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Abstract: The von Neumann bottleneck is a major challenge in the development of energy-efficient processors capable of 
handling high-workload computations. Computing-in-memory (CiM) technique offers a promising solution to overcome the 
memory wall restrictions that limit performance. By embedding processing units directly into memory, CiM can mitigate issues 
of latency and energy consumption during memory access. In this study, we implemented a dual-port design method for a 10-
Transistor (10T) SRAM bit-cell to perform Binarized Multiply-Accumulate operation using 45nm CMOS process technology. 
We use several functional block designs, including isolated read and write paths, to design the 1Kb CiM architecture using the 
Cadence Virtuoso EDA tool. The proposed 10T SRAM-CiM design supports fully parallel computing, allowing it to perform 
32 Binarized MAC operations simultaneously. The design achieves a maximum operating frequency of 100MHz, a throughput 
of 204.8 GOPS and energy efficiency of 443.15 TOPS/W. 
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1. INTRODUCTION 
Deep Neural Networks (DNNs) have revolutionized 
artificial intelligence (AI) and machine learning (ML) 
applications. DNNs consist of multiple hidden layers of 
Convolutional Neural Networks (CNNs), where Multiply-
Accumulate (MAC) operations compute the dot product 
between N-bit weights and activations. However, the 
computational workload of the MAC operation in hidden 
layers is computationally expensive and storage-intensive 
[1, 2]. To address these issues, Binary Neural Networks 
(BNNs) have been introduced, which employ parameter 
quantization and perform Binarized MAC operations using 
bipolar values (+1 and -1) represented as 0. This is done by 
the binarization of both the weight and activation inputs, 
where real-value variables are converted to binary-value 
variables. This process further simplifies the multiplication 
in the Multiply-Accumulate (MAC) operation to addition 
and subtraction through the deterministic sign function as 

 

𝑤𝑤𝑏𝑏 = �+1,         𝑖𝑖𝑖𝑖  𝑤𝑤 ≥ 0
−1,        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒  (1)  

 
where wb is the weight in binary value while w is the 
weight in real value. 

Figure 1 shows the illustration of how Binarized MAC 
computation is performed. Initially, the multiplication 
between the input values and their respective binarized 
weight will occur in the first hidden layer. All the 
generated products are added together with a bias. The sign 

function is then applied to the summation output as an 
activation to binarize the non-negative and negative inputs 
into +1 and -1, respectively. During the forward 
propagation, the weights and inputs in the following layer 
are also binarized. 
 

 
Figure 1. The 1-bit input, weight and output activation of 

BNN [3]. 

The concept of binary weight was first introduced in 
Binary Connect (BC) [4], enabling significant 
computational savings in DNNs. Binarization has since 
become a popular approach to achieve high computational 
efficiency in DNNs, with various methods proposed to 
optimize the binarization process. By simplifying the 
MAC operation, binarization reduces the computational 
complexity of DNNs, enabling efficient processing in 
resource-constrained environments. While BNNs offer 
significant computational and storage advantages, recent 
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studies have shown that the energy consumption and 
latency issues during digital implementation of CNNs are 
dominated by frequent data transfer between memory and 
the processor due to the von Neumann computing 
architecture's design. This issue conflicts with the low-
power requirements of IoT devices that use BNN 
processors for energy and area-efficient edge computing. 
To overcome these challenges, the computing-in-memory 
(CiM) technique has been introduced, which embeds 
processing units directly into memory to minimize data 
transfer. While BNNs offer advantages in computational 
and storage efficiency, the von Neumann architecture's 
design leads to energy consumption and latency issues. 
The CiM technique shows promise in minimizing data 
transfer and addressing these challenges for BNN-based 
IoT devices. 

