution. It achieved the 
lowest fitness values, minimized travel time and distance, 
and handled a large number of robots and tasks effectively. 

The study highlighted the significant benefits of the 
Synergistic GA-PSO algorithm, including improved task 
allocation, reduced idle times, and extended robot life. 
These advantages directly impact the productivity and 
profitability of manufacturing operations, making the 
Synergistic GA-PSO algorithm a valuable tool for 
scheduling optimization in mobile robots. 

5.3 Future Work 
Future research should focus on several enhancements to 
further improve the Synergistic GA-PSO algorithm: 
1. Time-based Simulation System: Developing a 
dynamic time-based simulation system to visualize real-
time optimization of robot scheduling and task 
management. 
2. Speed Limit Integration: Incorporating speed limits in 
the simulation to better represent realistic travel times and 
improve scheduling accuracy. 
3. Total Distance Inclusion in Fitness Function: 
Including total travel distance in the fitness function to 
enhance energy efficiency and reduce overall travel 
distance. 
4. Processing Time Optimization: Streamlining the 
Synergistic GA-PSO algorithm to reduce processing time, 
making it more practical for real-time applications and 
larger-scale deployments. 

These enhancements would refine the scheduling 
optimization process, making the Synergistic GA-PSO 
algorithm even more efficient and effective for practical 
applications in diverse manufacturing environments. 
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