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Abstract: Electrical power systems are designed and operated to meet the continuous variation of the required load demand. 
The literature surveyed mostly reported optimized demand response with economic dispatch without considering customer 
incentives for power transferred to the grid. This study seeks to explore the efficacy of evolutionary swarm optimization 
technique, the particle swarm optimization (PSO) to validate the optimum choice of distributed energy sources in microgrid 
demand side response with customer incentive-based economic load dispatch (ELD). The results indicate the cost of the grid 
power is directly proportional to the energy supplied and inversely proportional to the transferred energy, energy received and 
the customer incentives. The solar energy (𝑷𝑷_𝒔𝒔) and wind (𝑷𝑷_𝒘𝒘) supplied for hours complemented the grid supply and 
increased the customer incentives from $5.5 to $36 per kWh representing over 18% improvement and reduced the 
corresponding grid intake from 360 kWh to 317 kWh representing about 14% decrease. Future work on this demand side 
response with ELD should include additional optimization techniques and larger solar PV and wind energy powers to validate 
the efficiency in a more complex microgrid. 
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1. INTRODUCTION 
Electrical power systems are designed and operated to 
meet the continuous variation of the various load demand. 
It is the catalyst for industrialization, enhancing 
communication, fostering inventions in science and 
technology, ensuring effective healthcare delivery, and 
elevating citizens' standard of living. In power system 
optimization, minimizing operational costs is crucial for 
prioritizing optimal investment decisions. The economic 
load dispatch (ELD) of electrical energy generation section 
has consistently played a significant role in the electric 
power sector [1].  

ELD is a computer-based procedure that allocates the 
entire required generation among operational generating 
units by minimizing a chosen cost criterion, while adhering 
to load, operational, and power limitations. Under 
specified load conditions, ELD computes the power output 
of each plant and its individual producing units to optimize 
overall fuel expenditures necessary to satisfy the system 
load [2]. To allocate the overall output among the 
accessible units, ELD is used in real-time energy 
management and control in power system by several 
applications. ELD places an emphasis on the system-wide 
allocation of production cost estimation for all power units. 
It is fundamentally an optimization problem focused on 
reducing the overall generation cost of generation while 
complying with constraints [3]. Prior endeavors to tackle 

economic dispatch (ED) challenges have encompassed 
various mathematical programming approaches and 
optimization techniques. Traditional methodologies 
include the lambda-iteration, the base point and 
participation factors and the gradient methods [4].  

The combine generation-grid-load ED incorporates the 
flexibility of both the transmission and demand sides in 
conventional power generation dispatch, treating the 
transmission grid structure and load power demand as 
adaptable resources available for dispatch [5]. The 
transmission and demand sides are incorporated into the 
dispatch technique of power generation via adjustments in 
power grid configurations, utilizing market incentive 
mechanisms such as price signals or demand response to 
establish an integrated economic dispatch model that 
facilitates the interaction of transmission, generation and 
utilization, thereby achieving the optimal global 
configuration of generation, on-grid and demand load [6]. 

 Demand response (DR) comprises two elements: tariff-
based and incentive-based instruments designed to 
motivate energy consumers to react to fluctuations in 
electricity prices or to receive incentives for decreasing the 
grid power use. The primary concept of price-based 
demand response is to incentivize electricity consumers to 
capitalize on fluctuating electricity prices by shifting loads 
to periods of low demand. Demand-side response (DSR) 
utilizes load flexibility to enhance the effective functioning 
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of the power system management. The flexible load from 
home consumers, such as heating elements, can be 
rescheduled for periods of minimal demand, thereby 
enhancing system performance and enabling Service 
Operators (SO) to arrange an appropriate energy mix at 
minimal operational costs. Flexible or variable demand is 
described as the capacity to change the load consumption 
profile by adjusting power usage, operational timing, and 
the activation schedule of electrical devices [7]. 

Conversely, the incentive-based DR provides customers 
with additional incentives beyond their retail power cost 
for reducing demand on flexible loads during periods of 
required system reliability or elevated electricity prices.  

