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Abstract: Linear algebra is essential in machine learning for dealing with large datasets. Linear algebra acceleration is directly 
related to the hardware used. Many works have proposed linear algebra accelerator architectures with the goal of improving 
energy efficiency and speed. The characterization of trade-offs in balancing acceleration and programmability of software 
routines is still insufficiently explored, particularly for edge analytics. Therefore, this paper proposes a heterogeneous hardware 
architecture consisting of a RISC-V system-on-chip and a linear algebra accelerator. Tested on Efinix Trion T120BGA324, 
the new architecture incorporates software routines and is clocked at 50 MHz. The improved design provides better timing 
closure and lower logic element use, with the lowest slack being 2.102 ns and the highest logic element use being 66.40%. The 
design incorporates a software routine for improved data management, reduced hardware resource utilization, and some 
computational load. The results show that the heterogeneous architecture outperforms the RISC-V System-on-Chip standalone 
by 156× in General Matrix Multiplication without accuracy loss. 
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1. INTRODUCTION 
Machine learning has grown in popularity and application 
over the last decade, and many researchers are working to 
improve the machine learning algorithm and improve 
linear algebra acceleration. As machine learning is to 
process large data, it is better to process them in vectors or 
matrices, and linear algebra defines the study of vectors 
and matrices, which provides the operations of vectors and 
matrices on the data. Therefore, it is a fundamental and 
primary step in machine learning. 

The majority of linear algebra accelerations are built on 
a single architecture. A central processing unit has the 
worst performance in linear algebra operation compared to 
graphical processing unit (GPU) and field programmable 
gate array (FPGA) [1, 2]. Because CPU is emphasized on 
its single-thread performance. Even though state-or-the-art 
CPUs were designed with parallelism techniques such as 
multi-threading, it is not guaranteed that the CPU will 
improve but most probably degrade the performance as it 
would magnify the non-deterministic impact on deep 
learning system that inconsistent models and results would 
be produced even though with the same settings, 
parameters, and datasets, on the identical hardware 
architecture [3]. Modern GPUs perform well in parallel 
computing on iterative tasks that demand intensive 
computation [4]. Thus, GPU has been the top choice in 
research for high-performance computing, especially 
machine learning for the last decade [5, 6], but GPU is not 
energy efficient, which is critical for edge processing. The 
application-specific integrated circuit (ASIC) is often the 
choice for the deployment of linear algebra acceleration 

[7]. However, an ASIC has a high development cost and 
low flexibility, as no optimization or reconfiguration is 
possible once the design is fabricated. 

FPGA provides high flexibility because they are 
reconfigurable and reprogrammable. Heterogeneous 
hardware architecture with a parameterizable scalar core 
and a linear algebra accelerator is possible with the 
recently emerging instruction set architecture (ISA) RISC-
V. Furthermore, because RISC-V is open-source, there are 
several free-to-use RISC-V cores available to any 
developer to modify and redesign the core to suit their 
desired specification. FPGA based RISC-V Sapphire SoC 
provided by Efinity is such a platform, which allows users 
to reconfigure the core at both a high level and detail 
reconfiguration via Verilog. 

A linear algebra accelerator that is implemented in the 
form of extended instruction was proposed [7]. Both the 
accelerator and main core shared the same caches and 
memory which limits the data access and deteriorates the 
General Matrix Multiplication (GEMM) and Deep Neural 
Network (DNN) performance as they demand huge 
memory. Also, one of the linear algebra operations, such 
as the GEMM has a complexity of O(n3). More effort is 
needed in hardware design to obtain good timing closure 
with low resource usage. 

In scientific research, especially in computer 
engineering, linear algebra is standardized, namely linear 
algebra subprograms (BLAS) [2]. BLAS are routines that 
provide standard building blocks for basic vector and 
matrix operations, which are widely used in machine 
learning [8]. It is divided into three levels: BLAS level 1 
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contains vector-vector operations, BLAS level 2 is for 
vector-matrix operations, and BLAS level 3 is for matrix-
matrix operations [1, 9]. As linear algebra operations are 
fundamental in machine learning, the invention of the 
BLAS library makes easy the development of high-
performance computing (HPC). Also, it ensures the 
performance portability of linear algebra routines, making 
it a standard building block in HPC [5]. 

This paper presents a heterogeneous architecture with 
linear algebra acceleration at level 3 Basic Linear Algebra 
Subprogram (BLAS). This is achieved by integrating an 
open-source linear algebra accelerator and parameterizable 
RISC-V core on the Efinix platform. We proposed an 
optimized design that requires low frequency at 50 MHz 
with reduced resource usage at 66.40% of logic elements 
used and achieves 2.102 ns positive slack. Results show a 
100% accuracy and correctness of output matrix × data 
with 156 performance improvement. The heterogeneous 
hardware architecture provides a practical solution for 
improved linear algebra acceleration. 

2. PRELIMINARY 
We are targeting level 3 BLAS when designing the linear 
algebra accelerator. In this section, some basic notations, 
terms, and definitions related to GEMM are presented. 
 
