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Abstract: Electrical load prediction has become essential to the efficient operation, control and management of modern electric 
power systems. Various machine learning prediction models have been developed for electrical load prediction, this includes 
Support Vector Regression, Fuzzy Logic and Neural Network (NN) modelling approaches. However, incorrect selection of 
model hyperparameters, which are parameters that affect the output of the prediction models, could result in low prediction 
accuracy of machine learning models. Hence, the development of an optimized NN model for electrical load prediction was 
presented in this study. Historical daily data of temperature, rainfall, relative humidity and windspeed for Osogbo, Nigeria was 
obtained from the National Aeronautics and Space Administration website; while electrical load data for the same location 
was collected from the Transmission Company of Nigeria. The data captured a period of five years (2017 to 2021). The NN 
models were developed with MATLAB R2022a software, and two hyperparameters, hidden layers and neuron counts, were 
optimized using the Bayesian optimization technique to enhance the quality of the models. The models were evaluated using 
mean absolute error (MAE), and root mean square error (RMSE). The MAE and RMSE for the non-optimized NN model were 
6.5247 and 8.2725 respectively. Meanwhile, for the optimized NN model, the MAE and RMSE were 5.6571 and 7.4289 
respectively. The obtained results show that the optimized NN performed better than the non-optimized NN models. Therefore, 
for more accurate load prediction, the method developed of this research is suggested for use by utility providers. 
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1. INTRODUCTION 
The importance of electrical power in the development of 
any society cannot be overemphasized. The demand for 
electrical has increased owing to exponential increase in 
human population as well as advancement in science and 
technology [1]. Resources have been invested by the 
stakeholders in the power industry to sustain the quality 
and control of electrical power. Modern power system 
needs to be stable in order to get the desired results of 
supply to the markets. Energy prediction is essential in 
maintaining and controlling modern power grid system 
especially with the addition of green energy into the grid. 
Researchers employing several methods and approaches, 
have carried-out load predictions from different time 
horizons. Short-term load prediction is the least time 
horizons. The prediction is from minutes to weeks. Short-
term load forecast is essential in electrical system 
operation for policy making in energy sector, spinning 
reserve planning and grid stability. Secondly, the midterm 
load prediction usually studies the prediction from week to 
months. Midterm load prediction is employed in power 
system expansion and equipment procurement.     

Machine learning (ML) can be applied in a variety of 
fields, including healthcare [2], finance [3, 4] education [5] 
and transportation [6]. ML plays significant roles in power 

system by improving efficiency, reliability and 
sustainability [7]. Power system operation can be 
improved with the application of machine learning and the 
transmission grid by predicting demand and adjusting 
power output accordingly. This will help minimize the cost 
of generating electrical energy and enhance power system 
overall performance [8]. The addition of the renewable 
resources like as wind and solar, into the power system can 
be managed with machine learning. It will minimize the 
use of fossil fuel and improve and further incorporation of 
eco-friendly energy. Also, future energy demand could be 
known with respect to past dataset with the aid of Machine 
learning. This can assist the policy makers in the energy 
sector to plan ahead and also make informed decision 
relating to how to minimize waste and improve the overall 
performance indices of the energy sector [9]. There are 
challenges related with the use of ML in power system. 
Machine learning algorithms rely on large amount of data 
for training and operation [10]. Dataset availability in the 
power sector could be challenging and when it is available, 
there may be problem of integrity due to missing values 
and noise. In addition, current power system control and 
monitoring systems have a hard time integrating AI 
models. It could take a lot of work and complexity to 
implement the integration [11]. Failures in the power 
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system can lead to significant effects such as power 
outages and equipment damage. However, ensuring the 
reliability and safety of the models can be problematic due 
to the uncertain and dynamic nature of the power system 
design. Load prediction in power systems refers to the 
process of forecasting the future demand for electricity 
[12].  
     Accurate load prediction is important for utilities and 
power system operators, as it helps them to deal with the 
problem of insufficient availability of electrical energy  
and infrastructure to meet the forecasted energy required 
[13]. There are several approaches to load prediction, 
including statistical, data-driven and physic-based models 
[14, 15] . Statistical models use historical data to forecast 
future loads based on past trends and patterns [16, 17]. 
Data-driven models like artificial neural networks, use 
machine learning techniques to make predictions based on 
large dataset of input variables [18]. Physics-based models 
use physical principles and equations to simulate the 
behavior of the power system and forecast future loads 
[19]. Load prediction methods include time series [20], 
neural networks [21], support vector regression [22], 
random forests [23], decision trees [24]  regression 
analysis [25] and adaptive neuro-fuzzy inference system 
[26]. 
     Three neural network algorithms were investigated by 
[27] . The algorithms were developed using MATLAB. 
The three algorithms were Levenberg-Marquardt (LM), 
gradient descent with momentum and gradient descent 
algorithm. The neural network had fifteen neurons with a 
hidden layer, six inputs and an output. The best performing 
algorithm in their work was LM algorithm. The LM 
algorithm had 57.9962 and 6.4675 as Mean Square Error 
(MSE) and Mean Absolute Error (MAE) respectively. [28] 
proposed novel data pre-processing strategies for training 
a Neural Network (NN) for electrical energy prediction. 
Two essential preprocessing methods were recommended, 
focusing on the importance of specific input parameters 
with respect to its output values, resulting in improved 
prediction results when compared to the classic methods. 
      The paper emphasizes the critical role of 
hyperparameters in determining the performance of 
machine learning models, particularly for neural networks. 
A fair evaluation of any machine learning model requires 
careful investigation and tuning of its hyperparameters. In 
this study, we demonstrate that by optimizing the 
hyperparameters of a neural network model, where the 
accuracy of electrical load forecasting algorithms is 
significantly enhanced, leading to more reliable 
predictions.  
      This study is organized thusly: methods and 
formulation of neural network model employed were 
describes in Section II, the results and discussion are 
presented in following Section and Section IV concludes 
the research presented. 