The categories of DR based on incentives include  
i. Direct Load Control (DLC). 
ii. Interruptible service. 
iii. Demand bidding or buyback. 
iv. Emergency Demand Response Program (EDRP). 
v. Capacity market program. 
vi. Diverse auxiliary service market. 

 
Furthermore, recently the attention of SO has mainly 

been on renewable energy penetration (RF) on the supply 
side. However, the demand side (DS) energy management 
strategy is also characterized by customer attitude to power 
consumption. Many research were carried out with hope of 
arriving at standard model for power consumption 
behavior change to take care of the stochastic nature of the 
renewable energy sources (RES) [8]. The fundamental 
operational constraints include the power balance 
constraint, which mandates that the total generated power 
equals the load demands plus the transmission losses in the 
microgrid, and the limitations of power supply which 
require individual generator units to operate within their 
designated power range. 

The particle swarm optimization (PSO) method is an 
evolutionary optimization tool initially conceived by 
Eberhart and Kennedy in 1995. It is a swarm intelligence-
based domain predicated on swarm population, wherein 
every member of the swarm is regarded as a distinct 
particle, hence each individual particle is considered as a 
solution to the pertinent problem. The particles possess a 
randomized velocity that traverses the problem search 
space. In contrast to genetic algorithms (GA), PSO lacks 
operators like mutation and crossover. The PSO does not 
display the survival-of-the-fittest phenomenon; it solely 
employs the imitation of socially exhibited behavior [9]. It 
also, however, allows each particle to remember the 
memory of the previous optimum solution that it has found 
as well as the current best solution found in the 
neighborhood particles. 

This paper is aimed at providing a means of distributing 
the power demand and minimize network losses among 
different DERs of wind turbine (WT) and solar 
Photovoltaic (PV) integrated into microgrid. This work 
uses a famous evolutionary optimization technique PSO 
algorithm to optimize the objective of minimizing the 
levelized cost of energy considering the loss of power 
supply probability reliability constraint. The energy mixed 
consists of PV WT and the grid. To determine the right size 
or the least cost of energy while the loss of power supply 

probability reliability index is constraint [10]. 
The significance of this research on the ELD became 

necessary because of the importance of effective load 
dispatch on the quality and reliability of power supply 
system generally and also for the following objectives: 

i. To ensure minimum loss in both transmission and 
distribution. 

ii. To provide an effective and optimum scheduling of 
the generators. 

 
Unfortunately, generating units' input-output 

characteristics are naturally quite nonlinear because of 
valve-point loadings, which is one of the major drawbacks 
of distributed generation [11]. The non-smooth 
optimization problem with equality and inequality 
constraints is the practical ELD problem in addition to the 
valve-point effects. This renders the quest for the global 
best solution arduous. The dynamic programming (DP) 
method is a methodology for addressing the non-linear and 
discontinuous ELD problem; nevertheless, it is hindered 
by the challenges of "curse of dimensionality" and local 
optimality [12]. 

1.1 Power Flow Analysis 
Power flow studies, also referred to as load flow analysis, 
constitute the foundation of power system evaluation and 
design. It is essential for operation, planning and economic 
scheduling, and power exchange among utilities. 
Furthermore, power flow analysis is essential for various 
other evaluations, including contingency studies and 
transient stability. There are three popular power flow 
solution techniques, which are Gauss Seidel, Newton 
Raphson, and Fast decoupled methods [13].  

Load flow methods usually consider four main factors: 
voltage magnitude and angle, active power (PV) and 
reactive power (PQ) across different bus types (PQ, PV, 
and droop buses), and voltage angle. Some factors are 
known, but others are not known. In a PQ bus, while the 
active and reactive power values are known but not the 
voltage angle or magnitude. On the other hand, the voltage 
and active power values in a PV bus are known. In a droop 
bus, all factors are regarded as unknown. Therefore, 
method was devised for load flow analysis, consisting of 
two separate loops: the main (secondary) loop and the 
internal (primary) loop. The primary loop is tasked with 
identifying the optimum solution of the designed objective 
function, whereas the secondary loop is designated for load 
flow calculation [14]. 

