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edge structures on the electronic properties of AB-BGNRs is highlighted, providing insights into their potential applications 
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based electronic devices. 
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1. INTRODUCTION 

Graphene, a groundbreaking material, forms the 

foundation of a new class of nanostructures where 

conduction occurs in single or few layers of carbon atoms 

arranged in a hexagonal lattice [1]. Its distinct electronic 

band structure and quasi-relativistic features have sparked 

significant interest, offering high carrier density and 

electronic mobility even at room temperature. With the 

ability to control carrier density through gate voltage [1], 

graphene has been proposed as a fundamental component 

for advanced electronic devices [2], including graphene p-

n and p-n-p junctions [3], and transistors [4]. The 

electronic transport properties of Dirac quasiparticles in 

graphene have emerged as a focal point in nanomaterial 

science, condensed matter physics, and nanoelectronics 

[5]. This interest is driven by the potential applications of 

graphene in advanced electronic devices [6].  

In contrast to monolayer graphene’s predominantly 

linear energy spectrum, bilayer graphene exhibits a 

quadratic energy spectrum in the low-energy regime [7, 8]. 

In the context of bilayer graphene having a quadratic 

energy spectrum in the low-energy regime, this aspect of 

its electronic structure can affect how electrons move 

through the material. Specifically, the shape and 

characteristics of the energy bands in bilayer graphene can 

influence the transmission of electrons across it. Despite 

extensive research on monolayer graphene, the unique 

characteristics of bilayer graphene, especially in AB-

stacked configurations, require further investigation due to 

its distinct electronic properties. This is because bilayer 

graphene is considered equally important as monolayer 

graphene for both technological applications and 

fundamental scientific research [4, 9] due to its distinct 

electronic properties.  

Bilayer graphene features two major edge orientations: 

armchair and zigzag. These orientations exhibit a 30° 

rotational symmetry with respect to each other [10]. These 

orientations are characterized by hexagonal dihedral 

groups within the unit cell, displaying rotational 

symmetries equivalent to  /3. Zigzag-edged AB-stacked 

bilayer graphene nanoribbons (AB-BGNRs) are 

characterized by edges where the carbon atoms alternate in 

a zigzag pattern. Armchair-edged AB-BGNRs have edges 

that resemble the shape of armchair upholstery, where the 

carbon atoms form a sawtooth pattern. 

Graphene nanoribbons (GNRs), which are narrow strips 

of graphene, are particularly promising for applications in 

high-performance transistors and next-generation sensors 

due to their unique electronic properties and tunable 

bandgaps. These characteristics make GNRs ideal for 

creating smaller and more efficient electronic components, 

potentially revolutionizing the electronics industry. 

Understanding the transmission coefficients of zigzag and 

armchair-edged GNRs is crucial as it directly impacts their 
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performance and can lead to significant advancements in 

these applications.  

However, manipulating GNRs at the atomic level poses 

significant challenges. Achieving precise edge 

configurations, such as zigzag and armchair edges [10], 

requires advanced fabrication techniques. Any defects or 

irregularities in the edges can significantly alter the 

electronic properties of GNRs, impacting their 

performance in devices. In addition, the interactions 

between layers in bilayer graphene add another layer of 

complexity, as the positioning of atoms can vary, leading 

to different electronic characteristics. Comprehensively 

understanding AB-stacked bilayer graphene poses 

challenges, particularly regarding the influence of edge 

configurations, specifically zigzag and armchair 

configurations [10] on the transmission coefficient and 

electronic transport properties.  

To address these challenges, suitable models must be 

devised to simulate the atomic structure and predict the 

electronic properties of GNRs. Existing studies often lack 

a clear and concise method for constructing Hamiltonians 

for these systems, essential for accurate modelling and 

simulation. To tackle these issues, a precise Hamiltonian 

model will be developed using the nearest-neighbor tight-

binding (NNTB) approach, tailored for AB-stacked bilayer 

graphene with both zigzag and armchair edges. 

