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Abstract: A double-pendulum overhead crane system exhibits significant nonlinearity and is classified as an under-actuated 
system, making control more complex. This study focuses on designing a robust shaper to effectively mitigate oscillations in 
such systems. Two robust shapers, which are Zero Vibration Derivative (ZVD) and Negative Equal-Magnitude (NEM), are 
considered. These are obtained by convolving two input shapers that are designed based on the hook and payload oscillation 
frequencies. Matlab simulations are utilized to evaluate the performance of the shapers, using a nonlinear dynamic model of 
the crane to assess their effectiveness. Simulation results show that the ZVD shaper has a better performance in oscillation 
reduction, with 81% and 76% reductions for the hook and payload oscillations, respectively. In addition, the ZVD provides 
the lowest mean average error by achieving 87% and 83% reductions in the hook and payload as compared to the case with an 
unshaped input. However, the NEM shaper provides less delay in the trolley response.  
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1. INTRODUCTION 
Within the industrial sector, the application of flexible 
dynamic systems is widely applied. The control of said 
systems presents a significant challenge due to their 
inherently nonlinear and underactuated nature [1]. One of 
these systems is Crane. Cranes are commonly used in 
various industries such as warehouses, port facilities, 
construction sites, and nuclear power plants to transport 
heavy loads from one location to another. An Overhead 
crane is one type used in industries, particularly the 
manufacturing industry. The control of vibration and 
oscillation in these systems has been the subject of active 
research, and the control challenges increase for systems 
with two or more natural frequencies [2]. Double-
pendulum cranes are examples of such systems. During 
motion, the double-pendulum crane operations involve 
coupled swings motion in the hook and payload. All the 
natural frequencies must be considered in the controller 
design for effective control of such systems. Researchers' 
control techniques for reducing load pendulation can be 
classified into closed-loop, open-loop and hybrid control 
techniques. 

Different control techniques are employed in the close 
loop controllers. Some researchers have design feedback 
controllers  based on the energy of the system to suppress 
the oscillation while assuming double pendulum swing 
dynamics [3] or controller that doesn’t require retuning 
with the change in travel distance [4]. Adaptive controllers 

are also designed using sliding mode technique [5] to 
minimize the load swing in the presence of noise and large 
parametric uncertainties with fast and precise trolley 
positioning [6]. Precise trolley and with low load swing is 
achieved through robust non-linear controller [7]. 
Artificial intelligent techniques based on Fuzzy logic [8], 
Neural Network [9], are also implemented to eliminate the 
load pendulation. Researchers have also combined 
intelligent control techniques with classic controllers such 
as Genetic Algorithm with linear controller [10] and Fuzzy 
logic with non-linear controller [11] to stabilize the crane 
operation.  

When compared to close loop techniques, open loop 
techniques are easier to implement [1]; however, simple 
input shaping techniques are not as robust, especially in the 
presence of parametric uncertainties and external noise. To 
take advantage of the ease of implementation of open loop 
control, researchers have developed new input shaping 
techniques that can withstand changes in certain 
parameters (like cable length and sway frequency) that 
might affect their performance. To eliminate load 
pendulation in cranes, Zero Vibration (ZV) and Zero 
Vibration Derivative (ZVD) input shapers are designed 
with distributed delay [12]. In order to achieve good 
positioning accuracy, input shaper impulses are 
modified online to account for the effect of weather 
conditions [13]. Uchiyama et al., [14] utilize an S-curve to 
reduce 2D residual load swing. The curve's parameters are 
derived through crane algebraic equation. Specified-
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Negative-Amplitude (SNA) shaper was introduced in [15], 
it allows designers to fine-tune rise time, robustness, and 
high-mode excitation. The shaper was later tested on a 
robotic arm in [16], demonstrating faster rise times with 
reduced high-mode excitation, leading to improved 
performance. A research study by [17] investigated the use 
of input shapers, including both positive and negative 
types, to control vibrations in a flexible robot manipulator. 

