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Abstract Ensuring ultra-reliable network connectivity in dynamic environments requires accurate and timely blockage 

prediction. This study analyzes the timing considerations in blockage prediction with Intelligent Reflecting Surface (IRS) 

beamforming, comparing adaptive filtering techniques—Least Mean Squares (LMS), Normalized Least Mean Squares 

(NLMS), and Recursive Least Squares (RLS)—against Long Short-Term Memory (LSTM) networks. Results show that LSTM 

achieves superior accuracy, ranging from 96.40% to 93.21%, while adaptive filters decline over time. Despite its superior 

accuracy, LSTM incurs a computational delay of 50 µs over the baseline model, which itself is 80 µs slower than adaptive 

filters. To enhance network reliability, we integrate Intelligent Reflecting Surface (IRS) beamforming, optimizing signal 

reflections under Non-Line-of-Sight (NLoS) conditions. For a base station (BS) communicating with a 64×64 uniform planar 

array (UPA) Intelligent Reflecting Surface (IRS), blockage proactive prediction must anticipate at least 31 ms into the future 

to accommodate transmission delays, handover, and beam training. These findings highlight LSTM’s potential in enhancing 

real-time blockage prediction and real-time network adaptability. 
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1. INTRODUCTION  

1.1 How early should we predict the blockage  

[1] states that a duration of up to 90 ms is insufficient for 

preemptive measures to mitigate blockages or Non-Line-

of-Sight (NLoS) conditions, such as handover or beam 

training. In contrast, this study demonstrates the ability to 

predict blockages up to 210 ms in advance when a moving 

obstacle, such as a person walking across the path between 

the Base Station (BS) and the receiver, is present. The 

proposed approach achieves prediction accuracy of 91%. 

Figure 1 illustrates the beam coherence time, comparing 

Baseline and Deep Learning (DL)-based solutions. The 

total beam training time for all antennas is denoted as 𝑇𝑡𝑟 . 

The Baseline approach occupies a significant portion of the 

beam coherence time (𝑇𝐵), whereas the proposed DL 

solution demonstrates a more efficient utilization of this 

time frame. When 𝑇𝑡𝑟 > 𝑇𝐵, network continuity cannot be 

guaranteed due to delays in the beamforming process [2]. 

This work addresses the challenges associated with large 

surfaces, as discussed in [3], where 𝑇𝐵 can serve as a 

critical bottleneck in beamforming technologies for large 

antenna arrays. 

Works from [1-3] have been summarized that the larger 

the number of elements of Intelligent Reflecting Surface 

(IRS), time for BS to perform beamforming is longer. To 

enable proactive action to be taken, the prediction could be 

different depending on the size of the IRS.  Conventional 

methods of channel predictions are adaptive filters that are 

crucial to maintain the capacity of the communication 

networks, e.g., Least Mean Squares (LMS), Least Squares 

(LS), Recursive Least Squares (RLS), Kalman Filter (KF) 

and etc [4]. 

According to [5], KF is commonly used for non-

stationary channel tracking. KF could perform better and 

respond quickly to parameter changes compared to LS and 

RLS [6]. Recently [7], is using CNN for channel prediction 

to maintain capacity at 97% compared to KF Auto 

Regression (AR), 92.5% with previous channel 

information to predict the next one in an Orthogonal 

Frequency-Division Multiplexing (OFDM) Multiple Input 

Single Output (MISO) system in 3.5Ghz carrier frequency. 

These latencies present significant bottlenecks for 

achieving Ultra-Reliable Low-Latency Communication 

(URLLC), as discussed in [8]. 

In contrast, ML-based solutions can be trained offline 

and deployed in real time without depending on feedback, 

which substantially reduces latency [9]. Recent studies 

have demonstrated the use of Convolutional Neural 

Networks (CNNs) for predicting channel conditions in 
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OFDM-MISO systems, achieving a 97% capacity 

retention rate compared to 92.5% for KF-based auto-

regression models [7]. 

 

Figure 1. Beam coherence time, 𝑇𝐵,  (a) Baseline solution 

for beamforming by searching for the optimal beam vector. 

(b) Deep Learning solution for beamforming [2] 

Moreover, ML architectures such as Recurrent Neural 

Networks (RNNs) and Transformers have shown potential 

in multi-step prediction, further enhancing proactive 

beamforming capabilities [10, 11]. 