Investigating the impact of edge configurations on the 

transmission coefficient will be pursued using the non-

equilibrium Green’s function (NEGF) formalism. 

2. METHODOLOGY  

2.1 Software Setup 

To initiate the software environment for simulating the 

bilayer graphene system, the MATLAB setup is 

configured to define all requisite constants essential for the 

subsequent computations. This includes the charge of an 

electron (𝑞 = 1.6 × 10−19𝐶) , the reduced Planck's 

constant (ℏ = 1.06 × 10−34𝐽𝑠),  Planck’s constant                   

(ℎ = 2𝜋ℏ), the electron mass (𝑚 = 9.1 × 10−31𝑘𝑔), and 

an imaginary unit for computational purposes                     

(𝑧𝑝𝑙𝑢𝑠 = 𝑖 × 10−3). Besides, coupling strength 

parameters are determined based on the assumption that 

the interlayer distance between layers is 3.35 angstroms 

[11-14]. The hopping integrals (γ0, γ1, γ3, and γ4), are 

initialized based on prior research findings [14-17]. This 

comprehensive setup ensures that all necessary constants 

are accurately defined for subsequent simulations and 

computations within the MATLAB environment. 

2.2 NEGF Setup 

The NEGF setup involves the initialization of the 

Hamiltonian matrix and the construction of the alpha and 

beta matrices, which are pivotal in elucidating the 

electronic structure and transport characteristics of the 

bilayer graphene system. This initialization process is 

tailored to the chosen bilayer graphene topology, whether 

zigzag or armchair configuration, to accurately capture the 

unique properties of the system. 

In the NEGF framework, the Hamiltonian matrix serves 

as the cornerstone, encapsulating the system’s quantum 

mechanical properties and governing its evolution over 

time. It is encompassed by the energy levels, interactions, 

and dynamics of the electrons within the bilayer graphene 

structure. The alpha and beta matrices, derived from the 

Hamiltonian, play crucial roles in representing the intra-

layer and inter-layer interactions, respectively, within the 

bilayer graphene lattice. 

In the context of GNRs, width refers to the number of 

carbon atom positions across the width of the GNRs. It 

defines the lateral extent of the structure, indicating how 

many carbon atoms are present along the width direction 

of the GNRs. This parameter is crucial as it directly 

influences the electronic properties, conductance 

characteristics, and potential applications of graphene-

based devices. On the other hand, length refers to the 

longitudinal dimension of the graphene nanoribbons or 

bilayer graphene layers. It denotes the number of unit cells 

or carbon-carbon bonds along the longest axis of the 

GNRs, typically extending in the direction perpendicular 

to the width. The length determines the overall size of the 

structure and can affect properties such as electron 

mobility, thermal conductivity, and the interaction 

between layers in bilayer graphene configurations. 

Specifically, the alpha matrix is characterized by intra-

layer interactions, capturing the hopping integrals between 

adjacent carbon atoms within each layer. Figure 1 shows 

the alpha unit cells of AB-BGNRs for zigzag and armchair 

edges, whereas Equations (1) and (2) show their respective 

alpha matrices with a width of 1 block per unit cell. 

Looking into the unit cells of AB-BGNRs, the lower layer 

lattice points are coloured black and white; the upper layer 

is coloured black and grey. This colouring scheme is 

chosen to better distinguish the bottom and upper layers. 

The black lattice points are known as dimers as the carbon 

atoms are directly above each other between the top and 

bottom layers. 

 

 

 

 

 

 

(a) (b) 

Figure 1. Alpha unit cells of AB-BGNRs for (a) zigzag 

edge and (b) armchair edge. 
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Meanwhile, the beta matrix is delineated by the inter-

layer interactions, accounting for the coupling between the 

top and bottom layers of the bilayer graphene structure. 