Some researchers have used combination of both open 
and close loop controller. In their work, [18] employed a 
closed loop controller to attain position accuracy and input 
shaping technique to eliminate motion induced oscillation. 
A hybrid control utilizing adaptive output-based command 
shaper with distributed delay was proposed in [19] to 
improved sway motion, and a PID controller was designed 
for trolley position control. Jafar et al., [20] combined a 
model reference command shaper with a feedback control 
scheme in other to achieved both precise position of trolley 
and low oscillation in hook and payload. Proposed in [21] 
is a linear matrix inequality based state feedback control 
that was designed to track the trolley position and to reduce 
the hook and payload oscillation. 

This paper proposes the design of input shaping 
controllers to mitigate sway in overhead cranes. Two 
robust shapers are developed, Explicitly, Zero Vibration 
Derivative (ZVD) and Negative Equal-Magnitude (NEM) 
shapers, to achieve precise oscillation control. The 
comparison between the two input shapers is significant 
because it highlights their different characteristics, 
advantages, and limitations. This will help in making an 
informed decision, optimize system performance, and 
develop more effective control strategies in the future 
research. To design and examine the input shaping 
controllers for oscillation reduction, the system's response 
to a simple unshaped pulse input is initially analyzed to 
identify the system's key dynamic properties. Thereafter, 
the input shapers are tested in a simulation environment to 
measure their effectiveness in reducing swing angle and 
robustness. Finally, a comprehensive comparison of the 
control techniques is presented, evaluating their 
performance and reliability.  

2. DOUBLE PENDULUM CRANE MODEL 
The Lagrange method will be employed to develop a 
mathematical model of the double-pendulum overhead 
crane, as this approach has been extensively utilized and 
validated in previous studies [22]. The crane's 
configuration is characterized by three essential 
coordinates: 𝑥𝑥, representing the trolley's position, and the 
angular displacements θ and φ, describing the hook and 
payload, respectively. The crane system is characterized 
by seven essential parameters: the masses of the trolley, 
hook, and payload (𝑚𝑚𝑡𝑡,  𝑚𝑚ℎ, 𝑚𝑚𝑝𝑝), the lengths of the two 
cable segments (𝑙𝑙1, 𝑙𝑙2), the trolley's frictional force 
coefficient (𝑓𝑓𝑥𝑥), and the gravitational constant (𝑔𝑔). 𝐹𝐹𝑥𝑥, is 
the force applied to the crane, serving as the only control 
input for the system. Figure 1 shows a diagrammatic 
representation of a double-pendulum overhead crane 
system. 

 

Figure 1. Double-pendulum overhead crane system 

Lagrange’s equation was used to obtain the equation of 
motion.  

d
dt
�
∂L
∂q̇i

� −
∂L
∂qi

= T    (1) 

where L, 𝑞𝑞𝑖𝑖 and 𝑇𝑇 are the Lagrangian function, generalized 
coordinates and applied Torque respectively. The 
Lagrangian function can be stated as:  

𝐿𝐿 = 𝐸𝐸𝐾𝐾 − 𝐸𝐸𝑃𝑃 (2) 

where 𝐸𝐸𝐾𝐾 is the total kinetic energy and 𝐸𝐸𝑃𝑃 is the total 
potential energy of the system. The system Kinetic energy 
can be obtained from Figure 1 as:  

 

𝐸𝐸𝐾𝐾 =  
1
2
𝑚𝑚𝑡𝑡𝑥𝑥2̇ +

1
2
𝑚𝑚ℎ� �̇�𝑥2 + 2�̇�𝑥𝑙𝑙1�̇�𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑙𝑙12�̇�𝜃2� + 

(3) 1
2
𝑚𝑚𝑝𝑝[�̇�𝑥2 + 2�̇�𝑥𝑙𝑙1�̇�𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 2�̇�𝑥𝑙𝑙2�̇�𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 + 𝑙𝑙12�̇�𝜃2 + 

𝑙𝑙22�̇�𝜑2 + 2𝑙𝑙1𝑙𝑙2�̇�𝜃�̇�𝜑𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜑𝜑)] 

Similarly, from Figure 1 the potential energy can be 
obtained as: 

𝐸𝐸𝑃𝑃 =  𝑚𝑚ℎ[𝑙𝑙1(1 −  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)]  + 𝑚𝑚𝑝𝑝𝑔𝑔[𝑙𝑙1(1 
−  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)  + 𝑙𝑙2(1 −  𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑)] (4) 

