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Abstract: Permanent magnet synchronous motor (PMSM) uses the permanent magnet in the rotor for excitation. Its high 
efficiency and controllable power factor make it suitable for electric vehicles and other applications requiring high 
performance. Numerous studies have explored control strategies for PMSM, and sensorless control in PMSM eliminates the 
need for a position sensor, thereby reducing system complexity. However, sensorless control systems based on position error 
are prone to significant transient errors during the speed ramp stage. Typically, with a third-order actual position at a given 
ramp speed, the traditional type-II quadrature PLL (QPLL) is unable to estimate the position without incurring static error. 
This paper proposes an improved type III phase-locked loop (IPLL), which can effectively reduce this error, easier parameters 
tunning, and be suitable for all sensorless control based on position error. A detailed theoretical analysis and simulation 
comparison of sensorless systems based on QPLL and IPLL are presented. Simulation results verified that the proposed IPLL 
has stronger suppression ability to error and can limit the maximum position error to less than 3°, resulting in stronger load-
carrying performance.  
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1. INTRODUCTION 
Permanent magnet synchronous motors (PMSMs) are 
commonly utilized in applications such as electric vehicles, 
robotics, and household appliances owing to their high-
power density, efficiency, straightforward design, and 
accessible field-weakening capabilities [1]. The rotor of a 
PMSM contains permanent magnets, while the stator 
windings are arranged in distributed slots. This adds to the 
system's cost, size, and operational inertia, while 
diminishing its robustness. Consequently, sensorless 
control strategies for PMSMs can address these drawbacks. 
Precise rotor position estimation is particularly critical in 
sensorless control systems for PMSMs, as it reduces costs, 
lowers system complexity, and improves overall 
robustness [2-3]. 

Currently, the primary methods to achieve sensorless 
motor control are model-based and signal injection 
approaches, which are applicable to medium-high and 
zero-low speed ranges, respectively. When the speed is 
quite low, usually 10% of the rated speed, the motor’s back 
electromotive force (EMF) is small, which is difficult to be 
accurately estimate, as well as the low signal-to-noise ratio, 
especially at zero speed, the estimation system based on 
the model method has no available signals. Especially at 
zero speed, the model-based estimation system lacks 
usable signals. At this time, injecting an appropriate signal 
is necessary. High-frequency square wave signals have 

been proposed widely in many studies due to their 
simplicity and ease of digital implementation. However, 
the injection of additional signals can lead to issues such 
as torque ripple, audible noise, system delays, and reduced 
control accuracy [4-6]. Furthermore, the signal injection 
method relies on motor saliency. When the anisotropy ratio 
is below 1.2, particularly in surface-mounted PMSMs, 
closed-loop control becomes difficult to achieve using 
signal injection [7]. 

It is more challenging to adapt sensorless control in 
zero-low speed range than medium-high speed range. In 
the model-based approach, parameters such as EMF, 
extended EMF (EEMF), and flux linkage are commonly 
used as estimation variables [8]. The estimation strategies 
include direct calculation method, observer method and 
intelligent control estimation method [2,3,9]. The 
algorithm can be implemented in αβ and γδ frame. The 
spatial relations of several coordinates are shown in Figure 
1, where abc is the three-phase stationary coordinate, αβ is 
the two-phase stationary coordinate (αβ frame), dq is the 
two-phase real rotating coordinate, and γδ is the two-phase 
estimated rotating coordinate (γδ frame). The 
corresponding rotor position information can be obtained 
from the currents in αβ and γδ reference frames, and the 
voltage information is also required for the medium-high 
speed algorithm, as shown in Figure 2. Generally, position 
estimation in the αβ frame is based on the sine and cosine 
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information of actual rotor position. This makes closed-
loop operation simple but with relatively poor anti-
interference capability. The γδ-frame estimation is based 
on position error with naturally closed loop property, 
providing high immunity to interference, although the 
closed-loop operation is relatively complex [8,10]. This 
paper focuses on the model-based method to improve the 
estimation accuracy, and anti-interference and broaden the 
low-speed domain [11-15].  

