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Abstract: Accurate mapping is crucial for maximizing productivity and sustainability in agriculture. However, creating maps 
in greenhouse environments is challenging due to their intricate layouts, often resulting in bending and reduced precision. To 
address these challenges, fine-tuning was applied to the parameters of the Simultaneous Localization and Mapping (SLAM) 
algorithm and the navigation process, specifically focusing on the Grid-based Mapping (GMapping) and Dynamic Window 
Approach (DWA) techniques. SLAM experiments were conducted in a simulated greenhouse environment created by Gazebo, 
with all operations executed under the Robot Operating System (ROS) framework, enabling real-time mapping and 
localization. Comparisons between maps generated with and without fine-tuning, and the Gazebo reference map, show a 77.8% 
improvement in reducing map distortion, resulting in more precise greenhouse representations. These findings highlight how 
the fine-tuning of algorithm parameters can improve mapping accuracy, ultimately enhancing agricultural applications. Future 
work will focus on testing this methodology to ensure broader applicability and reliability in real-world greenhouse 
environments. 
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1. INTRODUCTION 
In modern agriculture, the accurate mapping of agricultural 
environments is essential for maximizing productivity and 
sustainability [1]. Precision mapping enables efficient 
resource utilization and targeted interventions, leading to 
optimized crop management practices [2]. However, 
creating precise maps of agricultural landscapes, 
particularly in greenhouses, presents significant challenges 
due to their intricate layouts and limited accessibility [3]. 
These issues can cause map bending and inaccuracies, 
compromising the effectiveness of agricultural 
applications that rely on precise mapping [4]. Existing 
mapping techniques, including Global Position System 
(GPS), aerial imagery, and simulated maps, often struggle 
to provide the level of detail required for precise navigation 
and monitoring within these environments [2, 5, 6].  

An alternative to these traditional methods is 
Simultaneous Localization and Mapping (SLAM). SLAM 
is a robotics method for creating maps of an environment 
while simultaneously tracking the robot's location within 
it. It is classified into two principal approaches: Li-DAR 
SLAM, which relies on laser sensors, and Visual SLAM 
(V-SLAM), which utilizes cameras [7]. LiDAR-SLAM 
algorithms have evolved significantly, with Grid-based 
Mapping (GMapping) enhancing particle loss but relying 
heavily on odometry data [8]. Hector SLAM offers 
mapping precision without odometry reliance but faces 
initial sensitivity [9]. Despite advancements like 
Cartographer's improved detection, LiDAR-SLAM 
demands substantial computational resources [10]. 

Over the years, many advancements have been made in 
2D LiDAR-based SLAM, demonstrating significant 
progress in creating accurate maps for autonomous 
navigation [3, 11-16]. However, most research has applied 
these algorithms in relatively simple environments with 
minimal obstacles. Addressing the limitations of current 
studies will lead to fine-tuning these algorithms, making 
them suitable for more complex environments and 
enhancing their effectiveness and reliability to be applied 
in agricultural applications.  

This study proposes a methodology that fine-tunes the 
GMapping algorithm and the Dynamic Window Approach 
(DWA) to better suit the specific requirements and 
characteristics of greenhouse environments. SLAM 
operations will be conducted within a simulated 
greenhouse environment using Gazebo [17], a robotics 
simulation tool integrated with ROS (Robot Operating 
System) [18]. This approach allows for real-time mapping 
and localization, enabling the creation of detailed and 
precise maps of the greenhouse layout [4]. 

The subsequent sections of this paper are organized as 
follows: Section 2 provides a comprehensive overview of 
related studies to position the proposed approach within 
existing research. Section 3 outlines the methodology 
employed in this study. Following that, Section 4 presents 
the results and their significance. Finally, Section 5 
concludes the paper with key insights and 
recommendations. 
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2. RELATED STUDIES 
Real-time map generation through SLAM on mobile 
robots is pivotal for effective navigation in complex 
environments [4]. Several algorithms have been developed 
to enhance SLAM performance in indoor environments 
using LiDAR sensors. Cartographer has demonstrated high 
precision in static settings with TurtleBot2 and LiDAR 
[11], while GMapping has proven effective for simulation-
based mapping using laser and odometry data [12]. 
Advanced approaches, such as the enhanced Rao-
Blackwellized Particle Filter SLAM (LRBPF-SLAM), 
further improve pose estimation and map construction 
[13].  

