
VOL. 24, NO. 1, 2025, 53-56
elektrika.utm.my
ISSN 0128-4428

53

Heterogeneous Hardware Architecture with Linear
Algebra Acceleration

Chun F. Ong* and M. N. Marsono

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
*Corresponding author: cfong2@graduate.utm.my

Abstract: Linear algebra is essential in machine learning for dealing with large datasets. Linear algebra acceleration is directly
related to the hardware used. Many works have proposed linear algebra accelerator architectures with the goal of improving
energy efficiency and speed. The characterization of trade-offs in balancing acceleration and programmability of software
routines is still insufficiently explored, particularly for edge analytics. Therefore, this paper proposes a heterogeneous hardware
architecture consisting of a RISC-V system-on-chip and a linear algebra accelerator. Tested on Efinix Trion T120BGA324,
the new architecture incorporates software routines and is clocked at 50 MHz. The improved design provides better timing
closure and lower logic element use, with the lowest slack being 2.102 ns and the highest logic element use being 66.40%. The
design incorporates a software routine for improved data management, reduced hardware resource utilization, and some
computational load. The results show that the heterogeneous architecture outperforms the RISC-V System-on-Chip standalone
by 156× in General Matrix Multiplication without accuracy loss.

Keywords: General Matrix Multiplication (GEMM), Linear algebra accelerator, Efinix Trion T120BGA324, RISC-V SoC
© 2025 Penerbit UTM Press. All rights reserved

Article History: received 3 November 2024; accepted 19 February 2025; published 30 April 2025

1. INTRODUCTION
Machine learning has grown in popularity and application
over the last decade, and many researchers are working to
improve the machine learning algorithm and improve
linear algebra acceleration. As machine learning is to
process large data, it is better to process them in vectors or
matrices, and linear algebra defines the study of vectors
and matrices, which provides the operations of vectors and
matrices on the data. Therefore, it is a fundamental and
primary step in machine learning.

The majority of linear algebra accelerations are built on
a single architecture. A central processing unit has the
worst performance in linear algebra operation compared to
graphical processing unit (GPU) and field programmable
gate array (FPGA) [1, 2]. Because CPU is emphasized on
its single-thread performance. Even though state-or-the-art
CPUs were designed with parallelism techniques such as
multi-threading, it is not guaranteed that the CPU will
improve but most probably degrade the performance as it
would magnify the non-deterministic impact on deep
learning system that inconsistent models and results would
be produced even though with the same settings,
parameters, and datasets, on the identical hardware
architecture [3]. Modern GPUs perform well in parallel
computing on iterative tasks that demand intensive
computation [4]. Thus, GPU has been the top choice in
research for high-performance computing, especially
machine learning for the last decade [5, 6], but GPU is not
energy efficient, which is critical for edge processing. The
application-specific integrated circuit (ASIC) is often the
choice for the deployment of linear algebra acceleration

[7]. However, an ASIC has a high development cost and
low flexibility, as no optimization or reconfiguration is
possible once the design is fabricated.

FPGA provides high flexibility because they are
reconfigurable and reprogrammable. Heterogeneous
hardware architecture with a parameterizable scalar core
and a linear algebra accelerator is possible with the
recently emerging instruction set architecture (ISA) RISC-
V. Furthermore, because RISC-V is open-source, there are
several free-to-use RISC-V cores available to any
developer to modify and redesign the core to suit their
desired specification. FPGA based RISC-V Sapphire SoC
provided by Efinity is such a platform, which allows users
to reconfigure the core at both a high level and detail
reconfiguration via Verilog.

A linear algebra accelerator that is implemented in the
form of extended instruction was proposed [7]. Both the
accelerator and main core shared the same caches and
memory which limits the data access and deteriorates the
General Matrix Multiplication (GEMM) and Deep Neural
Network (DNN) performance as they demand huge
memory. Also, one of the linear algebra operations, such
as the GEMM has a complexity of O(n3). More effort is
needed in hardware design to obtain good timing closure
with low resource usage.

In scientific research, especially in computer
engineering, linear algebra is standardized, namely linear
algebra subprograms (BLAS) [2]. BLAS are routines that
provide standard building blocks for basic vector and
matrix operations, which are widely used in machine
learning [8]. It is divided into three levels: BLAS level 1

Chun F. Ong et al. / ELEKTRIKA, 24(1), 2025, 53-56

54

contains vector-vector operations, BLAS level 2 is for
vector-matrix operations, and BLAS level 3 is for matrix-
matrix operations [1, 9]. As linear algebra operations are
fundamental in machine learning, the invention of the
BLAS library makes easy the development of high-
performance computing (HPC). Also, it ensures the
performance portability of linear algebra routines, making
it a standard building block in HPC [5].