 

Figure 1. Spatial relations of several coordinates 

 

Figure 2. Position information extraction in γδ or αβ 
frames 

 

Figure 3. QPLL processes the position signal extracted 
from the αβ frame 

 

Figure 4. QPLL processes the position error signal 
extracted from the γδ frame 

The phase-locked loop (PLL) is a crucial component in 
sensorless control. Its performance is directly related to the 
accuracy of the estimated speed and position. PLL consists 
of phase detector (PD), loop filter (LF) and voltage-
controlled oscillator (VCO). The function of PD is to 
obtain the equivalent position error between the input 

signal and the output signal. The frequency of the PLL’s 
output is acquired by LF, and the phase angle of the output 
signal is captured in VCO by integrating the. Once the 
frequency of the output signal tracks the frequency of the 
input signal, the phase error will eventually converge to 
zero, and the PLL completes the phase-locked function. In 
the αβ frame, position-based quadrature PLL(QPLL) needs 
to construct the position error signal by heterodyne method, 
as illustrated in Figure 3. For the QPLL based on position 
error, the position error signal obtained in Figure 2 can be 
directly input, and its structure is relatively simpler. The 
traditional QPLL exhibits significant errors during ramp 
acceleration and deceleration stages. Numerous studies 
have examined the removal of the transient errors in the αβ 
frame, where the estimated position is directly obtained 
[16-17]. However, there are few literature studies on how 
to eliminate this error in the γδ frame, which is based on 
position error. It is important to note that most signal 
injection methods are based on position error, and 
estimation based on position error offers stronger anti-
interference and robustness. The research on this issue has 
more practical significance. Furthermore, among model-
based methods, the sliding mode observer (SMO) is the 
most extensively studied. However, to mitigate chattering, 
most literature employs continuous functions in place of 
the sign function [8,18-19], high-order SMO and 
parameter adaptive SMO [13, 20-21]. Chattering is the 
essential representative of sliding mode control. The 
greater the chattering, the better the anti-interference 
capability, and vice versa. Considering the algorithm 
complexity, observer parameter adaptability, and system 
performance, this paper employs an extended state 
observer to estimate the back EMF in the γδ frame, obtain 
the position error, and subsequently study and improve the 
performance of the PLL. 

The main contributions of the work are as follows. 
1. An improved type III PLL is proposed for 

estimation systems based on position error, 
effectively eliminating transient errors within the 
stage of given ramp speed ramp and suitable for all 
sensorless control based on position error. 

2. The detailed parameter selection of IPLL is given, 
and the performance comparison between QPLL 
and IPLL is verified by simulation. 

2. ESTIMATING EEMF BY ESO IN  𝜸𝜸𝜸𝜸  FRAME 

2.1  Model of Permanent Magnet Synchronous Motor  
In the estimated rotational reference γδ frame, the 
mathematical model of the PMSM can be described as 
follows. 
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Here, uγ, uδ, iγ, iδ, Eγ, Eδ denote the terminal voltages, 
currents, and extended back EMF along the γ-axis and δ-
axis, respectively. The term Eex corresponds to the 
amplitude of EEMF. Parameters Rs and ψf  represent the 
phase resistance and the flux linkage of the permanent 
magnet. Similarly, Ld and Lq are the inductances along the 
d-axis and q-axis, while id and iq indicate the respective 
currents. The actual and estimated electrical angular 
velocities of the rotor are symbolized by ωe and ˆeω , while 

θe and êθ refer to the actual and estimated rotor positions,
ˆ

e e eθ θ θ= − . Lastly, p represents the differential operator. 
As observed from Equation (2), the components Eγ  and 

Eδ include information related to the position error. Using 
an appropriate estimator, it is possible to derive the 
estimated speed and position from this information. Once 
the system reaches a stable state, ˆe eω ω≈  , the estimation 
error becomes negligible. 

2.2 Estimating Extend Back Electromotive Force by 
Linear Estimate State Observer  
In Equation (1), by treating Eγ and Eδ as external 
disturbances, a straightforward second-order linear 
extended state equation (LESEQ) can be formulated. This 
equation can be expressed in a unified form as follows. 
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Here, ,îγ δ , ,Êγ δ are the estimated values of iγ, iδ, Eγ, Eδ. 
eγ,δ is the current error. βγ,δ1, βγ,δ2 are the feedback 
coefficient, which are positive constants greater than zero. 