Thus, the Lagrangian function can be written as: 

𝐿𝐿 =  
1
2
𝑚𝑚𝑡𝑡𝑥𝑥2̇ +

1
2
𝑚𝑚ℎ� �̇�𝑥2 + 2�̇�𝑥𝑙𝑙1�̇�𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑙𝑙12�̇�𝜃2� 

(5) 

+
1
2
𝑚𝑚𝑝𝑝[�̇�𝑥2 + 2�̇�𝑥𝑙𝑙1�̇�𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 +2�̇�𝑥𝑙𝑙2�̇�𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 + 

𝑙𝑙12�̇�𝜃2 + 𝑙𝑙22�̇�𝜑2 + 2𝑙𝑙1𝑙𝑙2�̇�𝜃�̇�𝜑𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜑𝜑)] − 

{𝑚𝑚ℎ[𝑙𝑙1(1 −  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)] + 𝑚𝑚𝑝𝑝𝑔𝑔[𝑙𝑙1(1 −  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) 

+ 𝑙𝑙2(1 −  𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑)]} 
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Using equation (1) the mathematical model of the 
double-pendulum is obtained as follows: 

(𝑚𝑚𝑡𝑡 + 𝑚𝑚ℎ + 𝑚𝑚𝑝𝑝)�̈�𝑥 + (𝑚𝑚ℎ + 𝑚𝑚𝑝𝑝)𝑙𝑙1 �̈�𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 

 (6) 𝑚𝑚𝑝𝑝𝑙𝑙2 �̈�𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 − (𝑚𝑚ℎ + 𝑚𝑚𝑝𝑝)𝑙𝑙1 �̇�𝜃2𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃 − 

𝑚𝑚𝑝𝑝𝑙𝑙2 �̇�𝜑2𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃 = 𝐹𝐹𝑥𝑥 − 𝑓𝑓𝑥𝑥𝑥𝑥 ̇  

 

(𝑚𝑚ℎ + 𝑚𝑚𝑝𝑝)𝑙𝑙1 �̈�𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + (𝑚𝑚ℎ + 𝑚𝑚𝑝𝑝) 𝑙𝑙12 �̈�𝜃 + 

(7) 𝑚𝑚𝑝𝑝𝑙𝑙1 𝑙𝑙2 �̈�𝜑 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜑𝜑) +𝑚𝑚𝑝𝑝 𝑙𝑙1 𝑙𝑙2 �̇�𝜑2 sin(𝜃𝜃 − 𝜑𝜑) + 

(𝑚𝑚ℎ + 𝑚𝑚𝑝𝑝)𝑔𝑔𝑙𝑙1 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃 = 0 

 

𝑚𝑚𝑝𝑝𝑙𝑙2 �̈�𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 + 𝑚𝑚𝑝𝑝 𝑙𝑙1 𝑙𝑙12 �̈�𝜃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜑𝜑) + 𝑚𝑚𝑝𝑝𝑙𝑙22�̈�𝜑 − 
(8) 

𝑚𝑚𝑝𝑝 𝑙𝑙1 𝑙𝑙2 �̇�𝜑2sin (𝜃𝜃 − 𝜑𝜑) + 𝑚𝑚𝑝𝑝𝑔𝑔𝑙𝑙1 𝑐𝑐𝑠𝑠𝑠𝑠𝜑𝜑 = 0 

Equations (6) – (8) presents the trolley position, hook 
oscillation and payload oscillation respectively. 

Table 1. Parameters for double-pendulum overhead crane 

Variables Symbol Values/Units 
Mass of trolley 𝑚𝑚𝑡𝑡 1.155 kg 
Mass of hook 𝑚𝑚ℎ 0.1 kg 

Mass of payload 𝑚𝑚𝑝𝑝 0.25 kg 
Cable length between 

trolley and hook 𝑙𝑙1 0.3 m 

Cable length between 
hook and payload 𝑙𝑙2 0.2 m 

Viscous damping 
coefficients of trolley 𝑓𝑓𝑥𝑥 82 Ns/m 

Gravitational constant 𝑔𝑔 9.81 m/s2 

3. INPUT SHAPING TECHNIQUE 
The basic concept behind input shaping technique is to try 
and control the system's input in order to reduce vibration. 
This technique has become popular among researchers due 
to its ability to move an underactuated system without 
causing vibration. The base command and the delay part of 
the base command are used to implement command 
shaping, which is an open-loop technique. This study 
investigates two types of robust input shaper, the goal is to 
identify the optimal impulse amplitudes and time 
locations. The objective is to mitigate the detrimental 
effects of system flexibility by determining parameters that 
account for the natural frequencies and damping ratios of 
the system. 