Figure 2 shows the beta unit cells of AB-BGNRs for zigzag 

edge while Equations (3) shows its respective beta matrix 

with a width of one block per unit cell. 

 

 

Figure 2. Beta unit cells of AB-BGNRs for zigzag edge. 
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Figure 3 shows the beta unit cells of AB-BGNRs for 

armchair edge while Equation (4) shows its respective beta 

matrix with a width of one1 block per unit cell. 

 

 

Figure 3. Beta unit cells of AB-BGNRs for armchair 

edge. 
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 These matrices are constructed based on the geometric 

and topological features of the chosen bilayer graphene 

topology, ensuring an accurate representation of the 

system’s electronic properties including transmission 

coefficient. Once the alpha and beta matrices have been 

constructed, they are integrated into the Hamiltonian 

matrix as submatrices at specified positions, as illustrated 

in Equation (5), ensuring their proper placement within the 

complete matrix structure. 

 

𝐻 =

⬚ 𝑂 𝑃 𝑄

𝑂
𝑃
𝑄

[

𝛼 𝛽 0

𝛽′ 𝛼 𝛽

0 𝛽′ 𝛼
]
   (5) 

 

By initializing the Hamiltonian matrix and constructing 

the alpha and beta matrices in accordance with the chosen 

bilayer graphene configuration, the NEGF setup 

establishes the foundation for subsequent quantum 

mechanical calculations and simulations, enabling 

comprehensive investigations into the system’s transport 

phenomena. These matrices are essential for describing the 

transport properties of the system.  

2.3 NEGF Calculations 

After the Hamiltonian matrices are constructed, the NEGF 

calculations are set up to determine the transmission 

coefficient of AB-BGNRs. In NEGF calculations, 

achieving self-consistency is pivotal for accurately 

describing the electronic properties of the system, 

particularly when considering the effects of electron-

electron interactions and device-lead coupling. The self-

consistent approach involves iteratively solving the 

equations until a stable solution is reached. Initially, the 

process involves the setup of an energy grid to cover the 

desired range of energy values for the calculations. This 

grid is initialized to ensure that subsequent calculations are 

performed across a relevant energy spectrum. The 

convergence criterion is set to 1 × 10−3, ensuring that the 

iterative calculations in the NEGF method converge to 

within a specified tolerance.  

Subsequently, the computation proceeds to determine 

the surface Green’s functions associated with the left and 

right leads of the bilayer graphene device. These surface 

Green’s functions are provided to offer essential insights 

into the behavior of electrons at the interfaces between the 

device and its leads, reflecting boundary conditions and 

interface effects. Following the computation of surface 

Green’s functions, the next step involves the calculation of 

the self-energy matrices. These matrices, denoted as 

Σ1 and Σ2 are calculated to account for the influence of the 

device leads on the electronic structure within the device, 

incorporating effects such as phase-breaking processes and 

interactions with external environments. Mathematically, 

the self-energy matrices are illustrated as shown in 

Equations (6) and (7), 

 

𝛴1 = 𝛽𝑇𝑔1𝛽 (6) 

  

𝛴2 = 𝛽𝑔2𝛽
𝑇 (7) 

 

where 𝑔1  and 𝑔2  are the surface Green’s functions 

associated with the left and right leads, respectively, and 𝛽 

represents the beta matrix. 

With the surface Green’s functions and self-energy 

matrices determined, the next step is to compute the total 
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Green’s function of the system, denoted as 𝐺. This total 

Green’s function encapsulates the combined effects of the 

Hamiltonian matrices and the self-energy matrices, 

providing a comprehensive description of the electronic 

structure and transport properties within the bilayer 

graphene device. The total Green's function is determined 

using  Equation (8), 

 

𝐺 = ((𝐸 + 𝑧𝑝𝑙𝑢𝑠)𝐼 − 𝐻 − 𝛴1 − 𝛴2 − 𝛴𝑠)
−1 (8) 

 

where 𝐸 is the energy, 𝑧𝑝𝑙𝑢𝑠 is a small imaginary value to 

ensure convergence, 𝐼  is identity matrix, 𝐻  is the 

Hamiltonian matrix, and 𝛴𝑠  represents self-energy 

contributions from the system, beyond the contacts or 

leads. The trace operation sums over all electronic states 

contributing to the transmission process, providing 

insights into the electron transport characteristics. 