Definition 1. GEMM [10] 
The GEMM is a dot product operation on two 2-D matrices 
as described in the notation: 
 

C = αA × B + βC   (1) 
 
where A, B, and C are matrices, α and β are scalar 
constants, where α to 1 and β to 0. The linear algebra 
accelerator is designed to calculate independent output 
without considering the previous result. To perform matrix 
multiplication, it is necessary to make sure the column of 
matrix A is equal to the row of matrix B. For instance, 
matrix A of m × k multiplied with matrix B of k × n will 

get matrix C of m × n. In this project, we are setting m, n, 
and k to have the  same value. 
 
Definition 2. GEMM Performance in Operations per 
Second [11] 
The performance of GEMM is calculated in terms of the 
number of operations per second (OP/s). The number of 
operations of matrix multiplication can be calculated by 
using the notation: 

 
OP = 2mnk   (2)  

 
where m is the row of matrix A and matrix C, n is the 
column of matrix B and matrix C, and k is the row and 
column of matrix A and matrix B respectively. 
 

 
Figure 1. Proposed heterogeneous hardware architecture. 

3. HETEROGENEOUS HARDWARE 
ARCHITECTURE 
This section presents the proposed hardware architecture 
with linear algebra acceleration. As shown in Figure 1, the 
design consists of a RISC-V SoC, direct memory access 
(DMA) controller, registers, and the linear algebra 
accelerator. Figure 2 shows the algorithm for the linear 
algebra accelerator. 

 

 
Figure 2. Algorithm of Linear Algebra Accelerator 

 
 
 

To make sure the timing closure is met, and to ensure 
that fewer resources are used, a software routine is 
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included that works with the hardware design. As shown 
in Figure 3 and Figure 4, 16 data from each matrix A and 
matrix B will be stored in the registers to perform the dot 
product. The data is accumulated until one output matrix C 
element is computed. In this design, if the matrix size of A 

and B is larger than 16 for both columns and rows, the k 
counter is incremented by 16 in each loop until it reaches 
the k dimension of the matrix. This vastly reduces resource 
usage and improves timing closure.

 

 
Figure 3. Functional block diagram of hardware architecture. 

 
Figure 4. Linear algebra accelerator. 

This is accomplished by including a software routine 
that manages the data by transposing matrix B and 
controlling memory accesses. This is made easier by using 
Efinix design platforms to implement the design. The 
Efinity IDE and Eclipse are two tools provided by Efinix. 
The heterogeneous architecture hardware design is created 
in Verilog on Efinity IDE and programmed to Trion FPGA 
on the Efinix development board T120BGA324. The 
software written in C on Eclipse will start the GEMM by 
sending commands to the hardware architecture, which 
will read data from the main memory via DMA. 

The program is designed to read one row of data from 
matrix A and one row of data from transposed matrix B. 
Following the completion of the data read, the linear 
algebra accelerator will perform the dot product until one 
element of matrix C is calculated. The data is then written 
to main memory using DMA and as directed by the 
software. To compute the second element of matrix C, the 
software will instruct the hardware to read the second row 
of transposed matrix B, and the data of matrix A will 
remain unchanged until all rows of matrix B are read, 
indicating the elements in matrix C’s first row are 

computed. The software will then notify the hardware to 
read the second row of matrix A and the first row of 
transposed matrix B in order to compute the first element 
in matrix C’s second row. This procedure is repeated until 
all of the elements of matrix C have been calculated. 

4. PERFORMANCE ASSESSMENT 
It has an average performance of 1.7 × 10−1 MOP/s for all 
the matrix sizes with the highest performance of 1.9 × 10−1 
MOP/s for matrix size of 256 × 256. This outcome clearly 
shows that a single-core hardware architecture is 
insufficient in performing the GEMM. 

However, the GEMM performance improves 
significantly when the RISC-V SoC is paired with a linear 
algebra accelerator. The results show an increased 
performance when the matrix sizes increase. The 
improvement hit the highest with a performance of 285 × 
10−1 MOP/s which is an improvement factor of 156 for 
matrix size of 512 × 512, and the lowest with a 
performance of 48.4 × 10−1 MOP/s which is an 
improvement factor of 29.9 for matrix size of 16 × 16. 

 
 



Chun F. Ong et al. / ELEKTRIKA, 24(1), 2025, 53-56 

56 

Table 1. Performance and accuracy comparison between RISC-V standalone and RISC-V with LA Accelerator 
Matrix 

Size (n*n) 
RISC-V 

Standalone 
(10−1MOP/s) 

RISC-V with 
LA Accelerator 
(10−1MOP/s) 

Improvement In 
Performance 

RISC-V 
Standalone 

Accuracy (%) 

RISC-V with LA 
Accelerator 

Accuracy (%) 
16 1.6 48.4 29.9 100 100 
32 1.5 88.1 55.2 100 100 
64 1.6 138.2 85.3 100 100 

128 1.6 198.8 121.9 100 100 
256 1.9 246.4 128.4 100 100 
512 1.8 285.0 156.0 100 100 

 
From the results, the resources used hit the minimum of 

14.61% of total logic elements used, and a maximum of 
66.40% of total logic elements used. This outcome shows 
that the design has space to configure to accommodate 
bigger matrix sizes. Also, timing closure is met such that 
the design can achieve the highest positive slack of 4.274 
ns at the matrix size of 32 × 32 and the smallest positive 
slack of 2.102 ns at the matrix size of 512 × 512. 