2. DATA AND METHODOLOGY  

2.1 Data Acquisition 
The electrical dataset employed in this study were obtained 
from the Transmission Company of Nigeria (TCN) and the 

weather parameters was collected from National 
Aeronautics and Space Administration (NASA) website. 
The electrical load dataset was daily dataset from 2017 to 
2021. Osogbo, an ancient city in Osun State, is the capital 
city. The city is situated on '7 46o N longitude and '4 34o E  
latitude (Taiwo, et al., 2019). The population of the state is 
4,705,589 (National Population Commission, 2006) and 
land mass area of 9,026 sq. km. (Funke, 2008). 

2.2 Data Preprocessing 
One of the important stages in machine learning is the 
preprocessing of data, as it ensures that the data is 
formatted in a way that is suitable for optimal analysis and 
modeling. This study utilizes data cleansing, data 
formatting, and data exploration techniques. Data 
formatting involves altering the structure of data to ensure 
its compatibility with analysis or modeling purposes. The 
data formatting method utilized in this research is 
normalization. The data in this study was normalized using 
the min-max scaling technique. 

2.3 Bayesian Optimization 
The Bayesian optimization technique was applied for 
optimizing the hyperparameters of the Neural Network 
(NN) model. Bayesian optimization is a highly effective 
method for optimizing machine learning models. Bayesian 
optimization efficiently manages the trade-off between 
exploration and exploitation. The process entails 
constructing a proxy model of the objective function. This 
model facilitates the identification of favorable regions 
within the search space and directs the search towards 
locations that are more likely to produce excellent 
solutions in an efficient manner. Bayesian optimization is 
applied in various domains, ranging from machine learning 
where it is used for hyperparameter tuning, to finance 
where it is used for resource allocation. Its capacity to 
effectively manage goal functions that are both noisy and 
costly makes it well-suited for real-world optimization 
difficulties. 

2.4 Neural Network 
Neural Network (NN) architecture was developed using 
MATLAB R2022a. NN has various connected neurons 
that aid information transmission. 70% and 30% of the 
dataset was employed for training and testing respectively. 
The input data was fed through the NN, and the models 
was compared to the actual output. Based on the difference 
between predicted and actual output, the NN model adjusts 
its internal biases and weights to improve its performance. 
Figure 1 shows the custom view of NN in MATLAB 
environment. 
 

 
Figure 1. Neural network  
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2.4.1 Neural Network Mathematical Model 
The mathematical model of NN was expressed using 
Equations (1) to (4), from the input section to the output 
section of the NN network. For an NN model with an inner 
layer and an output layer, input to the inner layer is 
expressed with Equations (1) and (2). 
 

(1) (1) (1)v W x b= +                                (1)           
(1) (1) (1)( )d v= Φ                                   (2) 

 
Equations (3) and (4) represent the NN hidden layer 
 

(2) (2) (1) (2)v W d b= +                            (3) 
(2) (2)ˆ ( )y v= Φ                                  (4) 

 
x  is the input vector to the neural network, ( )lb  is the bias 
l  vector of layer, vector of inputs, as well as weights plus 
biases, to the neurons in the layer l  is ( )lv , ( )lΦ  is the 
activation function, Rectified Linear Unit (ReLU) used in 
layer l . ŷ represents the output of the NN model. The 
ReLU function is shown in Figure 2. 
 

 
Figure 2. ReLU activation function 

2.4.2 Optimized Neural Network (ONN) Mathematical 
Model 
There is need to obtain the optimal hyperparameters of an 
NN model that optimizes the prediction error on the test set 
while satisfying the constraints. The constraints 
optimization was formulated as indicated in Equation (5). 