One of the mainstream approaches for computing-in-
memory involves the use of the 6-Transistor (6T) static 
random-access memory (SRAM) bit-cell, which offers a 
compact layout. However, the implementation of 6T 
SRAM-CiM presents significant challenges due to the 
possibility of write disturbance caused by the cross-
coupled mechanism inherent in the conventional 6T 
SRAM configuration [5], [6]. To address this limitation, 
modifications to the SRAM bit-cell configuration are 
necessary to separate its read and write paths, enabling 
independent access to each bit-cell and preventing 
interference during the discharging process on one bitline. 
In this work, we propose a 1Kb Computing-in-Memory 
(CiM) array based on the 10T SRAM for Binarized 
Multiply-Accumulate using 45nm CMOS technology. The 
proposed design addresses the limitation of 6T SRAM-
CiM by adopting a dual-port design method with isolated 
read and write paths. The resulting 10T SRAM-CiM 
design supports fully parallel computing, allowing it to 
perform 32 Binarized MAC operations simultaneously. 
Our findings demonstrate the potential of the proposed 10T 
SRAM-CiM design to overcome the challenges posed by 
the von Neumann bottleneck and enable energy-efficient 
high-performance computing. 

2. COMPUTING-IN-MEMORY ARRAY 
ARCHITECTURE 
The overall architecture of the 1Kb 10T SRAM-CiM array 
is presented in Figure 2. The unit-macro comprises a read-
wordline (RWL) driver, 32 rows by 32 columns of 10T bit-
cells, a reference array block, a CIM-control block, and a 
CIM I/O block. The RWL driver features 32 decoders and 
driver cells, while the CIM I/O block comprises 32 sense 
amplifiers (SA), 32 evaluation (EVAL) cells, a reference 
voltage generator cell, and a sense enable generator cell. 
The reference array block uses three columns of 10T bit-
cells to generate the reference voltage and sense enable 
signal. The EVAL cell sums the RC currents, IRC 
generated on RBL and RBLX within the same column and 
converts them into an analog voltage signal that then 
becomes the input of the SA. The SA compares the analog 
voltage with the reference voltage to produce the activation 
output. 

The unit-macro operates in two modes: SRAM and 
CIM. In SRAM mode, the array stores the trained weights 

by enabling write operations using the read/write control 
(RW_CTL) and read-write IO blocks (RW_IO). 
Triggering WWL accesses one row through the RW_IO 
block. In CIM mode, the unit-macro implements 32 
binarized MAC operations for 32 activation inputs (IN) 
and 32 weights (W) in parallel computation. The weights 
are stored in m number (m = 0 to 31) of 10T bit-cells within 
the same column. In MAC computing, each IN[n] is 
inserted into the RWL driver to activate the RWLn and 
RWLXn pair (n = 0 to 31) upon activation of multiple 
rows. The current sum of the n bit-cells is then sensed at 
RBL and RBLX to determine IWP = IN × W. 
 

 
Figure 2. Macro architecture of 1 Kb 10T SRAM-CiM 

[7]. 

3. 10T SRAM-CIM BIT CELL FOR BINARIZED 
MAC 
The 10T SRAM-CiM bit-cell is presented in Figure 3 and 
comprises a conventional 6T SRAM and four additional 
transistors (M0-M3) for a decoupled read-port [7]. The bit-
cell operates in SRAM mode for read/write operations and 
in CiM mode to perform Multiply-Accumulate (MAC) 
operations. 
 

 
Figure 3. 10T SRAM-CiM bit-cell [7]. 

In SRAM mode, the read and write schemes are similar 
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to those of conventional 6T SRAM. The write wordline 
(WWL) is enabled to write data into the bit-cell, and the 
stored logic can be read from the bitline (BL). In CiM 
mode, the activation input, IN[i], is represented by the read 
wordline (RWL) and complemented read wordline 
(RWLX). If IN[i] = +1, RWL is asserted as '1', and RWLX 
is asserted as '0'; and vice versa for IN[i] = -1. The bit-cell 
stores the binary weight, W, and the output Q is determined 
by the value of W. If W = +1, output Q = 1, QX = 0, and 

vice versa. The input weight product (IWP) value of the 
10T bit-cell, resulting from the mathematical equation of 
IN[i] × W[i], is summarized in Table 1. If IWP = +1, the 
RC current, IRC, is generated in either RBL or RBLX; if 
IWP = -1, no RC current is generated. The 10T SRAM-
CiM design allows the bit-cell to operate in both SRAM 
and CiM modes, enabling parallel computing and efficient 
processing of Binarized MAC operations. 

Table 1. Truth table of the 10T SRAM-CiM bit-cell [7]. 

