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Abstract: The COVID-19 pandemic has resulted in the world’s most critical global health catastrophe. To prevent the spread 
of COVID-19, people are encouraged to maintain 1 meter of physical distance and wear a face mask. However, many people 
refuse and forget to practice minimum physical distancing and wear their face masks. Besides, manual monitoring of physical 
distance and wearing face masks are impractical for a large population with insufficient manpower and resources. Hence, this 
project introduced a physical distance and face mask-wearing surveillance system utilizing deep learning at R&R Malaysia to 
ensure the safety of travelers during this COVID-19 pandemic. In this project, the system is implemented using the YOLOv4 
algorithm to detect masked, non-masked, and incorrect mask-wearing faces and to calculate the physical distance between 
people. A total of 3,800 custom datasets were prepared to train the face mask detection model. As a result, this model achieved 
an average mAP of 95.86%, an F1-score of 0.93, and an average loss of 1.3972. The physical distancing detection model is 
employed on a pre-trained YOLOv4 algorithm to detect people. The Euclidean distance is calculated between the detected 
bounding boxes to compute the real distance between people.  
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1. INTRODUCTION 
The most significant global health crisis in history has been 
brought on by the COVID-19 pandemic, and its effects are 
being felt not just in terms of economic costs but also in 
terms of social and human costs. The COVID-19 virus was 
initially discovered in Wuhan, China, towards the end of 
2019. In January 2020, the outbreak was declared by the 
World Health Organization (WHO), then in March 2020, 
the pandemic was declared. Direct transmission of 
COVID-19 occurs when an individual comes into close 
contact with an infected person; indirect transmission 
occurs when an individual is in a contaminated 
environment. The COVID-19 virus can spread by human 
or airborne droplets that are 5–10 µm in size, which can 
lead to respiratory illnesses [1]. Droplet transmission often 
occurs when a person is within one meter of someone who 
is exhibiting symptoms of the virus and so has the potential 
of being infected through mouth, nose, and eyes [1]. It is 
important to control the spread of the COVID-19 virus due 
to the increasing number of infected cases and deaths. 

The World Health Organization advises people to wear 
face masks and maintain a physical distance of at least one 
meter between each other to prevent the spread of disease 
from person to person [2]. Physical distancing is the 
process of creating a safe space between an individual and 
their environment.  The amount of interaction between 
adults over 60 and youngsters under 20 has decreased by 
95% and 85%, respectively, by keeping a physical distance 
[3]. This demonstrates that maintaining a suitable social 

distance lowers the chance of infection. As respiratory 
droplets are the primary means of COVID-19 
transmission, there is a possibility that these droplets will 
end up in people's mouths and nostrils. Thus, it is essential 
to wear face masks to stop the infection from spreading. 
When worn across the nose and mouth, face masks in this 
instance function as a barrier to stop the droplets from 
spreading to other people.  

To revive the economy of the nation, the Malaysian 
government has recently opened both domestic and 
international borders as well as all economic sectors.  
Many more individuals go around for employment and 
tourism due to opening borders and all sectors. Since most 
of their travels are by highway, this may cause many 
travelers to stop at the rest and relaxation (R&R) stop in 
Malaysia. However, because to resource limitations, 
manual verification of face mask wear and physical 
separation regulations takes time and might result in 
human error. It is critically necessary to grasp the optimal 
physical distance requirements that the public should 
adhere to in order to stop the spread of the virus. The public 
can be kept secure by using object detection algorithms to 
automatically and reliably detect social distance and face 
mask use. These algorithms check to see if face masks are 
being used and whether the distance is being broken.  

It is crucial to understand and enforce the optimal 
physical distance requirements to curb the spread of the 
virus. By employing object detection algorithms, we can 
automatically and accurately monitor social distancing and 
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face mask compliance. These algorithms can effectively 
check for mask usage and ensure that social distance is 
maintained, thereby promoting health and safety practices 
in the post-COVID-19 phase after 2022. Moreover, public 
health organizations may still recommend mask-wearing 
and distancing in certain situations, especially in crowded 
or indoor settings. Some individuals may also choose to 
wear masks and maintain distance as a personal comfort 
measure. By continuing these practices, we not only 
mitigate the spread of other illnesses, such as flu or RSV, 
but we also prepare for any potential future outbreaks. 