( )
( )
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γ is the hyperparameters of the NN model. Equations (6) 
and (7) represent the MAE and RMSE respectively. 
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( )if xγ  is the prediction of the NN model with 

hyperparameters, γ , for input ix . 
Figure 3 shows the optimized neural network model. 

After loading the dataset in the MATLAB R2022a 
environment, the objective function with respect to the 
hyperparameters were defined. Bayesian optimization was 
run to optimized the hyperparameters and also minimizing 
the performance metrics employed as the objective 
function of the model. 100 iterations were performed and 
the ten best hyperparameters were recorded. The best 
combination of the hyperparameters were selected and 
evaluated using MAE and RMSE. 
   

 
Figure 3. ONN flowchart 

3. RESULT AND DISCUSSION  
The neural network models were developed based on the 
models’ parameters describes in Section II. Both the non-
optimized and optimized neural network were compared 
with respect to the performance metrics. 

3.1 Non-optimized neural network 
Figure 4 represents the prediction result of the developed 
neural network model. The model employed the default 
hyperparameters of 10 neurons and two hidden layers with 
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ReLU as activation function. The MAE and RMSE for the 
non-optimized NN model were 6.5247 and 8.2725 
respectively. The results indicates that the prediction 
model performed fairly. However, the results could further 
be enhanced with hyperparameter optimization. 
 

 
Figure 4. Prediction using non-optimized NN model 

3.2 Optimized neural network model 
Employing the optimization function describe in Equation 
(5) and the minimizing the error function with Equations 
(6) and (7). Figure 5 depicts the optimized neural network. 
The optimized model shows an improvement of the 
prediction of the electrical load.    
 

 
Figure 5. Prediction using optimized NN model 

The MAE and RMSE for the optimized NN model were 
5.6571 and 7.4289 respectively.  
     Table 1 shows the best 10 performances of the 
optimized NN model with MAE as performance metric. 
The most optimized has number of layer and neurons count 
of 3 and 67 respectively. Figure 6 depicts the optimized 
NN objective function model with optimized MAE value 
of 5.6571. 
     Table 2 illustrates the best 10 performances of the 
optimized NN model with RMSE as performance metric. 
The most optimized has number of layer and neurons count 
of 2 and 82 respectively. Figure 7 shows the optimized NN 
objective function model with optimized RMSE value of 

7.4289. 
    Figures 6 and 7 show the objective function of the NN 
model using MAE and RMSE respectively. Two objective 
variables, neuron counts and number of layers are plotted 
against the estimated objective function value. The 
objective function is MAE and RMSE in Figures 6 and 7 
respectively. The total number of iterations are 100, 
represented as observed points in Figures 6 and 7. Each of 
the iteration point was evaluated. The iteration point with 
the least estimated objective function value was selected 
and subsequently evaluated with MAE and RMSE 

Table 1. Top 10 performance metrics and 
hyperparameters using MAE 

numLayer numNeurons MAE 
3 67 5.6571 
3 63 5.6949 
1 57 5.7011 
5 76 5.7079 
4 57 5.7123 
3 87 5.7157 
2 100 5.72 
2 100 5.7229 
2 73 5.7241 
3 15 5.7256 

 

 
Figure 6. Optimized NN objective function model (MAE) 

Figure 7 shows the performance metrics comparison 
between non-optimized NN and optimized NN model. 
Figure 7 further highlight the crucial role that the 
hyperparameters optimization play in the overall 
improvement of the machine learning model. 
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Figure 7. Optimized NN objective function model 

(RMSE) 

Table 2. Top 10 performance metrics and 
hyperparameters using RMSE 

numLayer numNeurons RMSE 

2 82 7.4289 
5 75 7.4465 
3 68 7.4572 

2 58 7.4595 

3 64 7.4892 

2 93 7.4913 

2 78 7.4919 

5 95 7.4925 

2 81 7.4935 

2 88 7.4998 
 

 
Figure 8. Performance metrics comparison between non-

optimized NN and optimized NN model 

     Figure 8 shows that a better performance of machine 
model could achieved as a result optimal hyperparameters 
optimization. This is evident in more evident in Figure 8. 
The impact of the finding revealed that, to achieved a better 

electrical loaf prediction, hyperparameters need to be at 
optimal value.  
     NN models do not perform well when the datasets are 
small. When larger are unavailable, support vector 
machine could be a better candidate for model 
development. The neural network implemented in this 
study could further be improved by incorporating other NN 
hyperparameters like activation function and epoch 
number.   

4. CONCLUSION 
In summary, this paper has highlighted the importance of 
hyperparameters tuning in improving the performance of 
machine learning models, specifically neural network. The 
findings demonstrate that performance of any machine 
learning models cannot be fully capture without 
investigating and tuning its hyperparameters. Other NN 
hyperparameters like activation functions and number of 
epochs could be investigated in further studies. Future 
studies can also consider the effects of hyperparameters of 
other machine learning models like support vector 
regression and k-nearest neighbor towards improved 
electrical load prediction. 
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