Input Weight IWP 

Value RWL RWLX Value Q QX Value RBL RBLX 

-1 0 1 -1 0 1 1 0 IRC 

-1 0 1 1 1 0 -1 0 0 

1 1 0 -1 0 1 -1 0 0 

1 1 0 1 1 0 1 IRC 0 

The simulation waveform presented in Figure 4 
demonstrates the functionality of the bit-cell in both 
SRAM and CiM mode. The bit-cell operates in SRAM 
mode when WWL = 0 and in CiM mode when WWL = 1 
with the output of the sense amplifier, VOUT shows the 
results of the truth table shown in Table 1. It can be 
observed that the bit-cell successfully performed binarized 
multiplication. In the first WWL cycle, the bit-cell stored 
‘0’ (BL = Q = 0) followed by CiM mode for multiplying 
Input = 0 (RWL = 0) and Weight = 0 (Q = 0) resulting 

VOUT = 1. In the second WWL cycle, the bit-cell stored 
‘1’ (BL = Q = 1) followed by CiM mode for multiplying 
Input = 0 (RWL = 0) and Weight = 1 (Q = 1) resulting 
VOUT = 0. In the third WWL cycle, the bit-cell stored ‘0’ 
(BL = Q = 0) followed by CiM mode for multiplying Input 
= 1 (RWL = 1) and Weight = 0 (Q = 0) resulting VOUT = 
0. Finally, in the fourth WWL cycle, the bit-cell stored ‘1’ 
(BL = Q = 1) followed by CiM mode for multiplying Input 
= 1 (RWL = 1) and Weight = 1 (Q = 1) resulting VOUT = 
1. 

 

 
Figure 4. 10T SRAM bit-cell operates in SRAM and CiM mode. 

4. BINARIZED MAC FUNCTIONAL 
VERIFICATION 
The memory architecture design includes 32 BL inputs for 
weight data entrance and 32 RBL outputs for CiM result 
exit, connected column-wise. Similarly, the 32 WWL 
inputs and 32 RWL inputs for write enabling signal 
(Wr_EN) and activation input data entrance, respectively, 
are connected row-wise. The macro unit undergoes both 
SRAM and CiM modes, with the same purpose as 
discussed previously for the single 10T SRAM-CiM bit 

cell. In SRAM mode, the insertion of the Wr_EN control 
signal is followed by row-by-row activation of WWL, 
allowing bit-by-bit storage of weight data. Storing weight 
data with different logic levels within the same column, 
rather than the same logic level, is achieved by activating 
the 32 WWL inputs separately. Activation input data ready 
on the RWL inputs is transmitted to the bit cells within the 
same row. After setting up both essential elements, the 
macro unit enters the CiM mode, consisting of three main 
stages. In the first stage, each bit cell computes the input-
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weight product. The 32 input-weight products on the RBL 
and RBLX are accumulated in the EVAL cell during the 
evaluation cycle in the second stage. In the last stage, the 
finalized binarized MAC result is sensed when the read 
cycle is activated by triggering the SEN control signal. 

To verify the functionality of the memory architecture, 
an example is shown as in Table 2. The activation input 
data is set up, with 17 out of 32 inputs having logic '1'. This 
is followed by setting up the weight data, with eight 
different sets of weight data showcased. The weight data is 
stored in the bit cell following row-by-row activation of 
WWL when running the design in SRAM mode. The 

manual analysis involves several steps. In step 1, the 
product between the input and weight is computed bit-
wise, referring to Table 1. The number of input-weight 
products having logic '1' (NIWP1) is recorded by applying 
the popcount to the computation result. The same working 
step is applied to record the number of input-weight 
products having logic '0' (NIWP0). Finally, by comparing 
NIWP1 and NIWP0, the binarized MAC output (OUT) is 
obtained. If NIWP1 > NIWP0, OUT = 1, and vice versa. 
The activation, weight, NIWP1, NIWP0, and OUT for this 
example are summarized in Table 2.