1.2 Economic Load Dispatch 
The ELD refers to the allocation of generation levels to 
generating units to ensure complete and cost-effective 
supply of power to the system load. Minimizing generation 
costs is essential for an interconnected system. Solar PV 
and wind power plant technologies are gradually 
progressing and attracting increased global attention. 
Several renewable energy sources (RES), such as solar PV 
and wind power, demonstrate a strong generating capacity 
that varies over time (variability) and is weather dependent 
therefore, not entirely predictable (due to uncertainty), 
unlike conventional energy sources.[15]. The economic 
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load dispatch determines the generation capacity of each 
plant to minimize generation and transmission costs for a 
certain operational schedule.  

The main goal of an ELD-based problem is to get the 
objective function as minimum as possible. The objective 
function of this work was being designed to be the total 
cost of production of the power that meets the demand and 
all other limits. The ELD finds the optimal combination of 
power generation that minimizes the total fuel cost while 
satisfying the total demand subjected to the operating 
constraints of a power system with a defined interval [16]. 

The aim of ELD is to reduce the total generation cost. 
The economic load dispatch strategy for generating units 
at varying loads must minimize total fuel costs. In a 
conventional power system, numerous generators are 
employed to deliver sufficient overall output to meet a 
specified consumer demand. Each producing station 
typically possesses distinct cost-per-hour attributes for its 
operational output range. The ELD uses the well-known 
classical set of coordinating equations. These equations 
were generally solved by iterating the value of the 
LaGrange multiplier until the sum of the generator outputs 
equals the system demand plus the transmission losses.  

On the other hand, ELD is used to solve difficulties 
including planning the expansion of power system 
generation, reconfiguring distribution networks, and 
identifying generator parameters. Researchers in the field 
of power engineering have long recognized the planning of 
power system generating expansion as a challenging 
optimization problem [17]. Reliability, security, and other 
system requirements must be met while lowering the total 
expenses. 

1.3 Optimization Technique based on PSO 
Swarm intelligence is a relatively new area of study that 
focuses on how groups of people might learn to work 
together more effectively. Swarm intelligence, like that of 
social insect societies or bio-inspired technique, takes its 
cues from the way in which each member of the group uses 
their unique set of experiences to ensure the group's 
survival. Increasing its resilience in the face of opposition. 
Ant colonies' food-searching activity, immune systems' 
foraging, and bacteria's foraging are some of the most 
commonly used examples of swarm intelligence [18]. 

In principle, each particle in the swarm can use the 
previous experiences and discoveries of every member of 
the swarm during search for forage. The primary objective 
of creating PSO is as a result of hypothesis positing that 
the interchange of information between members of the 
same swarm species confers certain evolutionary 
advantages. PSO is typically defined as a straightforward 
heuristic with a well-balanced mechanism, possessing the 
ability to improve and conforms to both local and global 
exploration capabilities. It is a stochastic search method 
which is computationally efficient and simpler to 
implement than other metaheuristics techniques. It uses a 
group of points to look through the search area, just like 
other population-based algorithms. Each member in the 
swarm is called a "particle" and represents a possible 
answer. Each particle makes decisions based on two 
important types of input. Previous experience of a particle 

which informed the choice and the quality of the chosen 
option [18,14]. 

Thus, each particle in PSO monitors its position in the 
problem search space corresponding to the optimal 
solution (greatest fitness) it has attained to date. The term 
is referred to as pbest. The global version of the PSO 
monitors the overall best value and its corresponding 
position achieved by any individual within the population 
thus far. This site is referred to as gbest. Each particle alters 
its position within the search arena and adjusts its velocity 
based on its individual experiences and those of its 
neighbors. Flight discoveries towards pbest and gbest 
destinations and global variant of PSO. Acceleration is 
influenced by the stochastic generation of members 
directed towards pbest and gbest locations, respectively. 

1.4 Contributions of the Paper 
This study seeks to explore the efficacy of evolutionary 
swarm optimization technique to validate the optimal 
choice of distributed energy sources in microgrid demand 
side response. Specifically, the study seeks  

i. To investigate the utilization of Particle Swarm 
Optimization (PSO) in demand-side response to 
enhance the selection of distributed energy 
resources (DER) for the purpose of maximizing 
customer savings. 

ii. To evaluate that the increase in renewable energy 
(RE) penetration in microgrids results in significant 
incentives for subscribed customers. 