3.1 Zero Vibration and its Derivatives 
The formulations of the proposed technique for vibration 
and oscillatory control of flexible systems are presented in 
this section. Zero Vibration (ZV) is the simplest type of 
input shaping technique. For any system whose output can 

be expressed as: 

𝑦𝑦0 =  
𝐴𝐴0𝜔𝜔𝑛𝑛 
�1 − 𝜁𝜁2

𝑒𝑒−𝜁𝜁𝜔𝜔𝑛𝑛(𝑡𝑡−𝑡𝑡0) sin(𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2(𝑡𝑡 − 𝑡𝑡0)) (9) 

where A0 is the amplitude of impulse applied, 𝜁𝜁 the 
damping ratio and 𝜔𝜔𝑛𝑛 natural frequency of the system. 
Amplitude (𝐴𝐴𝑖𝑖) and time location (𝑡𝑡𝑖𝑖) of ZV shaped 
impulses are calculated by using the values of 𝜁𝜁 and 𝜔𝜔𝑛𝑛. 
 

�𝐴𝐴𝑖𝑖𝑡𝑡𝑖𝑖
� = �𝐴𝐴1 𝐴𝐴2

0 𝑡𝑡2
� (10) 

 
where, 

 

𝐴𝐴1 =
1

1 + 𝐾𝐾
 ,   𝐴𝐴2 =

𝐾𝐾
1 + 𝐾𝐾

 ,   𝑡𝑡2 =
𝜋𝜋
𝜔𝜔𝑑𝑑

   (11) 

with 

𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2      &     𝐾𝐾 = 𝑒𝑒
− 𝜋𝜋𝜁𝜁
�1−𝜁𝜁2 

The amplitude and time location of ZV impulses is 
shown in Figure 2. 

 

Figure 2. ZV Impulses  

However, the ZV shaper is not robust because small 
adjustments/errors in damping ratio and natural frequency 
measurement degrade its performance. As a result, an 
additional constraint is proposed to improve the 
performance of the ZV shaper in the presence of 
nonlinearities, modelling errors, and parameter 
uncertainties [23]. This additional constraint causes the 
frequency derivative of residual vibration to become zero, 
thereby leading to an improved shaper known as Zero 
Vibration Derivative (ZVD) shaper technique. The ZVD 
implementation necessitates three impulses, the amplitude 
and time duration are determined from Equation (12), 
 

�𝐴𝐴𝑖𝑖𝑡𝑡𝑖𝑖
� = �𝐴𝐴1 𝐴𝐴2 𝐴𝐴3

0 𝑡𝑡2 𝑡𝑡3
� (12) 

with 
 

𝐴𝐴1 =
1

(1 + 𝐾𝐾)2 ,𝐴𝐴2 =
2𝐾𝐾

(1 + 𝐾𝐾)2  ,𝐴𝐴3 =
𝐾𝐾2

(1 + 𝐾𝐾)2  ,

𝑡𝑡2 =
𝜋𝜋
𝜔𝜔𝑑𝑑

 ,   t3 = 2t2  
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(a) 

 

(b) 

Figure 3. (a) ZVD shaper, (b) Shaping process 

3.2 Negative Equal-Magnitude Shaper 
The Negative Equal-Magnitude (NEM) shaper is a 
command shaping technique employed in motion control 
to mitigate vibrations and oscillations in mechanical 
systems, including crane operations, by shaping the 
command input to reduce unwanted motion. NEM shaper 
works by analysing the system's dynamics and natural 
frequencies, generating a command signal that cancels out 
the vibrations by applying an equal and opposite force 
which result to a smoother and more stable motion. 