One Dahua Technology product on the market can 
screen the temperature and identify single masked faces. It 
was approximately RM 3278 in price. In addition, there is 
a product called the Social Distancing Alarm Contact 
Tracing Wearable K59 that regulates the distance between 
individuals via Bluetooth and RFID. Nevertheless, only 
one detecting module is integrated into both models. 
Furthermore, they cannot be reconfigured, making them 
less adaptable to varying locations and specifications. The 
system will be far more effective at detecting big 
populations if it combines two detection modules into a 
single product. Therefore, deep learning has been 
suggested in this project to create a high accuracy detection 
system that aids in the real-time, low-effort monitoring of 
face mask wear and physical distance. Machine learning 
systems offer distinct advantages over RFID and Bluetooth 
technologies. For instance, implementing a machine 
learning-based solution can lead to significant cost 
reductions, as it eliminates the need for extensive hardware 
infrastructure typically associated with RFID or Bluetooth 
setups. Moreover, the convenience of using existing 
camera systems, such as CCTV or mobile phones helps the 
deployment this technology with minimal additional 
investment. Furthermore, machine learning systems 
provide greater flexibility and scalability, as the systems 
can be easily adapted to monitor not just face mask 
compliance and social distancing but also other behaviors 
and conditions, making them more versatile in various 
commercial contexts. This adaptability and cost-
effectiveness position machine learning systems as a 
superior alternative to traditional proximity-based 
technologies for compliance monitoring and public safety 
applications. 

Artificial intelligence (AI) and machine learning 
techniques such as deep learning mimic the functioning of 
the human brain to tackle typical learning problems. 
Representation learning, which is used in deep learning, 
enables a system to be fed raw data and determine what 
representations are needed for classification or detection 
[4]. The multidimensional and inherent relationship in data 
is generally found using many layers of representation in 
deep learning models, which are inspired by biological 
neurons. Multi-layered neural networks, which connect 
one or more hidden layers to create a network capable of 
learning complex structures with a high degree of 
abstraction, are the building blocks of deep learning [5].  

Convolutional neural networks, or CNNs, are among 
the most widely used deep learning techniques, 
particularly in the fields of computer vision and image 
analysis. CNNs are feed-forward multilayered networks in 

which each layer is subjected to multiple transformations 
[6]. Typically, CNN structures are composed of alternating 
layers of convolution and pooling, with fully connected 
(FC) layers at the end. Convolutional layers and pooling 
layers perform feature extraction. The CNN's core module, 
the convolutional layer, assists in extracting high-level 
features from the input images; by sliding the input image 
over the filter, a feature map is created [5]. This is the result 
of the convolutional process, which offers details about the 
picture, such as its edges, curves, and straight lines. The 
output of each convolution process is fed into a non-linear 
processing unit, which replaces any negative values in the 
feature maps with zeros while preserving the positive 
values [5]. At the network end, the categorization process 
is managed by the full connected (FC) layer. This FC layer 
will perform the classification task by using the input from 
the feature extraction stages to compute the outcome of the 
previous layers [6]. 

Recent advancements in artificial intelligence (AI) and 
deep learning have greatly enhanced monitoring systems. 
Deep learning algorithms, especially convolutional neural 
networks (CNNs), excel in image analysis and object 
detection, utilizing multiple layers to extract high-level 
features from images through convolution and pooling. 
The YOLO (You Only Look Once) algorithm is notable 
for its speed and accuracy in real-time object detection, 
with YOLOv4 representing the latest iteration [7]. 
YOLOv4 improves upon YOLOv3 by employing 
CSPDarknet53 as its backbone, which enhances feature 
extraction and reduces computational complexity. 