This paper builds upon these insights and proposes a 

robust DL-based framework capable of multi-step 

blockage prediction and efficient beamforming in IRS-

assisted mmWave systems. By addressing the limitations 

of traditional methods and integrating recent advances in 

ML for wireless communications, we contribute toward 

enabling more resilient and low-latency wireless networks. 

2. SYSTEM MODEL 

2.1 Received Signal Model 

Consider a communication system represented by our 

previous work [12], where a BS communicates with a 

vehicular user with the assistance of an IRS. However, the 

IRS-user link can be blocked by obstacles, e.g., buses or 

trucks. For simplicity, we assume that the BS and vehicle 

user have equipped with a single antenna while the IRS is 

equipped with 𝑀 antennas. OFDM based system is 

adopted with number of subcarriers, 𝐾. 𝒉𝑩𝑼,𝒌 ∈ 𝑪 is 

defined as a direct channel between the BS and the user. In 

this study, the direct BS–user link is neglected under the 

assumption that mmWave communication operates in a 

severe NLoS environment, where large vehicles, 

buildings, or other obstacles block the LoS path. Given the 

high path loss and blockage sensitivity of mmWave 

signals, the direct link contribution is negligible compared 

to the IRS-assisted path, and thus its omission simplifies 

the analysis without affecting the model’s applicability to 

realistic deployment scenarios. Then, adopting from [12], 

𝒉𝑩,𝒌 and 𝒉𝑼,𝒌 ∈ 𝑪𝑴×𝟏 are defined as uplink channels 

between BS and user to IRS at the 𝒌𝒕𝒉 subcarrier. By 

reciprocity, the transpose of the uplink channels, 𝒉𝑼,𝒌
𝑻  and 

𝒉𝑩,𝒌
𝑻 , are downlink channels. The interaction matrix of the 

𝒌𝒕𝒉 subcarrier, 𝜳𝒌 ∈ 𝑪𝑴×𝑴, is the interaction 

characteristic of the incident signal from the transmitter at 

IRS. The transmitted signal, 𝒔𝒌 is sent over 𝒌𝒕𝒉 subcarrier 

from the BS to user which satisfies the total power 

constraint 𝑬|𝒔𝒌|𝟐 = 𝑷𝑻/𝑲, with 𝑷𝑻 as the total transmit 

power. Then received signal at the user’s end with received 

noise, 𝒏𝒌 ∼ 𝑵𝑪(𝟎, 𝝈𝒏
𝟐) is expressed as: 

  yk =  𝐡U, k
T  𝚿𝐤 𝐡B, k sk  + 𝐡BU, k 𝐬k  + nk  (1) 

Since it is assumed that the direct channel is 

insignificant in this case, it can be disregarded. The receive 

signal can then be expressed as: 

  yk =  𝐡U, k
T  𝚿𝐤 𝐡B, k 𝐬k  + nk  (2) 

The diagonal structure of the interaction matrix, 𝚿𝐤, may 

be layered in a reflection beamforming vector, 𝜓𝑘∈ 𝑪𝑴×𝟏, 

due to the assumption that only phase shifters implemented 

in IRS elements are used. The same applied to all 

subcarriers, 𝜓𝑘 = 𝜓, ∀𝑘. Therefore, it may be expressed in 

Hadamard product form as follows: 

  𝑦𝑘 = (ℎ𝑈,𝑘 ∘ ℎ𝐵,𝑘)
𝑇

ψ𝑘𝑠𝑘 + 𝑛𝑘  (3) 

2.2 Channel Model 

In this work, we adopt the same geometric-based wideband 

channel model as in our previous study, where the channel 

vector of the 𝑢𝑡ℎ user at the 𝑘𝑡ℎ subcarrier is given by: 

 

𝐡𝑈,𝑘
𝑇 = ∑ ∑ αℓ

𝐿
ℓ=1

𝐷−1
𝑑=0 𝑒−

𝑗2πk

𝐾
𝑑p(𝑑𝑇𝑠 − τℓ)𝐚(θℓ, ϕℓ)        (4) 

 

where 𝐿 is the total number of channel paths and 𝛼ℓ, 𝜏ℓ, 𝜃ℓ, 

𝜙ℓ are the ℓ𝑡ℎ channel path gains, which include path 

losses, the delay, the azimuth and elevation arrival angles, 

respectively. 𝑇𝑆 stands for sampling time and 𝐷 for the 

length of the cyclic prefix, with the assumption that 𝐷𝑇𝑆 is 

less than the maximum delay. The downlink IRS-user 

channel 𝐡𝑈,𝑘 can be defined similarly. To accomodate for 

the variations of both channels, {𝐡𝐵,𝑘}𝑘=1
𝐾  and {𝐡U,k}k=1

K , 

over time, we employ a block fading channel model in 

which the channel is considered to be constant throughout 

the coherence time, 𝑇𝐶 . 