According to [24], the NEM shaper consists of three 
impulse vectors with specific magnitudes 𝐼𝐼1 = 𝐼𝐼 (> 0),
𝐼𝐼2 = −𝐼𝐼, and  𝐼𝐼3 = 𝐼𝐼 and with angles of 𝜃𝜃1 = 0, 𝜃𝜃2 = 𝜋𝜋

3� , 
and 𝜃𝜃3 = 2𝜋𝜋

3�  respectively as shown in Figure 4.  

 

Figure 4. Impulse vector diagram for a NEM shaper with 
a negative impulse 

The combined effect of the three impulse vectors 
cancels out, resulting in a net force of zero, which in turn 
eliminates any remaining vibrations. Based on these 
conditions, the NEM shaper can be derived, which consists 
of three impulse vectors as: 

�𝐴𝐴𝑖𝑖𝑡𝑡𝑖𝑖
� = �

𝐼𝐼
−𝐼𝐼

𝜏𝜏
1
3

𝐼𝐼

𝜏𝜏
2
3

0 𝑡𝑡2 𝑡𝑡3
� (13) 

where, 

𝐼𝐼 =
𝜏𝜏

(𝜏𝜏 + 𝜏𝜏
2
3 + 𝜏𝜏

1
3)

,       𝜏𝜏 = 𝑒𝑒𝜁𝜁𝜋𝜋/�1−𝜁𝜁2 ,         𝑡𝑡2 =
𝜋𝜋/3
𝜔𝜔𝑑𝑑

,

  𝑡𝑡3 =
2𝜋𝜋/3
𝜔𝜔𝑑𝑑

 

4. IMPLEMENTATION AND RESULTS  
This section describes the research approach employed to 
develop and test the shapers, and reports the simulation 
results of the crane's oscillatory behavior. The controller's 
performance and robustness are analyzed and discussed in 
detail.  

4.1 Research Tools 
The study used the following research 
tools and techniques. 

(a) The research utilized MATLAB/Simulink version 
R2021a software to simulate the nonlinear DPOC 
model Equations (6) – (8) and develop controller 
implementations. 

(b) The ode45 solver, implementing the Dormand-
Prince algorithm, was used to simulate the system 
with a variable time step size to ensure efficient and 
accurate results. 

(c) A cable length between trolley and hook of 0.30 m 
and length between hook and payload of 0.20 m, 
with the hook mass (100 g), and payload mass (215 
g), is use to investigate the dynamics of the system. 

(d) The dynamic performance of the crane was 
evaluated by examining the time domain responses 
of the hook and payload, focusing on their 
oscillatory behaviour. 

(e) Controller performance was evaluated based on two 
performance indices: Maximum Transient Sway 
(MTS) and Mean Absolute Error (MAE), which 
were calculated to assess controller effectiveness. 

4.2 Implementation 
This section presents the simulation outcomes generated 
using the MATLAB/Simulink environment. To simulate 
the movement of the trolley, a pulse input signal with a 
magnitude of 0.6 N and a duration of 2 s was applied to the 
crane as an external force, as shown in Figure 5. This 
simulated force represents a sudden and brief movement of 
the trolley, allowing for the analysis of the crane's 
dynamic response. The simulation results in Figure 6 (a) 
and (b) illustrate the oscillatory responses of the hook and 
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payload, respectively, in response to the input excitation 
shown in Figure 5. 

 
Figure 5. Input force signal 

 
(a) 

 

(b) 

Figure 6. Unshaped response of the DPOC system (a) 
Hook oscillation and (b) Payload oscillation 

Table 2. Hook and payload frequencies 

Modes 𝜔𝜔𝑛𝑛 (rad/s) Zeta (𝜁𝜁) 
Hook 4.2481 0.0359 

Payload 4.3348 0.0270 
 

The simulation results in Figure 7 show the trolley's 
position responses to the input force, highlighting distinct 
transient behaviors but with identical steady-state 

responses. The unshaped input moves the trolley 0.29 m 
within 2 s, while the shaped inputs (NEM and ZVD) reach 
the same position, but with different settling times; NEM 
takes 2.5 s and ZVD takes 3 s. This suggests that the NEM 
shaper exhibits a more rapid response compared to the 
ZVD shaper. In general, negative shapers tend to have 
shorter shaping times compared to positive shapers, 
however, they are more sensitive to modelling errors and 
may excite high-frequency dynamics. 