The iterative self-consistent loop is then initiated to 

achieve convergence. In each iteration, the total Green’s 

function is updated to incorporate the effects of the self-

energy matrices. Subsequently, the self-energy matrices 

are recalculated using the updated Green’s function. 

Convergence is assessed by comparing the difference 

between successive iterations with a predefined 

convergence criterion. In cases where convergence is not 

attained, the iteration process is repeated until it is 

achieved. This approach ensures convergence to a 

minimum error threshold and has been successfully 

applied in previous studies [18]. 

Once self-consistency is established, the converged total 

Green’s function is utilized to calculate the transmission 

coefficient as a function of energy. Mathematically, the 

transmission coefficient is given by Equation (9), 

 

 

where 𝛤𝑙𝑒𝑓𝑡  and 𝛤𝑟𝑖𝑔ℎ𝑡  represent the coupling matrices 

associated with the left and right leads, respectively, and 

𝐺† denotes the conjugate transpose of 𝐺. This transmission 

coefficient quantifies the probability of an electron 

incident from one lead transmitting through the device and 

emerging into the other lead.  

Finally, the obtained transmission coefficient data is 

analyzed and interpreted to elucidate the electronic 

transport characteristics of AB-BGNRs. The results are 

evaluated considering the device’s geometry, electronic 

properties, and other relevant parameters to gain insights 

into electron propagation mechanisms and optimize device 

performance.  

3. RESULTS AND DISCUSSIONS 

The transmission coefficient is a crucial metric for two-

terminal devices, indicating whether the flux of transmitted 

travelling waves relative to the incident flux of travelling 

waves reaches the other side of a potential barrier [19]. In 

this study, MATLAB is used to plot the transmission 

coefficient as a function of energy, providing a graphical 

depiction of the AB-BGNRs’ transmission coefficients. 

3.1 Transmission Coefficient for Zigzag Edges 

The transmission coefficient of the zigzag edge AB-

BGNRs is determined using simulations across the entire 

energy spectrum. A slight dip in the transmission 

coefficient is observed in the mid-energy band centered 

around the 0eV region. This transmission coefficient, 

occasionally exceeding a magnitude of 1, represents the 

cumulative transmission for all quantum states at a 

particular energy level and is not normalized to the number 

of quantum states. 

To investigate the effects of varying GNR device widths 

on the transmission coefficients of zigzag edge AB-

BGNRs, simulations are conducted under a fixed length as 

shown in Figure 4. It is essential to show how increasing 

the width enhances the transmission coefficient, providing 

a foundational understanding of the width-dependent 

behaviour of the system. 

 

   
(a) (b) (c) 

Figure 4. Transmission plots of AB-BGNRs for 

increasing widths of (a) 4, (b) 8, and (c) 20 blocks, all 

with a fixed length of 3 unit cells. 

As illustrated in Figure 4, an increase in the device width 

results in an overall increase in transmission. Figure 4(a) 

illustrates that the transmission coefficient for a device 

with a width of 4 blocks per unit cell peaks at 15. In 

contrast, Figure 4(c) demonstrates that for a device with a 

width of 20 blocks per unit cell, the transmission 

coefficient reaches a maximum value of 80. However, it is 

observed that the mid-band transmission coefficient does 

not scale proportionally with the peak of the energy 

spectrum. This finding aligns with previous research [20] 

indicating that wider nanoribbons tend to have higher 

transmission coefficients due to increased available 

quantum states. 

To further investigate this phenomenon, the 

characteristics of carrier energy transmission in the mid-

band energy region are examined, particularly around 0 eV. 