This paper presents a heterogeneous architecture with
linear algebra acceleration at level 3 Basic Linear Algebra
Subprogram (BLAS). This is achieved by integrating an
open-source linear algebra accelerator and parameterizable
RISC-V core on the Efinix platform. We proposed an
optimized design that requires low frequency at 50 MHz
with reduced resource usage at 66.40% of logic elements
used and achieves 2.102 ns positive slack. Results show a
100% accuracy and correctness of output matrix × data
with 156 performance improvement. The heterogeneous
hardware architecture provides a practical solution for
improved linear algebra acceleration.

2. PRELIMINARY
We are targeting level 3 BLAS when designing the linear
algebra accelerator. In this section, some basic notations,
terms, and definitions related to GEMM are presented.

Definition 1. GEMM [10]
The GEMM is a dot product operation on two 2-D matrices
as described in the notation:

C = αA × B + βC (1)

where A, B, and C are matrices, α and β are scalar
constants, where α to 1 and β to 0. The linear algebra
accelerator is designed to calculate independent output
without considering the previous result. To perform matrix
multiplication, it is necessary to make sure the column of
matrix A is equal to the row of matrix B. For instance,
matrix A of m × k multiplied with matrix B of k × n will

get matrix C of m × n. In this project, we are setting m, n,
and k to have the same value.

Definition 2. GEMM Performance in Operations per
Second [11]
The performance of GEMM is calculated in terms of the
number of operations per second (OP/s). The number of
operations of matrix multiplication can be calculated by
using the notation:

OP = 2mnk (2)

where m is the row of matrix A and matrix C, n is the
column of matrix B and matrix C, and k is the row and
column of matrix A and matrix B respectively.

Figure 1. Proposed heterogeneous hardware architecture.

3. HETEROGENEOUS HARDWARE
ARCHITECTURE
This section presents the proposed hardware architecture
with linear algebra acceleration. As shown in Figure 1, the
design consists of a RISC-V SoC, direct memory access
(DMA) controller, registers, and the linear algebra
accelerator. Figure 2 shows the algorithm for the linear
algebra accelerator.

Figure 2. Algorithm of Linear Algebra Accelerator

To make sure the timing closure is met, and to ensure
that fewer resources are used, a software routine is

Chun F. Ong et al. / ELEKTRIKA, 24(1), 2025, 53-56

55

included that works with the hardware design. As shown
in Figure 3 and Figure 4, 16 data from each matrix A and
matrix B will be stored in the registers to perform the dot
product. The data is accumulated until one output matrix C
element is computed. In this design, if the matrix size of A

and B is larger than 16 for both columns and rows, the k
counter is incremented by 16 in each loop until it reaches
the k dimension of the matrix. This vastly reduces resource
usage and improves timing closure.

Figure 3. Functional block diagram of hardware architecture.

Figure 4. Linear algebra accelerator.

This is accomplished by including a software routine
that manages the data by transposing matrix B and
controlling memory accesses. This is made easier by using
Efinix design platforms to implement the design. The
Efinity IDE and Eclipse are two tools provided by Efinix.
The heterogeneous architecture hardware design is created
in Verilog on Efinity IDE and programmed to Trion FPGA
on the Efinix development board T120BGA324. The
software written in C on Eclipse will start the GEMM by
sending commands to the hardware architecture, which
will read data from the main memory via DMA.

The program is designed to read one row of data from
matrix A and one row of data from transposed matrix B.
Following the completion of the data read, the linear
algebra accelerator will perform the dot product until one
element of matrix C is calculated. The data is then written
to main memory using DMA and as directed by the
software. To compute the second element of matrix C, the
software will instruct the hardware to read the second row
of transposed matrix B, and the data of matrix A will
remain unchanged until all rows of matrix B are read,
indicating the elements in matrix C’s first row are

computed. The software will then notify the hardware to
read the second row of matrix A and the first row of
transposed matrix B in order to compute the first element
in matrix C’s second row. This procedure is repeated until
all of the elements of matrix C have been calculated.

4. PERFORMANCE ASSESSMENT
It has an average performance of 1.7 × 10−1 MOP/s for all
the matrix sizes with the highest performance of 1.9 × 10−1
MOP/s for matrix size of 256 × 256. This outcome clearly
shows that a single-core hardware architecture is
insufficient in performing the GEMM.

However, the GEMM performance improves
significantly when the RISC-V SoC is paired with a linear
algebra accelerator. The results show an increased
performance when the matrix sizes increase. The
improvement hit the highest with a performance of 285 ×
10−1 MOP/s which is an improvement factor of 156 for
matrix size of 512 × 512, and the lowest with a
performance of 48.4 × 10−1 MOP/s which is an
improvement factor of 29.9 for matrix size of 16 × 16.