The natural frequency and damping ratio values 
presented in Table 2 will be substituted into Equations (12) 
and (13) to calculate the parameters needed to design the 
shapers. The calculated ZVD and NEM parameters 
presented in Table 3 are used to design separate shapers as 
described in section 3, the hook and payload shapers are 
merged using convolution, generating a multi-mode 
shaper, which then create a shaped input as shown in 
Figure 8, that is then used to simulate the trolley's 
movement.  

 
Figure 7. Trolley position response 

 

Figure 8. Shaped input force signal  

Table 3. Shaper parameters for ZVD and NEM 

Modes Shapers Magnitude Time 
location 

A1 A2 A3 t2 t3 

Hook ZVD 0.27 0.5 0.23 0.73 1.45 
NEM 1.03 -0.99 0.97 0.24 0.48 

Payload ZVD 0.28 0.49 0.22 0.74 1.48 
NEM 1.04 -0.99 0.96 0.25 0.50 

 
Figures 9 and 10 depict the simulations oscillation 
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response for the hook and payload, respectively. The 
results show that all the shapers consistently improve the 
system's performance when compared to the unshaped 
input, with ZVD demonstrating superior robustness and 
efficiency. The simulation results consistently indicates 
that ZVD outperforms NEM for both hook and payload 
responses, achieving a more substantial reduction in 
oscillation, making it a more dependable choice 
for system control. 

 

Figure 9. Hook oscillation response of DPOC system 

 

Figure 10. Payload oscillation response of DPOC system 

 

Figure 11. MTS of the crane oscillations with input shaper 

 

Figure 12. MAE of the crane oscillations with input shaper 

Table 5 summarises overall MTS (MTS-O) and residual 
MTS (MTS-R) values. The total angle oscillations are 
examined over the initial 10 s period to obtained MTS-O 
values as presented in Figure 5, whereas for the MTS-R, 
the residual angle oscillations are assessed during the final 
second of the simulation, between 9 and 10 s. Table 6 gives 
the MAE values obtained using the shapers and their 
percentage of improvements as compared to the unshaped 
input. It can be shown that the ZVD provided the highest 
oscillation reduction with 83% reductions in the payload 
while NEM achieved 53% reduction. 

Table 5. MTS-O and MTS-R values 

Shapers Hook (deg) Payload (deg) 
MTS-O MTS-R MTS-O MTS-R 

Unshaped 7.2364 5.49 9.2494 6.47 
NEM 3.7187 1.53 4.3124 2.10 
ZVD 1.3712 0.50 2.2320 0.83 

Table 5. MAE Percentage improvement for hook and 
payload 

Systems Hook Payload 
 %  % 

Unshaped 3.4188 - 3.9050 - 
NEM 1.0833 68.3 1.8209 53.4 
ZVD 0.4612 86.5 0.6626 83 

5. CONCLUSION 
Zero Vibration Derivative (ZVD) and Negative Equal-
Magnitude (NEM) input shapers have been successfully 
designed for robust oscillation control for an overhead 
crane system. MATLAB simulations using a nonlinear 
model of the crane showed that all shapers significantly 
reduced hook and payload oscillations compared to 
unshaped inputs. Furthermore, detailed analysis revealed 
that ZVD shapers outperformed NEM shaper, achieving 
the lowest values of MTS and MAE, demonstrating 
superior oscillation reduction capabilities. 

REFERENCES 
[1] L. Ramli, Z. Mohamed, A. M. Abdullahi, H. I. Jaafar, 

and I. M. Lazim, “Control strategies for crane 
systems: A comprehensive review,” Mechanical 

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-4

-3

-2

-1

0

1

2

3

4

H
oo

k 
sw

ay
 (d

eg
)

NEM

ZVD

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-6

-4

-2

0

2

4

6

Pa
yl

oa
d 

sw
ay

 (d
eg

)

NEM

ZVD



Musa Mohammed Bello et al. / ELEKTRIKA, 23(3), 2024, 84-91 

90 

Systems and Signal Processing, vol. 95, pp. 1–23, 
2017. 