2. LITERATURE REVIEW 
The PSO when juxtaposed with classical optimization 
techniques, confirmed to demonstrates greater versatility 
and applicability in complex computations compared to 
modern heuristic optimization algorithms derived from 
operational research and artificial intelligence concepts, 
such as simulated annealing (SA), artificial neural 
networks (ANN), and tabu search (TS). In an elaborate 
attempt to propose optimum demand response programs, 
the authors in [19] proposed emergency demand response 
program (EDRP) predicated on consumer response to 
higher power costs and the incentives provided by 
Independent System Operators (ISOs) during peak hours.  

However, [20, 21] developed an innovative incentive-
based demand response algorithm in real-time for smart 
microgrid systems utilizing deep neural networks and 
reinforcement learning, designed to assist the service 
provider in procuring energy resources from subscribed 
users to mitigate energy fluctuations and improve 
microgrid stability. To address future uncertainties, a deep 
neural network was employed to forecast unknown pricing 
and energy consumption. In related study [10] proposed 
simulations performed for two primary types of demand 
response program (DRP) incentive-based programs and 
time-based programs, utilizing an 11-bus microgrid over a 
24-hour period and a 14-bus microgrid over a 336-hour 
period (two weeks). The findings demonstrated the impact 
of DRPs on overall operational expenses, customer 
advantages, and load profiles, while also identifying the 
optimal utilization of energy resources in microgrid 
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operations.  
Nonetheless, research on ELD incorporating demand-

side response that comprehensively considers the 
flexibility of both microgrid load demand and generation 
constraints is rarely undertaken [22]. This paper presents 
an economic dispatch strategy for generation, optimized 
incentive to subscribed customers and load that integrates 
demand response. Expanding upon existing research by 
incorporating the optimization of customer savings and 
microgrid power architecture with demand response on the 
load side. 

3. METHODOLOGY  
This study primarily examines two mechanisms for 
demand response: interruptible load and electrical demand 
incentive. The attributes of wind and solar energy provide 
anti-peak control, optimizing electricity generation and 
consumption via an interruptible mechanism of peak load 
demand [23]. Additionally, price incentives can be 
employed to increase electricity demand and mitigate wind 
and solar curtailment during valley load periods [24].  
Figure 1 shows how the problem formulation procedure of 
the optimization tool was outlined considering the 
renewable energy sources and the grid profiles. 

 

 

Figure 1. Typical Configuration of Hybrid Microgrid 

In this scenario, due to the rising integration of large-
scale wind and solar power utilization, the electrical power 
generation and supply of conventional thermal power 
struggles to align with power balance in real-time [25]. 
Therefore, it is essential to maximize the regulatory ability 
of renewable power sources, microgrid networks and 
electric load sides within an economic dispatch 
framework. The data for wind turbine modelling and solar 
PV profiles are obtained from [26]. while that of generators 
G1, G2 and G3 are reused from [27]. 

This study evaluates the efficacy of the proposed PSO-
integrated DERs approach through three case studies 
including generators G1, G2, and G3 all considered as grid 
focusing on the objective functions to determine the 
generator with minimal operating costs and maximal 
customer incentives based on transferred power. The PSO 
effectively managed the restrictions of power balance and 
scheduling, while coordination was accomplished without 
accounting for network losses as shown in appendix A. 

The RE sources are balanced with the respective 
customer demand side profile. The grid supply is only 
taken when the RE sources couldn’t meet the load demand 
of the particular customer [28]. At the same time, when the 
RE energy sources have excess supply, it could be taken 
by the grid and monetized as incentive during billing by 
SOs. Figure 2 shows the solar PV, wind powers as RE 
sources and the three generators as grid.  

All simulation programs and codes were executed on a 
Dell Latitude E5570 laptop equipped with an Intel(R) Core 
i5-6300U CPU operating at 2.40GHz and running 
Microsoft Windows 10 Pro. The application and 
simulations were executed using the MATLAB R2023b 
software package. 