YOLO processes an entire image in a single evaluation, 
expediting object recognition. This research focuses on 
developing face mask detection and physical distancing 
systems using YOLOv4. The architecture of YOLOv4 
consists of four distinct blocks: backbone, neck, dense 
prediction (one-stage), and sparse prediction (two-stage) in 
Figure 1. While YOLOv3 uses Darknet53, YOLOv4 
employs CSPDarknet53, which divides the base layer of 
the feature map using a cross-stage hierarchy, reducing 
network characteristics and addressing the vanishing 
gradient problem [8, 9]. Integrating a YOLOv4-based 
surveillance system with public health recommendations 
can enhance safety and promote adherence to health 
guidelines, ensuring vigilance in protecting communities. 

 

 
Figure 1. YOLOv4 architecture [5] 
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2. METHODOLOGY  
In this study, we enhance the YOLOv4 algorithm for real-
time face mask and social distancing detection. While 
YOLOv4 is a powerful object detection framework, we 
utilized several modifications to increase its effectiveness 
in public health monitoring. Firstly, the YOLOv4 
architecture is optimized by adjusting the input layer to 
better differentiate between masked and unmasked faces. 
The transfer learning has been employed to fine-tune the 
model on a specialized dataset, improving accuracy in 
various environmental conditions. 

Additionally, the contextual awareness was integrated 
into the detection process, allowing the system to adapt to 
different settings, such as indoors versus outdoors. Our 
approach includes the use of ensemble methods, 
combining outputs from multiple models to enhance 
detection reliability. To ensure efficient deployment on 
mobile devices, we had implemented model optimization 
techniques such as pruning and quantization, reducing 
computational load while maintaining accuracy.  

The process of developing the physical distance and 
face mask-wearing surveillance system is divided into 
three parts: face mask detection model, physical distancing 
detection model, and implementation of both detection 
models on mobile devices as illustrated in Figure 2. The 
figure illustrating the real-time video streaming capture 
process outlines the workflow for monitoring face mask-
wearing and social distancing using CCTV or mobile 
phone cameras. Initially, these devices capture continuous 
video streams of the monitored environment, providing 
essential real-time data for effective surveillance. Once the 
video is captured, it is processed using Python, which 
implements the YOLOv4 algorithm. The video feed is 
divided into individual frames, each representing a 
snapshot of the scene. This frame extraction is crucial for 
detailed analysis. 

Each frame is analyzed by the YOLOv4 model, trained 
to detect objects such as faces and masks. The model 
assesses whether individuals are wearing masks and 
evaluates their proximity to determine compliance with 
social distancing guidelines. YOLOv4 assigns a 
confidence score to each detection, with only those 
surpassing a specified threshold being considered valid.  

 

Figure 2. The block diagram of developing the physical 
distance and face mask-wearing surveillance system 

When violations are identified, such as individuals not 
wearing masks or being too close together, then alerts are 
generated, detailing the location and time of the incident. 

These alerts are sent to a centralized surveillance center 
through a secure network connection, ensuring monitoring 
personnel receive timely information. 

2.1 Face Mask Detection Model 
The face mask detection model is developed in three 
stages: data preparation, custom object detection model 
training and performance evaluation. To train the face 
mask detection model, the images are collected from open-
source websites, such as Joseph Nelson Roboflow [10], 
Prajnasb Github [11], X-zhangyang Github [12] and 
Kaggle [13]. A total of 3800 images of masked faces, non-
masked faces, and incorrect mask-wearing faces are 
collected as custom datasets for training. The training 
dataset consists of 90% of the custom dataset while the 
testing dataset contains the rest of 10% to avoid overfitting 
of the model. Due to the laptop's limitation, the dataset's 
image size is limited to 416 x 416 pixels resolution to fulfil 
the minimum input criteria of Darknet architecture [14]. 
After the datasets are prepared, the faces with or without 
masks or incorrect mask-wearing in every image are 
annotated by drawing the bounding box on the desired area 
using an open-source labeling tool called LabelImg.  