Table 2. Example of Binarized MAC operation of 32-bit activation input data with 32 sets of 8-bit weight, and its activation 
output, OUT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data 

Input, IN Weight, W 
[0] [1] [2] [3] [4] [5] [6] [7] 

[0] 0 0 1 1 0 1 0 1 0 
[1] 0 0 1 1 0 1 0 1 0 
[2] 0 0 1 0 1 1 0 1 0 
[3] 0 0 1 0 1 1 0 1 0 
[4] 0 0 1 1 0 1 0 0 1 
[5] 0 0 1 1 0 1 0 0 1 
[6] 0 0 1 0 1 1 0 0 1 
[7] 0 0 1 0 1 1 0 0 1 
[8] 0 0 1 1 0 1 0 1 0 
[9] 0 0 1 1 0 1 0 1 0 

[10] 0 0 1 0 1 1 0 1 0 
[11] 0 0 1 0 1 1 0 1 0 
[12] 0 0 1 1 0 1 0 0 1 
[13] 0 0 1 1 0 1 0 0 1 
[14] 0 0 1 0 1 1 0 0 1 
[15] 1 0 1 0 1 1 0 0 1 
[16] 1 0 1 1 0 1 0 1 0 
[17] 1 0 1 1 0 1 0 1 0 
[18] 1 0 1 0 1 0 1 1 0 
[19] 1 0 1 0 1 0 1 1 0 
[20] 1 0 1 1 0 0 1 0 1 
[21] 1 0 1 1 0 0 1 0 1 
[22] 1 0 1 0 1 0 1 0 1 
[23] 1 0 1 0 1 0 1 0 1 
[24] 1 0 1 1 0 0 1 1 0 
[25] 1 0 1 1 0 0 1 1 0 
[26] 1 0 1 0 1 0 1 1 0 
[27] 1 0 1 0 1 0 1 1 0 
[28] 1 0 1 1 0 0 1 0 1 
[29] 1 0 1 1 0 0 1 0 1 
[30] 1 0 1 0 1 0 1 0 1 
[31] 1 0 1 0 1 0 1 0 1 

Pop- 
count 

NIWP1 15 17 15 17 3 29 15 17 
NIWP0 17 15 17 15 29 3 17 15 

Binarized MAC 
OUT 

0 1 0 1 0 1 0 1 

5. MEMORY ARRAY EVALUATION 
The computing-in-memory architecture of 1Kb (1024-bit) 
size based on 10T SRAM is implemented using 45nm 
standard CMOS technology. The 1Kb SRAM-CiM macro 
unit is operated with a nominal supply voltage and body-
biasing voltage of 1.2V.  By using process corner analysis, 

the operating frequency of this macro unit design has been 
determined at various temperatures and process corners. 
Both typical NMOS typical PMOS (tt) and fast NMOS fast 
PMOS (ff) process corners are chosen to determine the 
maximum operating frequency (fmax) of the SRAM-CiM. 
Table 3 shows the comparison result of the maximum 
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operating frequency at different process corners and 
temperatures. Some other important parameters such as 
throughput, throughput density, and energy efficiency 
(Eeff) are then calculated. 

Table 3. Performance of SRAM-CiM at different process 
corners and temperatures. 

Process  
Corner 

fmax (MHz) 

25°C 85°C 

tt 1 1 

ff 100 100 

 
A deeper analysis is conducted to investigate whether 

the benefits/drawbacks of this SRAM-CiM design are 
derived from the process technology or the circuit design 
technique. A technology scaling factor Stech of 1.44 is 
used for 65nm CMOS process technology [8]. This 
approach is aimed at ensuring the fairness of the whole 
comparison process by assuming other works are also 
implemented using 45nm CMOS technology. The 
performance metrics are calculated based on the formulas: 
𝑜𝑜ℎ𝑒𝑒𝑜𝑜𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑜𝑜 ∝  𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡ℎ and 𝐸𝐸𝑡𝑡𝑒𝑒𝑒𝑒  ∝  (𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡ℎ)2. By referring 
to Table 3, the operating frequency for this SRAM-CiM 
macro unit design is recorded at a maximum value of 
100MHz. It can achieve a relatively high throughput of 
204.8 GOPS and a throughput density of 204.8 GOPS/Kb. 
The total energy efficiency of this macro unit is measured 