Since the transmission coefficient can vary significantly 

over small energy ranges, especially in systems with 

complex band structures like bilayer graphene, a finer 

energy grid is implemented to ensure that all the peaks and 

troughs of the transmission coefficient are accurately 

captured, providing a more detailed and precise 

understanding of the electron transport properties. Figure 

5 investigates the effect of varying lengths on the mid-band 

transmission coefficient for a fixed width of 4 blocks per 

unit cell. 

 

𝑇(𝐸) = (𝛤𝑙𝑒𝑓𝑡𝐺𝛤𝑟𝑖𝑔ℎ𝑡𝐺
†) (9) 
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(a) (b) (c) 

Figure 5. Mid-band transmission coefficient plots of AB-

BGNRs for increasing lengths of (a) 3, (b) 10, and (c) 51 

unit cells, all with a fixed width of 4 blocks. 

  Based on Figure 5, it is observed that increasing the 

length of the AB-stacked zigzag edge bilayer graphene 

devices leads to a transition where the mid-band energy 

transmission decreases towards zero and a non-zero energy 

band gap starts to emerge, allowing for theoretical 

engineering of bilayer graphene devices with a non-zero 

bandgap. This result aligns with the findings in the existing 

literature [20]. Therefore, it highlights the importance of 

length in influencing the transmission coefficients and the 

potential for engineering a zigzag AB-BGNRs with a non-

zero bandgap by lengthening the device.   

On the other hand, Figure 6 provides a comprehensive 

view by showing the transmission coefficient for different 

lengths (3, 10, and 51 unit cells) at a width of 10 blocks per 

unit cell.  

 

   

(a) (b) (c) 

Figure 6. Mid-band transmission coefficient plots of AB-

BGNRs for increasing lengths of (a) 3, (b) 10, and (c) 51 

unit cells, all with a fixed width of 10 blocks. 

Based on Figure 6, it is important to complement Figure 

4 by extending the analysis to a larger width and 

corroborating the findings that the diminishing mid-band 

transmission coefficient with increasing lengths is less 

pronounced for wider devices. It is essential for 

understanding the interplay between width and length in 

determining transmission coefficients. 

 

 

 

 

Furthermore, Figure 7 shows the overall transmission 

coefficient across the entire energy spectrum for varying 

lengths at a fixed width of 4 blocks per unit cell.  

 

   
(a) (b) (c) 

Figure 7. Transmission plots of AB-BGNRs for the entire 

energy spectrum with increasing lengths of (a) 3, (b) 10, 

and (c) 51 unit cells, all with a fixed width of 4 blocks. 

Based on Figure 7, it is evident that increasing the length 

reduces the transmission coefficient across the entire 

energy spectrum, reinforcing the observations from 

Figures 4 and 5 and providing a holistic view of the length-

dependent transmission coefficients. 

 

 

3.2 Transmission Coefficient for Armchair Edges 

The transmission coefficient across the energy spectrum of 

the armchair edge AB-BGNRs is computed through 

simulations for each armchair variant (3n-1, 3n, and 

3n+1). Figure 8 demonstrates the relationship between the 

width and transmission coefficients across the energy 

spectrum for different armchair variants.  This analysis 

builds on existing research that has shown the significant 

impact of edge orientation on electronic properties. 

 

   

(a) (b) (c) 

Figure 8. Transmission plots of AB-BGNRs for different 

armchair variants with (a) metallic (3n+1), (b) 

semiconducting (3n-1), and (c) semiconducting (3n) 

variants corresponding to widths 4, 5, and 6 blocks 

respectively, at a fixed length of 3 unit cells. 
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Figure 8 shows that the transmission coefficients 

increase with the width of the device. The transmission 

coefficient varies between the semiconducting and 

metallic variants across the energy spectrum. For the 

metallic variant, the transmission coefficient only 

approaches zero in the mid-band region. In contrast, for the 

semiconducting variants, the transmission coefficient is 

zero in the mid-band region, reflecting the absence of 

quantum states at those energy eigenvalues. These results 

are consistent with the characteristics reported in the 

previous study on armchair graphene nanoribbons [20]. 