 

 

Figure 2. Renewable energy sources and grid profiles 

3.1 Problem Formulation 
The Unit Commitment problem has ED as a component. In 
practice, even though the planned combination units for 
each operational period are defined. The ED planning has 
to find out the best way to separate up the generation 
among the active units to meet the system's load demand 
and the spinning reserve capacity, and generators' 
operational constraints, such as ramp rate limits and not 
allowed operating zones [29]. The ELD problem aims to 
determine the optimal mix of power generation that 
minimizes total costs while meeting overall demand and 
adhering to system restrictions.  

The interruptible load reduces the active power 
production of traditional generators with high marginal 
costs to achieve the optimal overall benefit of power 
generation and consumption during peak load periods. The 
demand for electricity is augmented through pricing 
incentives to enhance the use of clean power generated by 
wind turbine and mitigate wind curtailment during periods 
of low load period [30]. The following assumptions within 
the mathematical models are structured as follows. 

i. Solar PV and wind power energy generation is not 
schedulable. Consequently, the SO must 
mandatorily utilize all available generation from 
these sources. 

ii. Renewable generation and system load predictions 
are presumed to be accessible at three days intervals 
between the three consecutive cases of economic 
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ED. 
iii. The generators at the preceding step of ED are 

presumed to be identified, to verify generation 
constraints compliance at this level. 

iv. The model schedule time is 24 hrs. and divided into 
hourly intervals and three randomly selected days 
of the year were used as CASEs 1, 2 and 3. 

 

 
Figure 3. Optimization Problem Formulation Procedure 

The goal of ELD is to keep the total cost of running the 
system as low as possible, considering the limits of power 
production or generation constraints [31]. Figure 4 shows 
the power delivery sequence by the various generators 

 

 

Figure 4. Power delivery sequence by generators 

iF
t n is the cost of fuel in unit i t n 

GiP is the delivered power by unit i  
DP  is the demand power total 
LP  is the total losses in power 

 
Figure 3 shows the optimization problem formulation of 
the microgrid with DSR. The quadratic cost function of a 
unit that is obtained from Equation (1). 

Fi(PGi) = αi + βiPGi + γiPGi2                                            (1) 

αi is the coefficient of constant cost of unit    
βi is a coefficient of linear cost unit   and 
γi is the coefficient of quadratic cost unit 
 

To keep the running cost of the various generators to the 
lowest possible minimum, mathematically formulated as 
shown in Equation (2). 

FT = ∑ Fi(PGi)n
i=1                                                                (2) 

TF    is a generation total cost 
iF ( )GiP   is a cost of generation at unit i 

 
The inequality constraint condition shows the 

minimization of the model as shown in Equation (3). 

∑ PGi =n
i=1  PD + PL       (3) 

 
The generator injected power PGi is the sum of the 

demand power PD and the line power losses PL. 
Considering B-coefficient technique, the losses in the 
network are expressed in Equation (4) 

PL = PGiT  B PGi       (4) 
 
Hence, the loss coefficient is given as B Inequality 

Constraints is shown in Equation (5). 

𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺𝑚𝑚 ≤ 𝑃𝑃𝐺𝐺𝐺𝐺 ≤ 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚      (5) 

Thus 𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺𝑚𝑚   is the lowest power limit of unit i and 
𝑃𝑃𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚    is the highest power limit of unit i. 

When selecting the wind turbine and solar PV 
simulation models [32]. The power output of a wind 
turbine is primarily influenced by three factors: the power 
output curve (determined by avionics power, 
electromechanical transmission, and electrical conversion 
efficiencies) of the specific wind turbine, the wind speed 
distribution at the installation site, and the height of the 
tower.  

The wind power is modeled as in Equation (6). 

V = Vr(Wwt
Hr

)α       (6) 

The V represents the wind speed at the height of the 
wind turbine (HWT) in m/s; Vr denotes the wind speed 
recorded at the reference height (Hr), and the height 
parameter α is the wind speed power law coefficient.  

The maximum power output delivered by the solar PV 
can be obtained from Equation (7). 