Chun F. Ong et al. / ELEKTRIKA, 24(1), 2025, 53-56

56

Table 1. Performance and accuracy comparison between RISC-V standalone and RISC-V with LA Accelerator
Matrix

Size (n*n)
RISC-V

Standalone
(10−1MOP/s)

RISC-V with
LA Accelerator
(10−1MOP/s)

Improvement In
Performance

RISC-V
Standalone

Accuracy (%)

RISC-V with LA
Accelerator

Accuracy (%)
16 1.6 48.4 29.9 100 100
32 1.5 88.1 55.2 100 100
64 1.6 138.2 85.3 100 100

128 1.6 198.8 121.9 100 100
256 1.9 246.4 128.4 100 100
512 1.8 285.0 156.0 100 100

From the results, the resources used hit the minimum of

14.61% of total logic elements used, and a maximum of
66.40% of total logic elements used. This outcome shows
that the design has space to configure to accommodate
bigger matrix sizes. Also, timing closure is met such that
the design can achieve the highest positive slack of 4.274
ns at the matrix size of 32 × 32 and the smallest positive
slack of 2.102 ns at the matrix size of 512 × 512.

As the processing paradigm shifts to small-sized
matrices, The design can be restructured as the processing
paradigm shifts to small-sized matrices as well. It is
referred to as batched matrix multiplication. Machine
learning begins to utilize more multiple small matrix
operations and gradually becomes the core operation of the
machine learning framework.

Table 2. Resource usage and worst setup time
Matrix Size

(n*n)
Resource

Usage (%)
Worst Setup

time (ns)
16 14.61 2.664
32 17.41 4.274
64 20.07 3.814

128 26.67 3.659
256 40.82 3.602
512 66.40 2.102

5. CONCLUSION
A heterogeneous hardware architecture with linear algebra
acceleration was presented in this paper. We demonstrated
that the GEMM performance on a platform consisting of a
RISC-V SoC and a dedicated linear algebra accelerator is
improved by 156× when compared to a RISC-V SoC alone
with the same output correctness of 100%. We manage to
keep the design resource usage at 66.40% of total logic
elements used with the worst positive setup time of 2.102
ns using software. The design can support up to 512 × 512
matrix multiplication.

This project’s design can be improved in the future so
that it can accommodate larger matrices. The software
routine can still be included in the design to balance the
work between software and hardware while also reducing
hardware resources for better design synthesis. Also, this
architecture could be developed to heterogeneous
manycore hardware architecture to further improve the
performance.

REFERENCES
[1] Xiong, C. and Xu, N. Performance comparison of

BLAS on CPU, GPU and FPGA. 2020 IEEE 9th Joint

International Information Technology and Artificial
Intelligence Conference (ITAIC). IEEE. 2020, vol. 9.
193–197.

[2] Yin, L., Zhang, Y., Zhang, Z., Peng, Y. and Zhao, P.
ParaX: boosting deep learning for big data analytics
on many-core CPUs. Proceedings of the VLDB
Endowment, 2021. 14(6): 864–877.

[3] Xiao, G., Liu, J., Zheng, Z. and Sui, Y.
Nondeterministic Impact of CPU Multithreading on
Training Deep Learning Systems.ISSRE. 2021. 557–
568.

[4] Zhang, X., Tang, Z., Du, L. and Yang, L. An
incremental iterative acceleration architecture in
distributed heterogeneous environments with GPUs
for deep learning. IEEE Transactions on Parallel and
Distributed Systems, 2021. 32(11): 2823–2837.

[5] Gautier, T. and Lima, J. V. Xkblas: a high-
performance implementation of blas- 3 kernels on
multi-gpu server. 2020 28th Euromicro International
Conference on Parallel, Distributed and Network-
Based Processing (PDP). IEEE. 2020. 1–8.

[6] Dongarra, J., Gates, M., Kurzak, J., Luszczek, P. and
Tsai, Y. M. Autotuning numerical dense linear
algebra for batched computation with GPU hardware
accelerators. Proceedings of the IEEE, 2018.
106(11): 2040–2055.

[7] Steffl, S. and Reda, S. Lacore: A supercomputing-
like linear algebra accelerator for soc-based designs.
2017 IEEE International Conference on Computer
Design (ICCD). IEEE. 2017. 137–144.

[8] Browne, S., Dongarra, J., Grosse, E. and Rowan, T.
The Netlib mathematical software repository. D-lib
Magazine, 1995. 1(9).

[9] Fibich, C., Tauner, S., Rossler, P. and Horauer, M.
Evaluation of Open-Source Linear Algebra Libraries
targeting ARM and RISC-V Architectures. 2020 15th
Conference on Computer Science and Information
Systems (FedCSIS). IEEE. 2020. 663–672.

[10] Wang, R., Yang, Z., Xu, H. and Lu, L. A high-
performance batched matrix multiplication
framework for GPUs under unbalanced input
distribution. The Journal of Supercomputing, 2022.
78(2): 1741–1758.

[11] Abdelfattah, A., Tomov, S. and Dongarra, J. Fast
batched matrix multiplication for small sizes using
half-precision arithmetic on GPUs. 2019 IEEE
international parallel and distributed processing
symposium (IPDPS). IEEE. 2019. 111–122.

	1. INTRODUCTION
	2. PRELIMINARY
	3. HETEROGENEOUS HARDWARE ARCHITECTURE
	4. PERFORMANCE ASSESSMENT
	5. CONCLUSION
	REFERENCES