In agriculture, SLAM algorithms have been applied to 
enhance monitoring and navigation. For example, the BFS 
algorithm on TurtleBot3 has been used for autonomous 
frontier exploration, improving mapping and obstacle 
detection [15]. GMapping has also been employed for 
robot localization in controlled agricultural environments, 
but its limitations in larger and more complex areas remain 
a challenge [3]. A study by [16] highlighted the benefits of 
systematically fine-tuning GMapping parameters to 
improve SLAM performance, achieving significant map 
accuracy in structured indoor environments. Additionally, 
a navigation system tailored for indoor substations 
integrates hardware and sensors with ROS, enhancing 
navigation precision and robustness [13,14]. Despite 
advancements in the literature, much of the focus has been 
on simple environments or algorithm implementation, 
leaving a critical gap that emphasizes the need for fine-
tuning to achieve accurate mapping amidst the intricate 
layouts and unique challenges of greenhouse 
environments. 

3. METHODOLOGY 
This section details the procedures and algorithms 
employed to address the SLAM process in agricultural 
robotics. The techniques and strategies used to create the 
Occupancy Grid Map (OGM) via the RViz tool, based on 
the ROS framework [19], are outlined in Algorithm 1. The 
generation of an OGM through RViz is a critical 
component of this study, providing a digital representation 
of the environment that enables effective robotic 
navigation and precise localization The map utilized in this 
study spans dimensions of 9.3 meters in width and 15.7 
meters in length, encompassing intricate layouts typical of 
greenhouse environments. 

To address the issue of map bending, the study focused 
on fine-tuning both the GMapping SLAM algorithm 
parameters and the DWA navigation parameters. Building 
on insights from [16], which emphasized the impact of 
parameter fine-tuning on SLAM performance, specific 
GMapping parameters were tuned. These included 
translation errors (𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠), rotation errors 
(𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠) and 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠, which are known to 
influence pose estimation and map accuracy in spatially 
constrained environments like greenhouses. 

Guided by [20], DWA parameters responsible for 
odometry errors, including maximum and minimum 
angular velocities (𝑚𝑚𝑝𝑝𝑚𝑚_𝑣𝑣𝑝𝑝𝑝𝑝_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝 and 𝑚𝑚𝑝𝑝𝑚𝑚_𝑣𝑣𝑝𝑝𝑝𝑝_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝), 

acceleration limits for both linear and angular velocities 
(𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑚𝑚 and 𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝), number of velocity 
samples (𝑣𝑣𝑚𝑚_𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠) and the 𝑝𝑝𝑝𝑝𝑠𝑠ℎ_𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝_𝑏𝑏𝑝𝑝𝑝𝑝𝑠𝑠, 
were carefully considered to improve trajectory stability 
and enhance overall SLAM reliability. 

The methodology presented in Algorithm 1 adopts an 
iterative process, combining simulation results, RViz 
visual inspection, and ImageJ analysis [21] to assess and 
improve map quality. During the fine-tuning process, 
RViz's global map overlay is used to evaluate map bending 
and alignment issues. Once the fine-tuning process 
achieves satisfactory results, ImageJ software is employed 
in the post-fine-tuning analysis stage. ImageJ facilitates 
detailed structural and quantitative evaluation, including 
steps such as grayscale conversion, Gaussian blur filtering, 
and histogram equalization. These preprocessing steps 
enhance visualization and comparability of the maps, 
ensuring consistent preparation for advanced analysis. 
 