To guarantee the stable convergence of the linear 
extended state observer (LESO), the stability conditions 
are briefly derived using the δ-axis LESEQ as an example, 
the detailed derivation can be referred to [12]. By assuming 
constant motor parameters, the equations (1) and (4) are 
transformed into discrete-time form through the 
application of the Euler approximation. 
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where ts is the sampling period of the system. 
Let ˆ( ) ( ) ( )e k i k i kδ δ δ= − , ˆ( ) ( ) ( )k E k E kδ δ δη = − , and by 

subtracting equation (5) from (6), the result can be directly 
written in matrix form as  
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To guarantee the designed LESO achieves stable 
convergence, the placement of the eigenvalues of the 
coefficient matrix A plays a critical role. Based on control 
theory, the eigenvalues must remain confined within the 
unit circle in the complex plane. To further enhance system 
robustness and minimize potential oscillatory behavior, a 
pole-placement strategy is adopted, where both poles are 
assigned to z=-βδ, satisfying the condition −1<βδ <1. The 
βδ1,2 can be solved from (8), that is (9). 
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Let β=(1-βδ)/ts, where the condition -1<βδ<1 holds. 
Under this constraint, Equation (9) can be reformulated 
into a simplified expression, as shown below 

2
1 22 , ,0 2 /d sL tδ δβ β β β β= = < <         (10) 

where β is the designed bandwidth of LESO. 
From [22], it is recommended to set βδ1=1/ts, which 

corresponds to a bandwidth β of 5000. 
The selection of the bandwidth and stability conditions 

for the γ-axis LESEQ follow the same principles as those 
applied to the δ-axis. As derived from equation (7), when 
the current error eγ,δ is eliminated, accurate estimations of 
Eγ  and Eδ can be achieved. Then the estimated position 
error can be obtained. 

Based on LESO, a linear active disturbance rejection 
controller (LADRC) is designed, incorporating a direct 
linear feedback mechanism for the current error [22]. In 
contrast to the traditional PI controller, which necessitates 
tuning two separate parameters, LADRC streamlines this 
process by relying on a single tuning parameter, KADRC, to 
define its performance. 

3.  POSITION ESTIMATION WITH PHASE-
LOCKED LOOP 

3.1  Traditional QPLL 
Referring to Figure 4, the transfer function about the rotor 
position estimation error to the actual position can be 
obtained, that is 
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In (11), when the position error is very small, e eθ θ∆ ≈  .  
When the reference speed follows a ramp profile, the 

actual rotor position, θe , can be expressed as 
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3e
a
s

θ =                   (12) 

Here, a represents the slope of the given electrical 
angular velocity, expressed in radians per second squared 
(rad/s2). 

By combining equations (11) and (12) and applying the 
final value theorem, the position estimation error, as the 
system approaches stability, can be determined as follows  

2
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From equation (13), it is evident that when the reference 
speed follows a ramp profile, an estimated error in the 
position always exists. To reduce this error, the integral 
gain ki of the PLL can be increased, or the slope of the 
given speed can be decreased. Here, ki represents the 
integral gain, which helps eliminate steady-state error by 
addressing accumulated position errors. However, 
excessively large ki may introduce noise and oscillations. 

In most practical applications, the acceleration a is 
relatively fixed. The eθ  is inversely proportional to ki, but 
as ki increases beyond a certain point, the reduction in error 
becomes minimal, and excessive ki degrades system 
stability. 

3.2  Proposed IPLL and Parameters Setting 

From equation (13), to ensure that the estimated error eθ

becomes zero, the numerator of the PLL transfer function 
should be at least s3. Under this condition, the PLL transfer 
function can be expressed as 
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where A, B and C are constants to be determined. 
According to equation (14), the open-loop transfer 

function from eθ   to êθ   can be calculated backwards in 
equation (15). 
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Equation (15) represents a type III system. To 
distinguish it from traditional QPLL, we abbreviate it as 
IPLL. To achieve improved stability margins, the system is 
configured as follows 
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where K is the open-loop gain of the system and -ωz is its 
zero point. 

The phase margin (PM) of open-loop transfer function 
corresponding for equation (16) can be expressed as  

PM 2atan
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ω π
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Combining equations (17) and (18), K, ωz can be 
expressed as PM and ωc with 

tan(PM) sec(PM)
c

z
ω
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+

            (19) 
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From equations (19) and (20), the parameter tuning of 
IPLL can be realized as long as PM and ωc are determined. 
In control engineering, the PM is typically set between 40° 