Figure 9 depicts transmission coefficients under 

increasing widths for each of the armchair variants, 

enriching the analysis initiated by Figure 8 and 

contributing to a more comprehensive understanding of 

transmission coefficients in armchair edge AB-BGNRs. 

 

   

(a) (b) (c) 

Figure 9. Transmission plots of AB-BGNRs for different 

armchair variants with (a) metallic (3n+1), (b) 

semiconducting (3n-1), and (c) semiconducting (3n) 

variants corresponding to widths of 10, 11, and 12 blocks 

respectively, at a fixed length of 3 unit cells. 

Based on Figure 9, it is observed that for the metallic 

3n+1 state, the increase in the device width corresponds to 

a higher transmission coefficient across the energy 

spectrum, as evidenced by the increase in the maximum 

value of the transmission coefficient from Figure 8 to 

Figure 9. Similarly, the increase in the device width also 

increases the transmission coefficient for the 

semiconducting variants, as seen in the increase in 

maximum transmission coefficient value from Figure 8 to 

Figure 9 for the 3n-1 and 3n variants respectively. These 

results are consistent with previous findings on the width 

dependence of armchair graphene nanoribbons [20]. 

 Similar to the zigzag edge variant, the effects of varying 

device lengths on the transmission coefficients are 

investigated with a fixed width. Figure 10 shows the 

transmission plots for various armchair variants with a 

fixed length of 51 unit cells. This figure highlights the 

effect of increasing the device length from 3 unit cells, as 

shown in Figure 8, to 51 unit cells, demonstrating the 

impact of length variation on the transmission coefficients 

across different armchair variants. 

 

 

 

 

 

   
(a) (b) (c) 

Figure 10. Transmission plots of AB-BGNRs for different 

armchair variants with (a) metallic (3n+1), (b) 

semiconducting (3n-1), and (c) semiconducting (3n) 

variants corresponding with widths 4, 5, and 6 blocks 

respectively, at a fixed length of 51 unit cells. 

Based on Figure 10, it is observed that an increase in the 

device length led to a degradation of the transmission 

coefficient across the energy spectrum for all the 3n+1,   

3n-1, and 3n variants. This quantum result mirrors the 

macroscopic effect observed in the increase in device 

resistance with the elongation of the length along the 

electric field direction or the reduction in device width. 

This suggests that the quantum simulation results are 

accurate, as they replicate specific macroscopic effects. 

This observation aligns with an earlier study on the 

influence of length on electronic properties of AB-BGNRs 

[20]. 

4. CONCLUSION 

In this study, the investigation into the transmission 

coefficients of both zigzag and armchair edge bilayer 

graphene has provided comprehensive insights into their 

respective transmission coefficients using the NEGF 

numerical simulation method with NNTB approximations. 

For zigzag edges, simulations across varying device 

dimensions revealed nuanced transmission coefficients, 

including a slight dip in transmission coefficient in the 

mid-energy band and the potential for achieving a non-zero 

bandgap by increasing device length. The inverse 

relationship between device width and bandgap is 

underscored, highlighting the importance of carefully 

selecting dimensions for desired electronic properties. 

Similarly, for armchair edges, increasing device width 

corresponded to higher transmission coefficients across the 

energy spectrum, akin to observations for zigzag edges. A 

degradation in transmission coefficient is observed with 

increasing device length. These results align with 

macroscopic effects, affirming the validity of quantum 

simulations in capturing real-world transmission 

phenomena. Overall, these findings offer valuable insights 

for the design and optimization of bilayer graphene-based 

devices, particularly in tailoring electronic properties for 

specific applications in nanoelectronics and beyond.  
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