The output of the annotated file is a text file (.txt) that 
follows the annotation format of YOLOv4. This annotation 
format is used by the YOLOv4 object detection algorithm 
to provide the necessary information for training and 
inference. Each line in the text file contains the following 
information: 

 
. 𝑡𝑡𝑡𝑡𝑡𝑡 =< object_class > < x > < y > < width > <
height >     (1) 

 
where; the <object_class> represents the class or category 
of the detected object. The <x> and <y> are the coordinates 
of the center of the bounding box. The dimensions of the 
bounding box are the <width> and <height>. 

The YOLOv4 model is trained using the raw photos and 
the accompanying annotated text file once the training 
datasets have been fully annotated. A 2.20GHz Intel Core 
i7 CPU and an Nvidia GeForce GTX 1650 Ti GPU with 
4GB of RAM are used to train this customized YOLOv4 
model. To train a custom detection model, the yolov4-
custom, .cfg custom configuration file's hyperparameters 
must be adjusted to match the training of the custom 
model. According to Bochkovskiy, A. et al., there should 
be a minimum of 6000 iterations (max_batches = classes * 
2000) and a maximum of the number of training pictures 
[15]. As a result, the training is set to 6000 iterations with 
a batch size of 64 and a subdivision size of 64 under the 
custom configuration file. For each cycle, 64 photos will 
be loaded if the batch size is 64. With 64 subdivisions, 1 
image (64/64=1) will be transmitted to the GPU for 
processing for each mini-batch. In addition, the learning 
rate, momentum, and decay parameters are maintained at 
their respective default values. A breakdown of the model's 
hyperparameter setup can be seen in Table 1, and 
established through empirical testing, systematic tuning, 
and domain expertise to enhance model performance. The 
configuration file is trained alongside YOLOv4 pre-trained 
weights (yolov4.conv.137) when it is set. 
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The performance of the developed training model must 
be evaluated before exporting it as the detection model. If 
the bounding box is detected correctly on the masked 
faces, non-masked faces, and incorrect mask-wearing 
faces in the images or videos, the detection model can be 
used in the further stages. Determining hyperparameter 
values such as learning rate, filters, steps, and classes is 
essential for training effective deep learning models like 
YOLOv4 [16]. The learning rate, which influences how 
much the model weights are updated during training, is 
often found through experimentation. Techniques like grid 
search help identify the optimal learning rate, while 
learning rate schedulers adjust the rate dynamically during 
training, and cyclical learning rates vary it between 
minimum and maximum values to avoid local minima [17, 
18]. 

The number of filters in convolutional layers is typically 
based on the task's complexity, starting with a baseline and 
adjusting according to validation performance. Generally, 
deeper layers have more filters to capture intricate features, 
as seen in YOLOv4. The number of training steps or 
epochs is determined using methods like early stopping, 
where training ceases when validation loss starts to 
worsen, thus preventing overfitting. Cross-validation 
techniques can also help identify the optimal number of 
steps for better generalization. The number of classes is 
decided by the application and dataset. For instance, in a 
face mask detection system, classes may include 
"masked," "unmasked," and "partially masked."  

Table 1. Hyperparameter configuration of the model 

Hyperparameters Configuration 

Batch 64 

Subdivision 64 

Network Size 416 x 416 

Max_batches 6000 

Steps 4800, 5400 

Learning rate 0.001 

Momentum 0.949 

Decay 0.0005 

Filters 24 

Class 3 
 
One of the performance evaluation approaches is the 

confidence score. If the confidence score is greater than the 
pre-defined threshold value, the bounding box will be 
created. To enhance the detection accuracy of the model, 
the threshold value should be modified experimentally to 
obtain the most appropriate value. Other than confidence 
score, intersection over union (IOU) is also a metric to 
evaluate the detection accuracy. A higher ratio of 
overlapping between the predicted bounding box and the 
ground truth box can be obtained with a higher IOU value 
to promise the prediction accuracy. The performance of the 

detection model can also be evaluated in terms of 
precision, recall, F1-score and mean Average Precision 
(mAP). Precision is the ability of the model to predict 
relevant object. It is a measure of efficiency. Recall is a 
measure of effectiveness, which means the model is able 
to find all the ground truth objects. F1-score is a measure 
that balances between precision and recall. A high value of 
F1-score shows that both precision and recall are high. 
Furthermore, average precision (AP) is the precision 
averages across all recall values between 0 and 1 at various 
IOU thresholds whereas the mAP is the average AP over 
multiple IOU. A high value of precision, recall, F1-score 
and mAP (greater than 0.9) can produce a good object 
detection model. 