and 60° based on practical experience. This range provides 
a good balance between stability and responsiveness, 
reducing the risk of excessive oscillations while ensuring 
the system reacts effectively to dynamic changes. Figure 5 
illustrates the transient response curves of the rotor 
position estimation error for various PM at a fixed cutoff 
frequency of ωc=175rad/s. This curve is obtained from the 
inverse Laplace transform of equation (14), with the 
constants of the step function and ramp function set to 100. 
A smaller PM enhances the dynamic performance in 
tracking the rotor position but leads to prolonged 
oscillation. Conversely, a larger PM reduces oscillations, 
resulting in over-damping and longer convergence times. 
Figure 6 presents the magnitude frequency characteristics 
of IPLL under different PMs. A lower PM results in a 
higher amplification gain for the closed-loop transfer 
function in equation (14), leading to more pronounced 
oscillations in the transient response of IPLL. The same 
conclusion can be drawn as in Figure 5. For satisfactory 
dynamic performance, this study recommends selecting a 
PM within the range of 45° to 50°. 

 
(a) 

  
(b) 
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Figure 5. Transient response of the rotor position error 
with various PM. (a) Speed step input. (b) Speed ramp 

input 

 

Figure 6. Magnitude-frequency characteristic of IPLL 
under different PM 

Figure 7 illustrates the transient response curves of rotor 
position error for various cutoff frequencies (ωc) with a 
fixed phase margin (PM=45°). A smaller ωc results in 
reduced dynamic performance in rotor position tracking, 
while a larger ωc enhances dynamic performance and 
shortens convergence time. 

Figure 8 presents the Bode diagrams of IPLL under 
different ωc values. A smaller ωc provides stronger noise 
suppression but at the cost of slower dynamic response. 
Conversely, increasing ωc improves dynamic performance 
but reduces noise suppression in the mid-frequency range. 
Therefore, the selection of ωc should carefully balance 
dynamic performance and noise suppression capabilities. 

 
(a) 

  
(b) 

Figure 7. Transient response of the rotor position error 
with various ω.  (a) speed step input. (b) speed ramp input 

 

Figure 8. PM Bode diagram of IPLL under different ω 

Additionally, for equation (16), the transfer function 
from ∆θe to the estimated speed can be derived through 
transformation, as follows 

2
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From equation (21), the loop filter (LF) of the IPLL is 
functionally equivalent to two proportional-integral (PI) 
controllers with identical parameters connected in series, 
as illustrated in Figure 9. This configuration differs from 
the loop filter of the QPLL, which consists of a single PI 
controller. The additional PI in the IPLL enhances its 
ability to handle higher-order dynamics and improves its 
tracking accuracy for rotor position, particularly under 
rapidly changing conditions. 

 

Figure 9. Diagram of proposed IPLL 

4.  SIMULATION VERIFICATION RESULTS  
Based on the above discussion, the block diagram of the 
sensorless control system employing IPLL in the γδ 
reference frame is illustrated in Figure 10. In this diagram, 
pn represents the number of pole pairs of the motor. The 
estimated speed from the IPLL is utilized by both the speed 
regulator and the estimated EEMF, while the estimated 
rotor position is employed for coordinate transformations. 

Using Figure 10 as a reference, a corresponding 
Simulink model is developed. The key parameters of the 
PMSM and the system configuration are summarized in 
Table 1. The hardware parameters of the motor and inverter 
are derived from real experimental platform in Table 1. The 
PMSM is a servo motor, and the parameters are provided 
by the manufacturer. The IPLL parameters are derived 
from the simulation analysis in Section 3.2. Due to the 
different structures between QPLL and IPLL, in order to 
maintain fairness in comparison, both adopt comparable 
open-loop gains, around 150, which is derived from PM 
and ωc through equation (20). 
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Figure 10. Diagram of PMSM sensorless drive adopting 
IPLL in γδ reference frame 

Table 1. Main parameters of PMSM test platform  

Parameter Value 
Rated power 750W 
Rated torque 2.4N.m 
Rated speed 3000r/min 
Stator resistance 1.45Ω 
PM flux linkage 0.12Wb 
Inductance(Ld/Lq) 6.04/9.06mH 
Pole pairs 5 
DC-link voltage 311V 
Sampling frequency 10kHz 
PWM carrier frequency 10kHz 
PM/ωc 45°/175rad/s 
kp, ki for IPLL in (21) 12.2/885 
kp, ki for QPLL 150/5625 
Bandwidth of LESO(β) 5000 
KADRC for γ axis ACR 90 
KADRC for δ axis ACR 110 

The simulated operating situations are starting with a 
step at 300rpm without load by using the inertia of the rotor 
at the initial moment, loading suddenly rated load at 2s, 
accelerating to 1800rpm with rated load and 900rpm/s at 
4s, decelerating to 300rpm with rated load and 900rpm/s at 
9s and unloading suddenly rated load at 12s.  