Algorithm 1. Setting up the robot environment and fine-
tuning 

1: procedure 𝑠𝑠𝑝𝑝𝑚𝑚𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚 𝑝𝑝𝑚𝑚𝑣𝑣𝑝𝑝𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑠𝑠 
2: Initialize ROS nodes 
3: Launch Gazebo simulation with robot model 
4: Launch RViz visualization tool 
5: Fine-tuning process: 
6: Fine-tune GMapping parameters 
7: Fine-tune DWA parameters  
8: Generate a new OGM 
9: Evaluate the generated OGM visually in 

RViz using the global map overlay for 
bending, alignment, and structural 
consistency 

10: If necessary, repeat Steps 5–9 to refine the 
parameters further 

11: end fine-tuning 
12: Post-fine-tuning analysis: 
13: Finalize the OGM after satisfactory results 
14: Perform detailed structural and quantitative 

evaluation using ImageJ for bending metrics, 
correlation, and intensity profiles 

15: end post fine-tuning 
16: end procedure          

3.1 ROS and Gazebo Simulation Setup 
The proposed simulation environment is built upon ROS 
Noetic Ninjemys, operating on Linux Ubuntu 20.04 with a 
hardware setup featuring Intel Core i5 13th generation 
CPU and 16 GB of RAM. In this environment, 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 
command initiates the parameter server, while 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑝𝑝ℎ 
manages node configurations [18]. Gazebo complements 
ROS by offering a dedicated 3D simulation space tailored 
for greenhouse environments, facilitating development and 
testing [17]. Figure 1 presents a detailed visual 
representation, showcasing a 3D view of the simulated 
greenhouse with approximately 250 saplings. 
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3.2 OGM Map Creation  
The GMapping algorithm is employed for SLAM, 
renowned for its efficiency in indoor settings, especially 
with a 2D laser sensor. Concurrently, DWA algorithm, 
available as a ROS package 𝑑𝑑𝑑𝑑𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑠𝑠 [20], is 
utilized for enhanced navigation. In the GMapping 
algorithm, the creation of a map relies on OGM, where 
each cell represents free space, occupied space, or 
unknown space. The probability of a sensor measurement 
𝑧𝑧𝑡𝑡 at time 𝑠𝑠 given the map 𝑚𝑚 and the robot's pose 𝑚𝑚𝑡𝑡  is 
computed using sensor models like 𝑃𝑃(𝑧𝑧𝑡𝑡|𝑚𝑚, 𝑚𝑚𝑡𝑡). This 
equation, along with the robot's pose estimation, aids in 
evaluating how well each particle aligns with the sensor 
data. Furthermore, the importance weight 𝑑𝑑𝑡𝑡𝑖𝑖  of each 
particle 𝑝𝑝 at time 𝑠𝑠 is determined by 𝑃𝑃�𝑧𝑧𝑡𝑡|𝑚𝑚𝑡𝑡𝑖𝑖 ,𝑚𝑚�, indicating 
its agreement with the sensor measurements. Higher 
weights lead to replication during resampling, directing the 
filter towards more probable robot poses. Map updates are 
executed based on sensor data, employing techniques such 
as ray casting for lidar-like sensors and inverse sensor 
models for occupancy grid sensors [8]. 

Navigation points are specified in RViz using the "2D 
NAV Goal" tool, directing the robot to traverse and 
accumulate map data. This process involves setting 
multiple points to ensure a thorough mapping of the entire 
area. After completing the SLAM operation the map data 
is saved using the command  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 𝑚𝑚𝑝𝑝𝑝𝑝_𝑠𝑠𝑝𝑝𝑠𝑠𝑣𝑣𝑝𝑝𝑠𝑠 𝑚𝑚𝑝𝑝𝑝𝑝_𝑠𝑠𝑝𝑝𝑣𝑣𝑝𝑝𝑠𝑠 − 𝑓𝑓   ~/𝑚𝑚𝑝𝑝𝑝𝑝_𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝, 
resulting in the map being stored in the package's map 
directory as 𝑚𝑚𝑝𝑝𝑝𝑝_𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝. 𝑝𝑝𝑝𝑝𝑚𝑚. 