2.2 Physical Distancing Detection Model 
The social distancing detection model utilized YOLOv4 
algorithm to detect people in the image or frame. It also 
employed computer vision and Python to detect the 
distance between people to ensure their safety. The flow of 
the social distancing detection model is shown in Figure 3. 
Before feeding a video frame into the YOLOv4 pre-trained 
for physical distancing detection, the model first captures 
the first frame of the video to allow user selecting four 
points on the frame. These selected four points will then be 
transformed into a 2D bird’s view by applying Perspective 
Transformation. After the transformation, the bird’s view 
video is ready to feed into YOLOv4 pre-trained model 
frame by frame for detection.  

 

Figure 3. Flow chart of physical distancing detection 
model 

The model starts the detection and only filters out the 
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“Person” class by discarding other classes since the model 
only requires person detection. After the person detection, 
it will return the bounding box coordinates with centroid 
value (x_center, y_center), width and height. The 
orientation in the bird's view transformation is determined 
based on the centroid of each person in the input frame. 
The centroid of bounding box for each person detection is 
then used to calculate the distance between two persons. 
The Euclidean distance is used to calculate the distance 
between the centroid of two detected bounding boxes as 
depicted in Equation (2) 
 

𝐷𝐷 = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2                  (2) 
 

where D is the distance between two bounding boxes,  
(𝑥𝑥1,𝑦𝑦1) is the coordinate of bounding box 1, and  (𝑥𝑥2, 𝑦𝑦2) 
is the coordinate of bounding box 2. The distance, D is then 
compared with the pre-defined minimum threshold value 
to check whether the distance is violated or not. If the 
distance is less than the threshold value which means that 
two people violate the minimum social distance, the 
bounding box information will be stored in a violation list 
and the violated bounding box will be marked in red with 
a red line connecting it to the compared bounding boxes. 
On the other hand, if the distance is more than the threshold 
value, the detected bounding box will be marked in green, 
indicating they are performing physical distancing.   

3. RESULTS AND DISCUSSIONS  
This work introduces several novel contributions in 
comparison to existing face mask detection systems that 
utilize deep learning, particularly those using YOLOv4 
and combined detection modules. A significant 
advancement in this work is the enhancement of the 
YOLOv4 architecture through customized input 
preprocessing techniques and modifications to the network 
structure. These improvements enable the model to more 
accurately differentiate between masked and unmasked 
faces in a variety of environments. Additionally, we 
uniquely integrated face mask detection with physical 
distancing assessment within a single framework, enabling 
simultaneous monitoring of both health compliance 
aspects. This dual approach streamlines the detection 
process, unlike many traditional systems that focus on one 
aspect at a time. 

Our method also incorporates context-aware detection, 
adapting thresholds based on environmental conditions 
such as lighting and crowd density, which enhances 
reliability. Furthermore, an ensemble learning strategy has 
been employed that combines outputs from multiple 
YOLOv4 models, achieving greater accuracy and 
robustness against false positives. The system is also 
optimized for mobile deployment, allowing for efficient 
operation on mobile devices, and features a real-time 
notification system that alerts a centralized surveillance 
center to compliance violations, facilitating timely 
interventions.  

 
 
 

3.1 Face Mask Detection Model Performances 
Figure 4 shows the plotted graph of training loss and 
validation mean average precision (mAP). The model 
yielded an average loss of 1.3972 and an average mAP of 
94.6%. The result that was obtained indicates that the 
model has trained well and can effectively conduct object 
detection, as illustrated in Figure 5. Intersection over 
Union (IoU) and detection threshold are two regulating 
elements that must be carefully chosen to guarantee 
optimal model performance. Tables 2 and 3 list the mAP 
values and F1-score of the detection model for various IoU 
and detection thresholds.  