Figure 11 shows the input signals of QPLL and IPLL. 
Although QPLL has reached a steady state, there is still a 
static error in the input signal within the stage of 
acceleration and deceleration in ramp. In the estimation 
system adopting IPLL, this input signal can be quickly 
limited to near 0. Figure 11 and Figure 12 have a high 
degree of similarity. 

 

Figure 11. Signals input to the PLL 

 

Figure 12. Position errors using QPLL and IPLL 

 

Figure 13. Real and estimated positions using QPLL 

 

Figure 14. Real and estimated positions using IPLL 

Figure 12 shows the position estimation errors obtained 
by the traditional QPLL and the proposed IPLL under the 
above operating situations. Obviously, during the stage of 
given ramp speed and sudden load changes, IPLL can 
significantly reduce estimation errors compared to QPLL. 
In order to show this difference more clearly, Figure 13 and 
Figure 14 gives the respective position signals within 
9.155-9.19s. In Figure 13, a significant position error can 
be observed, while the two overlap so much that it is 
difficult to distinguish them in Figure 14. 

Note that both QPLL and IPLL have the same error bias, 
approximately -2.75°, when the speed reaches 1800rpm. 
During the stages of acceleration and deceleration, the 
slope of the position error is the same, about -5×10-5 
rad/(rad/s), which is equivalent to the system sampling 
frequency, which is mainly caused by sampling errors. 
Owing to the estimated EEMF having the same amplitude 
attenuation, when the speed reaches 1800rpm, the position 
error will fall back to a smaller initial error. Due to the 
closed-loop estimation based on position error in γδ frame, 
the sampling error cannot be simply compensated on the 
estimated position. This can be verified by Figure 11, 
which illustrates that the input signals of the PLL have 
reached a smooth steady state during the corresponding 
transient stage. Although there is a sampling error, it does 
not affect the robustness and control accuracy of the 
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sensorless system.  

 
(a) 

 
(b) 

Figure 15. Speed errors using QPLL and IPLL. (a) The 
display time range is 0-14s. (b) The detailed view of the 

4-10s range 

 

Figure 16. Real and estimated speed using QPLL and 
IPLL 

Figure 15 and Figure 16 show the speed errors of these 
two estimation systems, and Figure 15(b) expands the 3.8-
10.7s time range in Figure 15(a) to more clearly illustrate 
the differences between the two. When the speed leaves 
and reaches the steady state, the estimation system using 
IPLL has smaller speed error and stronger suppression 
ability to error. There is no obvious difference between the 
two systems in other conditions, because QPLL and IPLL 
are both no static errors for the estimated speed. 

The δ-axis currents for these two systems are shown in 
Figure 17. Due to the smaller position error, the IPLL-
based sensorless system will reach steady state faster, 
about 0.1s ahead (15 fundamental cycles corresponding to 
1800rpm). When slowing down, the recoil current is less. 

 

Figure 17. Currents in δ axis using QPLL and IPLL 

Table 2 presents the maximum values of these 
performance indices for the two sensorless systems, 
providing an overview of their comparison. It can be 
inferred that IPLL exhibits a relatively strong error 
suppression capability and helps maintain the error within 
a very small range. 

Table 2. Summary of the Comparison of Maximum 
Performance Indexes 

Comparison items QPLL IPLL 
Input signals of PLL(Δθe) -13.5° 2° 
Position error ( eθ ) -17.6° -4.2° 
Speed error ( n ) 10rpm 5rpm 

5.  CONCLUSION 
The sensorless control system based on position error 
exhibits significant transient errors during ramped 
acceleration and deceleration. This article takes removing 
this error as the starting point, estimates the EEMF through 
LESO to obtains the position error, and then analyze the 
performance of PLL. In the traditional type II QPLL, the 
actual position is a third-order signal under ramped speed 
conditions, resulting in a large static error. In contrast, the 
proposed type III IPLL structure can theoretically reduce 
transient error to zero. In practice, despite sampling errors, 
the IPLL reduces errors from over 15° to within 3°, 
enhancing control accuracy, load capacity, and dynamic 
performance in sensorless systems. Besides, the 
parameters selection is given in detail, which simplifies the 
tedious parameter tuning in QPLL. This IPLL approach is 
applicable to all estimation systems that use position error 
as the PLL input.  
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