P = FF x Voc x Isc      (7) 

Where FF is the field factor; Voc is the open circuit 
voltage Isc is the short circuit current.  Isc, Voc, FF, and Pmax, 
as functions of solar irradiation intensity and module 
temperature, are the four essential electrical parameters of 
a photovoltaic module that are pertinent to this design.  

3.2 Objective Function Formulation 
To combine the two limitations into an ED issue, the 
restricted optimization problem for a specified operating 
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period can be reformulated as in Equation (8). 

min (Fi) = � Fi(Pi) =  ∑ αi +  βiPi +  γiPim
i=1

m
i=1       (8) 

i. Power balance constraints 

ƩPi = PD +  PL,  i=1,…….., m                 (9) 

ii. Generator operation constraints 

max(𝑃𝑃𝑃𝑃𝑚𝑚𝐺𝐺𝑚𝑚 ,𝑃𝑃𝑜𝑜 − 𝐷𝐷𝐷𝐷𝑃𝑃) ≤ Pi ≤ 
             min(𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑃𝑃𝑜𝑜 + 𝑈𝑈𝐷𝐷𝑃𝑃)                                         (10) 

iii. Line flow constraints 

/PLF,k  ≤ PLF,k
max⁄ , k = 1, … . , L  (11) 

Whereas the cost function of the generation Fi(Pi) is 
represented as a quadratic polynomial, where m signifies 
the number of generators engaged in the operating system. 
Pi represents the output power of the ith generator, 
whereas PLF,k denotes the real power flow of line j, with k 
indicating the number of transmission lines. The total 
network losses of the transmission lines were a function of 
unit power output represented by Equation (12). 

PL = � ∑ PiβijPj + m
j=1 (∑ BoiPi + Boom

i=1 )
m

i=1
         (12) 

4. RESULTS AND DISCUSSION 
The PSO efficiently handled the constraints of power 
equilibrium and scheduling, while coordination was 
executed without consideration of network losses. The 
RES are aligned with the corresponding consumer demand 
profile. The grid supply is utilized solely when RES fail to 
satisfy the specific customer's load requirement. 
Simultaneously, when RES generate surplus supply, it can 
be absorbed by the grid and monetized as an incentive.  

Figure 5 indicates the utilization of 194.79 kW of solar 
PV, 135.21 kW of wind powers and grid supply as CASE 
1. The total grid supplied energy under this scenario is 
360.08 kWh and the total energy absorbed by the customer 
is 175.86 kWh as can be seen from Table 1. 

Table 1. CASE1 Renewable Energy Power of 330 kW 

--------------------------------------------------------------------- 
CASE 1 with total RE 330 kW 

--------------------------------------------------------------------- 
Total Grid Power Cost ($):                          206.1486 
Total Transferred Power Cost ($):                  211.4772 
Total Customer Incentive ($):                        1055.8424 
Total Customer Energy Received (kWh):      127.8418 
Total Grid Energy Supplied (kWh):               360.0801 
Total Transferred Energy (kWh):                   48.0175 

 

Figure 5. Total received power by customer in CASE 1 

This translates to only 48.61% of the generated energy 
has been used under this scenario with RE penetration 
incentives of 2.5% savings as shown in Figure 6. 
 

 

Figure 6. Demand side customer savings in CASE 1 

Figure 7 illustrates the absorption of 180.62 kW from 
solar PV sources, 242.52 kW from wind energy, and grid 
supply, designated as CASE 2. The total energy supplied 
by the grid in this scenario is 345.59 kWh, whereas the 
total energy consumed by the customer is 195.20 kWh as 
shown in Table 2. 

Table 2. CASE 2 Reenewable Energy Power of 423 kW 

--------------------------------------------------------------------- 
CASE 2 with total RE 423 kW 

--------------------------------------------------------------------- 
Total Grid Power Cost ($):                          195.7598 
Total Transferred Power Cost ($):                  159.7161 
Total Customer Incentive ($):                       1102.2767 
Total Customer Energy Received (kWh):      150.717 
Total Grid Energy Supplied (kWh):               345.5927 
Total Transferred Energy (kWh):                   44.4805 
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Figure 7. Total received power by customer in CASE 2 

This indicates that only 43.52% of the produced energy 
has been utilized in this scenario, with renewable energy 
penetration incentives yielding up to 22.56% savings, as 
illustrated in Figure 8 and Table 2. 
 