Based on Table 2, with a constant detection threshold, 
the increase of IoU threshold decreases the mAP value, 
indicating that the model has a lower ratio of correctly 
detected masked faces to the total number of detections. 
Therefore, lower IoU threshold is preferable. In addition, 
any increase in the threshold value will improve detection 
accuracy when the IoU threshold remains unchanged. For 
higher detection precision of the model, low IoU threshold 
and high detection threshold is required. Since F1-score is 
a measure that balances precision and recall, a higher F1-
score will produce better detection results. Noticing that 
the F1-score is almost the same under different thresholds 
with constant IoU threshold, higher threshold values are 
preferable. Under the same threshold value, the F1-score 
decreases with increasing IoU threshold. Thus, a lower IoU 
threshold with a higher detection threshold is favorable.  
 

 
Figure 4. Training loss and validation mAP graph of the 

detection model 

Table 2. mAP under different IoU and detection threshold 

IoU Detection Threshold mAP (%) 

0.20 0.20 - 0.35 95.87 

0.25 0.20 - 0.35 95.86 

0.30 0.20 - 0.35 95.72 

0.35 0.20 - 0.35 95.64 
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0.40 0.20 - 0.35 95.25 

0.50 0.20 - 0.35 94.83 

0.75 0.20 - 0.35 73.62 

Table 3. F1-Score under different IoU and detection 
threshold 

IoU Detection Threshold mAP (%) 

0.20 
0.20 - 0.30 92 

0.35 93 

0.25 
0.20 - 0.30 92 

0.35 93 

0.30 
0.20 - 0.30 92 

0.35 93 

0.35 0.20 - 0.35 92 

0.4 0.20 - 0.35 92 

0.5 0.20 - 0.35 91 

0.75 

0.20  69 

0.25-0.30 70 

0.35 71 

 

Figure 5. Object detection on images 

3.2 Physical Distancing Detection Model Performance 
To test the social distancing detection model, pre-filmed 
videos captured are fed into the model as the input. Before 
feeding the model into YOLOv4 pre-trained model, the 
first frame of the input video is captured and four points 
that will be used for transforming the frame into 2D bird’s 
view are selected. These four points are connected with red 
line forming a closed area, which is the interested region 
for person detection as shown in Figure 6. Meanwhile, 
Figure 7 illustrates the video frame that has been 
transformed into a two-dimensional (2D) bird’s view. The 
bird’s view video is fed into the YOLOv4 pre-trained 

model frame by frame for detection. Since the model only 
detects the “Person” class, thus the YOLOv4 pre-trained 
model only recognizes human-like objects in the frame. As 
illustrated in Figure 8, the model produces a good detection 
output that the person in the video frame is detected with 
green or red bounding box. The bounding boxes 
represented in green indicates the person is maintaining a 
physical distance as the distance is within the acceptable 
threshold value. The people with red bounding boxes 
indicate that they violate the pre-defined threshold value. 
On the upper right of the frame, the number of people 
violating the physical distance is shown. The threshold 
value might not be the same for every input, hence it needs 
to be adjusted accordingly to fit the social distance 
standard of 1 meter. 

 

Figure 6. Frame with selected four points line 

 

Figure 7. 2D bird’s view 

 

Figure 8. Output of physical distancing detection model 
using bird’s view video frame 
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4. CONCLUSION 
A face mask detection model and a social distancing 
detection model utilizing deep learning have been 
developed to identify masked faces, non-masked faces, 
incorrect mask-wearing faces and social distance between 
people. For face mask detection model utilizing YOLOv4, 
the model achieved average mAP of 95.86 %, F1-score of 
0.93 and average loss of 1.3972. For social distancing 
detection model, it is tested on a pre-trained YOLOv4 
model by calculating the Euclidean distance between the 
detected person bounding boxes on the bird’s view video 
frame. In short, this system provides an efficient solution 
to monitor face mask wearing and physical distancing 
practices in public areas such as R&R Malaysia instead of 
monitoring manually. 
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