As the processing paradigm shifts to small-sized 
matrices, The design can be restructured as the processing 
paradigm shifts to small-sized matrices as well. It is 
referred to as batched matrix multiplication. Machine 
learning begins to utilize more multiple small matrix 
operations and gradually becomes the core operation of the 
machine learning framework. 

Table 2. Resource usage and worst setup time 
Matrix Size 

(n*n) 
Resource 

Usage (%) 
Worst Setup 

time (ns) 
16 14.61 2.664 
32 17.41 4.274 
64 20.07 3.814 

128 26.67 3.659 
256 40.82 3.602 
512 66.40 2.102 

5. CONCLUSION 
A heterogeneous hardware architecture with linear algebra 
acceleration was presented in this paper. We demonstrated 
that the GEMM performance on a platform consisting of a 
RISC-V SoC and a dedicated linear algebra accelerator is 
improved by 156× when compared to a RISC-V SoC alone 
with the same output correctness of 100%. We manage to 
keep the design resource usage at 66.40% of total logic 
elements used with the worst positive setup time of 2.102 
ns using software. The design can support up to 512 × 512 
matrix multiplication. 

This project’s design can be improved in the future so 
that it can accommodate larger matrices. The software 
routine can still be included in the design to balance the 
work between software and hardware while also reducing 
hardware resources for better design synthesis. Also, this 
architecture could be developed to heterogeneous 
manycore hardware architecture to further improve the 
performance.  

REFERENCES 
[1] Xiong, C. and Xu, N. Performance comparison of 

BLAS on CPU, GPU and FPGA. 2020 IEEE 9th Joint 

International Information Technology and Artificial 
Intelligence Conference (ITAIC). IEEE. 2020, vol. 9. 
193–197. 

[2] Yin, L., Zhang, Y., Zhang, Z., Peng, Y. and Zhao, P. 
ParaX: boosting deep learning for big data analytics 
on many-core CPUs. Proceedings of the VLDB 
Endowment, 2021. 14(6): 864–877. 

[3] Xiao, G., Liu, J., Zheng, Z. and Sui, Y. 
Nondeterministic Impact of CPU Multithreading on 
Training Deep Learning Systems.ISSRE. 2021. 557–
568. 

[4] Zhang, X., Tang, Z., Du, L. and Yang, L. An 
incremental iterative acceleration architecture in 
distributed heterogeneous environments with GPUs 
for deep learning. IEEE Transactions on Parallel and 
Distributed Systems, 2021. 32(11): 2823–2837. 

[5] Gautier, T. and Lima, J. V. Xkblas: a high-
performance implementation of blas- 3 kernels on 
multi-gpu server. 2020 28th Euromicro International 
Conference on Parallel, Distributed and Network-
Based Processing (PDP). IEEE. 2020. 1–8. 

[6] Dongarra, J., Gates, M., Kurzak, J., Luszczek, P. and 
Tsai, Y. M. Autotuning numerical dense linear 
algebra for batched computation with GPU hardware 
accelerators. Proceedings of the IEEE, 2018. 
106(11): 2040–2055. 

[7] Steffl, S. and Reda, S. Lacore: A supercomputing-
like linear algebra accelerator for soc-based designs. 
2017 IEEE International Conference on Computer 
Design (ICCD). IEEE. 2017. 137–144.  

[8] Browne, S., Dongarra, J., Grosse, E. and Rowan, T. 
The Netlib mathematical software repository. D-lib 
Magazine, 1995. 1(9). 

[9] Fibich, C., Tauner, S., Rossler, P. and Horauer, M. 
Evaluation of Open-Source Linear Algebra Libraries 
targeting ARM and RISC-V Architectures. 2020 15th 
Conference on Computer Science and Information 
Systems (FedCSIS). IEEE. 2020. 663–672. 

[10] Wang, R., Yang, Z., Xu, H. and Lu, L. A high-
performance batched matrix multiplication 
framework for GPUs under unbalanced input 
distribution. The Journal of Supercomputing, 2022. 
78(2): 1741–1758. 

[11] Abdelfattah, A., Tomov, S. and Dongarra, J. Fast 
batched matrix multiplication for small sizes using 
half-precision arithmetic on GPUs. 2019 IEEE 
international parallel and distributed processing 
symposium (IPDPS). IEEE. 2019. 111–122. 


	1. INTRODUCTION
	2. PRELIMINARY
	3. HETEROGENEOUS HARDWARE ARCHITECTURE
	4. PERFORMANCE ASSESSMENT
	5. CONCLUSION
	REFERENCES