[2] M. R. Mojallizadeh, B. Brogliato, and C. Prieur, 
“Modeling and control of overhead cranes: A tutorial 
overview and perspectives,” Annual Reviews in 
Control, p. 100877, May 2023, doi: 
10.1016/j.arcontrol.2023.03.002. 

[3] N. Sun, Y. Fang, H. Chen, and B. Lu, “Amplitude-
Saturated Nonlinear Output Feedback Anti-Swing 
Control for Underactuated Cranes with Double-
Pendulum Cargo Dynamics,” IEEE Transactions on 
Industrial Electronics, vol. 64, no. 3, pp. 2135–2146, 
2017, doi: 10.1109/TIE.2016.2623258. 

[4] X. Wu and X. He, “Nonlinear Energy-Based 
Regulation Control of Three-Dimensional Overhead 
Cranes,” IEEE Transactions on Automation Science 
and Engineering, vol. 14, no. 2, pp. 1297–1308, 
2017, doi: 10.1109/TASE.2016.2542105. 

[5] A. T. Le and S. G. Lee, “3D cooperative control of 
tower cranes using robust adaptive techniques,” 
Journal of the Franklin Institute, vol. 354, no. 18, pp. 
8333–8357, 2017, doi: 
10.1016/j.jfranklin.2017.10.026. 

[6] N. Sun, Y. Fang, H. Chen, and B. He, “Adaptive 
nonlinear crane control with load hoisting/lowering 
and unknown parameters: Design and experiments,” 
IEEE/ASME Transactions on Mechatronics, vol. 20, 
no. 5, pp. 2107–2119, 2015, doi: 
10.1109/TMECH.2014.2364308. 

[7] T. A. Le, V. H. Dang, D. H. Ko, T. N. An, and S. G. 
Lee, “Nonlinear controls of a rotating tower crane in 
conjunction with trolley motion,” Proceedings of the 
Institution of Mechanical Engineers. Part I: Journal 
of Systems and Control Engineering, vol. 227, no. 5, 
pp. 451–460, 2013, doi: 
10.1177/0959651812472437. 

[8] H. M. Omar and A. H. Nayfeh, “Anti-swing control 
of gantry and tower cranes using fuzzy and time-
delayed feedback with friction compensation,” Shock 
and Vibration, vol. 12, no. 2, pp. 73–89, 2005, doi: 
10.1155/2005/890127. 

[9] S. C. Duong, E. Uezato, H. Kinjo, and T. Yamamoto, 
“A hybrid evolutionary algorithm for recurrent neural 
network control of a three-dimensional tower crane,” 
Automation in Construction, vol. 23, pp. 55–63, 
2012, doi: 10.1016/j.autcon.2011.12.005. 

[10] M. I. Solihin, Wahyudi, M. A. S. Kamal, and A. 
Legowo, “Objective function selection of GA-based 
PID control optimization for automatic gantry crane,” 
Proceedings of the International Conference on 
Computer and Communication Engineering 2008, 
ICCCE08: Global Links for Human Development, 
pp. 883–887, 2008, doi: 
10.1109/ICCCE.2008.4580732. 

[11] L. H. Lee, C. H. Huang, S. C. Ku, Z. H. Yang, and C. 
Y. Chang, “Efficient visual feedback method to 
control a three-dimensional overhead crane,” IEEE 
Transactions on Industrial Electronics, vol. 61, no. 8, 
pp. 4073–4083, 2014, doi: 
10.1109/TIE.2013.2286565. 

[12] M. Maghsoudi, Z. Mohamed, M. Tokhi, A. Husain, 
and M. Abidin, “Control of a gantry crane using 
input-shaping schemes with distributed delay,” 
Transactions of the Institute of Measurement and 

Control, vol. 39, no. 3, pp. 361–370, Mar. 2017, doi: 
10.1177/0142331215607615. 

[13] S. Garrido, M. Abderrahim, A. Gimenez, R. Diez, 
and C. Balaguer, “Anti-Swinging Input Shaping 
Control of an Automatic Construction Crane,” IEEE 
Transactions on Automation Science and 
Engineering, vol. 5, no. 3, pp. 549–557, Jul. 2008, 
doi: 10.1109/TASE.2007.909631. 