 
Figure 8. Demand side customer savings in CASE 2 

Figure 9 shows the integration of 200.49 kW from solar 
photovoltaic sources, 278.71 kW from wind energy, and 
grid supply, designated as CASE 3. The total energy 
supplied by the grid in this scenario is 317.48 kWh, 
whereas the total energy consumed by the customer is 
205.37 kWh as shown in Table 3. 

Table 3. CASE 3 Reenewable Energy Power of 479 kW 

--------------------------------------------------------------------- 
CASE 3 with total RE 479 kW 

--------------------------------------------------------------------- 
Total Grid Power Cost ($):                          174.8693 
Total Transferred Power Cost ($):                  140.0397 
Total Customer Incentive ($):                        1303.574 
Total Customer Energy Received (kWh):      165.8875 
Total Grid Energy Supplied (kWh):               317.2828 
Total Transferred Energy (kWh):                   39.4805 
 

 
Figure 9. Total received power by customer in CASE 3 

This increase in kWh illustrates that only 35.31% of the 
generated energy has been utilized in this scenario, with 
renewable energy penetration incentives of 24.87% 
savings, as shown in Figure 10 and Table 3. 
 

 
Figure 10. Total received power by customer in CASE 3 

The increase in renewable energy sources integration 
from 300 to 479 kW reduced the power absorbed from the 
grid from 49% to 35%, a marginal decrease of 14%. 
However, the demand side customer incentives also 
increased from 2.5% to 24.87% a marginal increase of over 
22% as shown in the summary Table 4. 

Table 4. Summary of total power delivered by RE DGs 

---------------------------------------------------------------------   
          Case 1   Case 2   Case 3                            

--------------------------------------------------------------------- 
Total grid power cost ($):            206.15    195.76   174.87 
Total transferred power ($):         211.48    159.7    140.04 
Total customer incentive ($):       1056       1102     1304 
Total Energy Received (kWh):    127.84    150.72  165.89 
Total energy supplied (kWh):      360.08    345.59  317.48 
Total Transferred Energy (kWh): 48.02     44.48    39.48 
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5. CONCLUSION 
The cost of the grid power is directly proportional to the 
energy supplied and inversely proportional to the 
transferred energy, energy received and the customer 
incentives. The solar energy (P_s) and wind (P_w) 
supplied for hours complemented the grid supply and 
increased the customer incentives from $1055.84 in CASE 
1 to $1303.57 in CASE 3 representing over $247 increase 
in customer incentive as a result of RES integration. The 
least incentive of about $5.5 per kWh was recorded in 
CASE 1 mainly because the transferred energy was less 
than 3% minimal. However, in CASE 3 over 112 kWh was 
transferred to the grid with a corresponding consumer 
incentive of over $36 per kWh.   

This study has illustrated the viability of utilizing PSO 
methods for the effective resolution of the economic load 
dispatch problem with demand response and generator 
constraints. The study also portrayed the economic 
dispatch technique for generation, grid, and load that 
incorporates demand response to address the solar and 
wind curtailment issues resulting from the growing 
integration of large-scale power. The optimization of 
electricity distribution and the integration of grid design 
and demand response at the load side into the traditional 
economic dispatch model of power generation. This 
encourages the flexible generation of power and load 
within power systems to enable large-scale integration and 
consumption of solar and wind energy as shown in 
appendix A, B and C. 

Future work on this demand side response should 
include additional optimization techniques and larger solar 
PV and wind energy powers to validate the efficacy of the 
technique in a complex microgrid. The number of 
customers that transfer power to the grid should also be 
increased to further optimize the demand side incentives. 
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APPENDIX A 

Solar PV=180.62 kW Wind Turbine =135.17 kW 
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APPENDIX B 

Solar PV=194.79 kW   Wind turbine=242.52 kW 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX C 

Solar PV=200.49 kW   Wind turbine=278.71 kW 
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