 

 
Figure 2. SLAM process in RViz using GMapping and 

DWA algorithms 

Launching the SLAM process in the robotic simulation 
involves executing several components and 
configurations. This includes initiating ROS, launching the 
𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑚𝑚ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝_𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝𝑑𝑑. 𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑝𝑝ℎ and 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠3_𝑠𝑠𝑝𝑝𝑚𝑚𝑠𝑠𝑠𝑠𝑝𝑝. 𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑝𝑝ℎ files, setting up the 
Universal Robot Description Format (URDF) model of the 
Turtlebot3 [20], starting the 𝑚𝑚𝑝𝑝𝑝𝑝_𝑠𝑠𝑝𝑝𝑠𝑠𝑣𝑣𝑝𝑝𝑠𝑠, launching the 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠3_𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝. 𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑝𝑝ℎ file, initiating the 
move_base node, and opening RViz for simulation 
visualization. Figure 2 shows the SLAM process in RViz, 
employed by the GMapping and DWA algorithms. 

4. RESULTS AND DISCUSSIONS 
This study examined the impact of fine-tuning SLAM and 
navigation parameters on indoor greenhouse mapping 
accuracy, focusing on addressing the map bending issue by 
refining GMapping and DWA parameters. For GMapping, 
the fine-tuning targeted odometry error parameters 
(𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑠𝑠𝑠𝑠𝑠𝑠) and particle count. Fine-tuning 
these parameters enhanced pose estimation and map 
accuracy, as summarized in Table 1. The refined odometry 
parameters mitigated translation and rotation inaccuracies, 
while increasing the particle count to 1000 improved 
localization robustness, ensuring reliable mapping in the 
intricate layouts typical of greenhouse environments. 

Table 1. GMapping default and fine-tuned parameters 
used in the experiment 

Parameter 
Default values 

(wiki.ros.org/gmap
ping) 

Fine-tuned values 

𝑠𝑠𝑠𝑠𝑠𝑠 0.1 0.0001 
𝑠𝑠𝑠𝑠𝑠𝑠 0.2 0.0002 
𝑠𝑠𝑠𝑠𝑠𝑠 0.1 0.0001 
𝑠𝑠𝑠𝑠𝑠𝑠 0.2 0.0002 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 30 1000 

Similarly, the DWA parameters were iteratively fine-
tuned to overcome navigation challenges specific to the 
greenhouse environment. As shown in Table 2, angular 
velocity limits (𝑚𝑚𝑝𝑝𝑚𝑚_𝑣𝑣𝑝𝑝𝑝𝑝_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝 and 𝑚𝑚𝑝𝑝𝑚𝑚_𝑣𝑣𝑝𝑝𝑝𝑝_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝) were 
fine-tuned to ensure controlled rotational movements, 
which are essential for maintaining stable trajectories in 
narrow aisles. Acceleration limits (𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑚𝑚 and 
𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝) were refined to achieve smoother 
transitions, minimizing jerky movements that could 
exacerbate odometry errors. The velocity sampling 
(𝑣𝑣𝑚𝑚_𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠) was reduced to strike a balance between 
computational efficiency and trajectory planning accuracy, 
while the path distance bias was increased to prioritize 
adherence to planned paths, enhancing mapping 
consistency. These parameter fine-tuning efforts were 
specifically tailored to address the unique challenges, 
building upon the practical considerations outlined in the 
methodology. 

 

        
Figure 1. Simulated greenhouse environments in 

Gazebo 
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Table 2. DWA default and fine-tuned parameters used in 
experiment 

Parameter 
Default values 

(wiki.ros.org/dwa
_local_planner) 

Fine-
tuned 
values 

𝑚𝑚𝑝𝑝𝑚𝑚_𝑣𝑣𝑝𝑝𝑝𝑝_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝 (rad/sec) 1.0 0.32 
𝑚𝑚𝑝𝑝𝑚𝑚_𝑣𝑣𝑝𝑝𝑝𝑝_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝 (rad/sec) 1.0 0.12 
𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑚𝑚 (m/s²) 2.5 0.52 
𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑦𝑦 (m/s²) 25 0.0 
𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑚𝑚_𝑠𝑠ℎ𝑝𝑝𝑠𝑠𝑝𝑝 (rad/s²) 3.2 1.2 
𝑣𝑣𝑚𝑚_𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 3 10 
𝑝𝑝𝑝𝑝𝑠𝑠ℎ_𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝_𝑏𝑏𝑝𝑝𝑝𝑝𝑠𝑠 32.0 72.0 