[14] N. Uchiyama, H. Ouyang, and S. Sano, “Simple 
rotary crane dynamics modeling and open-loop 
control for residual load sway suppression by only 
horizontal boom motion,” Mechatronics, vol. 23, no. 
8, pp. 1223–1236, 2013, doi: 
10.1016/j.mechatronics.2013.09.001. 

[15] W. Singhose and B. W. Mills, “Command Generation 
using Specified-Negative-Amplitude Input Shapers,” 
in Proceedings of the American Control Conference, 
San Diego, California, Jun. 1999, pp. 61–65. 

[16] W. Singhose, E. Biediger Ooten, Y.-H. Chen, and B.  
W. Mills, “Reference Command Shaping using 
Specified-Negative-Amplitude Input Shapers for 
Vibration Reduction,” Journal of Dynamic Systems, 
Measurement, and Control, vol. 126, pp. 210–214, 
2004. 

[17] Z. Mohamed, A. K. Chee, A. W. I. M. Hashim, M. O. 
Tokhi, S. H. M. Amin, and R. Mamat, “Techniques 
for vibration control of a flexible robot manipulator,” 
Robotica, vol. 24, pp. 499–511, 2006, doi: 
10.1017/S0263574705002511. 

[18] K. Sorensen, W. Singhose, and S. Dickerson, “A 
controller enabling precise positioning and sway 
reduction in bridge and gantry cranes,” Control 
Engineering Practice, vol. 15, no. 7, pp. 825–837, 
2007. 

[19] A. M. Abdullahi, M. F. Hamza, Z. Mohammed, M. 
M. Bello, M. Attahir, and F. A. Darma, “Distributed 
delay adaptive output-based command shaping for 
different cable lengths of double-pendulum overhead 
cranes,” Int. J. Dynam. Control, Aug. 2023, doi: 
10.1007/s40435-023-01280-9. 

[20] H. I. Jaafar, Z. Mohamed, M. A. Ahmad, N. A. 
Wahab, L. Ramli, and M. H. Shaheed, “Control of an 
underactuated double-pendulum overhead crane 
using improved model reference command shaping: 
Design, simulation and experiment,” Mechanical 
Systems and Signal Processing, vol. 151, p. 107358, 
Apr. 2021, doi: 10.1016/j.ymssp.2020.107358. 

[21] M. Muhammad, A. M. Abdullahi, A. A. Bature, S. 
Buyamin, and M. M. Bello, “LMI-Based Control of 
a Double Pendulum Crane,” Applications of 
Modelling and Simulation, vol. 2, no. 2, pp. 41–50, 
2018. 

[22] H. I. Jaafar, Z. Mohamed, M. A. Shamsudin, N. A. 
Mohd Subha, L. Ramli, and A. M. Abdullahi, “Model 
reference command shaping for vibration control of 
multimode flexible systems with application to a 
double-pendulum overhead crane,” Mechanical 
Systems and Signal Processing, vol. 115, pp. 677–
695, Jan. 2019, doi: 10.1016/j.ymssp.2018.06.005. 

[23] A. M. Abdullahi et al., “Adaptive input shaping for 
sway control of 3D crane using a pole-zero 
cancellation method,” in 2015 IEEE Student 
Conference on Research and Development 



Musa Mohammed Bello et al. / ELEKTRIKA, 23(3), 2024, 84-91 

91 

(SCOReD), Kuala Lumpur: IEEE, Dec. 2015, pp. 
134–138. doi: 10.1109/SCORED.2015.7449310. 

[24] C.-G. Kang and S.-G. Lee, “Impulse Vector: A Basic 
Mathematical Tool to Design and Analyze Flexible 
Robots for Removing Residual Vibrations,” in 2023 
20th International Conference on Ubiquitous Robots 
(UR), Jun. 2023, pp. 6–12. doi: 
10.1109/UR57808.2023.10202366. 

 
 
 


	1. INTRODUCTION
	2. DOUBLE PENDULUM CRANE MODEL
	3. INPUT SHAPING TECHNIQUE
	3.1 Zero Vibration and its Derivatives
	3.2 Negative Equal-Magnitude Shaper

	4. IMPLEMENTATION AND RESULTS
	4.1 Research Tools
	4.2 Implementation

	5. CONCLUSION
	REFERENCES