at a value of 443.15 TOPS/W. 
These data are further compared with the previous 

works [9], [10], [6], [11], and [12] as shown in Table 4. 
The analysis results after applying the scaling factor, Stech 
show that this work has approximately 20X, 18X, 284X, 
and 5X improvements in terms of operating frequency, 
throughput, throughput density, and energy efficiency, as 
compared to [9]. Other works with similar 65nm CMOS 
process technology as in [9] are [6], [11], and [12]. As 
compared to [6], this work is slightly weaker in throughput 
performance by a factor of 1.95X. However, this can be 
compromised by its 2.05X higher throughput density and 
3.83X higher energy efficiency performances than [6]. The 
comparison results obtained between this work and [11] 
show that this work has 3.7X greater throughput density, 
but 4.32X smaller throughput and 1.89X lower 
performance in terms of energy efficiency. Apart from 
operating frequency, this work is weaker than [12] in other 
performance metrics. This work can achieve 2Χ higher 
operating frequency than [12]. Nevertheless, it is weaker 
than [12] in terms of throughput, throughput density, and 
energy efficiency, by a factor of 11.52X, 5.76X, and 
3.14X, respectively. In comparison to the work [10] that 
utilizes the 45nm CMOS process technology, it is observed 
that this work has comparatively higher achievement in all 
performance metrics. To summarise the comparison 
results between this work and [10], this work has 
approximately 4.5X, 24X, 186X, and 22X enhancement in 
terms of operating frequency, throughput, throughput 
density, and energy efficiency, respectively.

Table 4. Comparison of proposed SRAM-CiM. 

 [9] [10] [4] [11] [12] This work 

Technology 65nm 45nm 65nm 65nm 65nm 45nm 
Macro size 16Kb 8Kb 4Kb 16Kb 2Kb 1Kb 
Cell structure 10T 10T Split-WL 6T 12T 8T1C 10T 
Input (bit) 6 1 1 1 1 1 
Weight (bit) 1 1 1 1 1 1 
Output (bit) 6 5 1 3.5 5 1 
Operating frequency (MHz)  5 22.2 N/A N/A 50 100 
Throughput (GOPS) 8 

(11.5)* 
8.5 

 
278 

(400)* 
614 

(884)* 
1638 

(2358.7)* 
204.8 

Throughput density (TOPS/Kb) 0.5 
(0.72)* 

1.1 69.5 
(100.08)* 

38.4 
(55.3)* 

819 
(1179.4)* 

204.8 

Energy efficiency (TOPS/W) 40.3 
(83.6)* 

19.9 55.8 
(115.7)* 

403 
(835.7)* 

671.5 
(1392)* 

443.15 

* Scaling factor (Stech) is applied.      
 
6. CONCLUSION 
A 1Kb computing-in-memory based on the proposed 10T 
SRAM is designed and evaluated. The employment of the 
dual-port approach has prevented this SRAM-CiM design 
from the write disturbance issue that is faced in the 
conventional 6T SRAM topology. The simulation results 
show that this SRAM-CiM design possesses full 
functionality at a nominal supply voltage of 1.2V in 45nm 
standard CMOS process technology. This CiM 

architecture can operate in a way to complete 32 MAC 
operations between the activation input data and weight 
data at one-time goes. The bit-by-bit storage mechanism 
makes the logic level of the data going to be stored within 
the same column varied. This allows two datasets to 
undergo MAC computation in all possible combinations. 
The simulation results returned from the functional 
verification flow evidence that this design has hit the goal 
of performing the binarized MAC operation between two 
datasets in different combinations. The MAC execution 
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between two datasets in different combinations will result 
in a variety of total read bitline voltage. Therefore, finding 
a reference voltage value that is suitable for all possible 
kinds of situations is considered the challenging part of this 
project.  

The comparison results corresponding to the situation 
after applying scaling factor, Stech, show that this macro 
unit has a great achievement in getting a maximum 
operating frequency of 100MHz, which is the highest 
among all the SRAM-CiM studies. The advantage of 
getting a high operating frequency will be further extended 
to a high throughput of 204.8 GOPS, a great improvement 
from [9] and [10]. This value is still slightly lower than the 
throughput gained in literature [4], [11], and [12]. 
However, by considering the macro size, this design can 
achieve a comparatively high throughput density of 
204.8GOPS/Kb, surpassing all the previous works 
including [4] and [11], except [12]. The high energy 
efficiency of 443.15 TOPS/W is credited for this design, 
which is higher than all the previous works, but slightly 
lower than [12].  
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