A visual comparison provides clear evidence of the 
improvements achieved through fine-tuning. Figure 3 
highlights the differences between the distorted map 
(Figure 3 (a)) and the fine-tuned map (Figure 3 (b)), 
showcasing the impact of parameter fine-tuning on map 
accuracy and structural coherence. 

To highlight these differences more clearly, ImageJ was 
utilized to create overlays [21]. The fine-tuned map, 
superimposed at 30% opacity onto the distorted map, 
highlights the rectified regions and improved alignment, 
while the distorted map, overlaid onto the fine-tuned map 
at the same opacity, accentuates the misalignments and 
irregularities caused by the default parameters (Figure 3 (c) 
and Figure 3 (d)). Together, these visual analyses 
effectively validate the enhancements achieved through 
the fine-tuning process, particularly in reducing map 
bending and improving feature alignment.  

For further analysis, preprocessing steps were performed 
using the same software to prepare the maps for 
quantitative evaluation. The ground truth map (Gazebo 
map), shown in Figure 4 (a), was converted from its 
original-colored format to grayscale to ensure consistency 
with the fine-tuned and distorted maps. Shadows and non-
uniform lighting in the Gazebo map underscored the need 
for robust preprocessing. All maps were then converted to 
binary format to simplify pixel intensity comparisons and 
highlight structural features. A Gaussian blur filter (σ=6) 
was applied to reduce noise and smooth intensity 
transitions while preserving structural integrity. Histogram 
equalization followed, redistributing pixel intensities 
across the full range to enhance contrast and uniformity. 
The results are shown in Figure 4 (b) for the Gazebo map, 
Figure 4 (c) for the fine-tuned map, and Figure 4 (d) for the 
distorted map, facilitating statistical analysis and intensity 
profile comparisons. 

The correlation analysis quantified the alignment 
between the maps, with the fine-tuned map exhibiting a 
strong correlation coefficient (r=0.889) with the Gazebo 
map, validating the fine-tuning process. In contrast, the 
distorted map showed moderate correlations with both the 
Gazebo map (r=0.500) and the fine-tuned map (r=0.454), 
emphasizing the improvements achieved through 
parameter adjustments. 

 

 
Figure 5 further illustrates these findings through 

intensity profiles of the Gazebo, fine-tuned, and distorted 
maps. The fine-tuned map closely follows the intensity 
trends of the Gazebo map, reflecting improved alignment 
and rectification of structural irregularities. Conversely, 
the distorted map demonstrates significant deviations, 
particularly in complex regions, highlighting the 
limitations of the default parameters. Combined, the 
correlation analysis and line plot confirm the effectiveness 
of fine-tuning in enhancing map quality and alignment 
with the ground truth. 

 

    
(a) (b)  

  
 (c) (d) 

Figure 3. (a) Distorted map with default parameters, 
(b) fine-tuned map, (c) fine-tuned map overlaid on 

distorted map and (d) distorted map overlaid on fine-
tuned map 
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 5. CONCLUSION 
The fine-tuning of GMapping and DWA parameters 
significantly enhanced the accuracy and reliability of 
indoor greenhouse mapping. Visual and statistical 
analyses, including overlays and line plots, demonstrated 
the improved structural alignment and intensity 
consistency achieved through fine-tuning. Quantitative 
analysis revealed a 77.8% improvement in alignment 
between the fine-tuned map and the ground truth (Gazebo 

map) compared to the distorted map. These results 
highlight the effectiveness of fine-tuning in addressing 
map bending and alignment inconsistencies, leading to a 
more precise and reliable environmental representation. 
Future work could focus on validating this methodology in 
real-world greenhouse environments to ensure its broader 
applicability and effectiveness in complex agricultural 
scenarios. 
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