3. METHODOLOGY   

3.1 Problem Formulation 

As discussed in our previous work [11], the IRS plays a 

crucial role in sensing the environment and predicting 

blockages in the system. The problem involves 

anticipating potential blockages in the IRS-user link in the 

near future. Due to its proximity to the user, the IRS can 

significantly contribute to sensing the environment and 

predicting blockages. In this scenario, a single-antenna 

user transmits a pilot signal to the IRS, utilizing 

compressed sensing with a machine learning (ML) 

technique, as proposed in [13]. The receive signal power is 
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sampled from a few randomly distributed active elements 

on the IRS. The number of active elements, denoted as 𝑀̅, 

is the product of the number of horizontal (𝑀ℎ) and vertical 

(𝑀𝑣) elements. These active elements capture the channel 

vector of each x-axis coordinate, while the moving vehicle 

transmits an omni-directional pilot signal using a single 

antenna to the IRS. The matrix 𝐆𝐼𝑅𝑆, an 𝑀̅  ×  𝑀 selection 

matrix, selects entries from the original channel vector 

corresponding to the IRS active elements. Specifically, 

𝐆𝐼𝑅𝑆 = [I]𝐴, where 𝐴 represents the set of indices of the 

active elements and I is the identity matrix corresponding 

to the IRS active elements. The IRS sampled channel 

vector, 𝐡𝑈,𝑘 ∈ 𝑪𝑴̅×1, at the 𝑘𝑡ℎ subcarrier is expressed as: 

 𝐡̅𝑈,𝑘 = 𝐆𝐼𝑅𝑆𝐡𝑈,𝑘 (5) 

Let 𝒉
̂

 represent the noisy sampled channel vector 

obtained from the user's pilot signal. It can be expressed as 

follows, where 𝒘𝒌 ∼ 𝓝𝑪(𝟎, 𝜶𝒏
𝟐𝑰) denotes the noise vector 

received at the IRS's active elements: 

 𝐡̅𝑈,𝑘 = 𝐆𝐼𝑅𝑆𝐡𝑈,𝑘 +  𝒘𝒌 (6) 

We define 𝑡 ∈ 𝑍 as the index for discrete time instances, 

and 𝑓[𝑡] = 0, 1 represents the link status at the 𝑡 − 𝑡ℎ time 

instance. When, 𝑓[𝑡] = 1, the link is blocked, meaning the 

Line of Sight (LoS) route between the transmitter and 

receiver is obstructed, while 𝑓[𝑡] = 0 indicates an 

unobstructed link. At each time instance 𝑡, if a single-

antenna user transmits a pilot signal to the IRS, the 

sampled channel vector is captured from a few randomly 

chosen active IRS elements. These active IRS elements 

will then receive the pilot signals and estimate the noisy 

sampled channel vector. The concatenated noisy sampled 

channel vector at the 𝑡 − 𝑡ℎ time interval, 𝐡̂̅[𝑡], is 

expressed as follows: 

 𝐡̂̅[𝑡]𝑣𝑒𝑐 = (𝐡̂̅𝑈,1[𝑡] , 𝐡̂̅𝑈,2[𝑡] …  , 𝐡̂̅𝑈,𝐾[𝑡]) (8) 

To facilitate machine learning (ML) training and avoid 

data loss, the noisy sampled channel vector is normalized 

to the range [0, 1] by dividing it by the maximum 

amplitude of all the channels in the dataset, 𝑯̂̅. Thus, the 

normalized noisy sampled channel vector, 𝐡̂̅𝑛𝑜𝑟𝑚[𝑡], is 

given by: 

 𝐡̂̅𝑛𝑜𝑟𝑚[𝑡]
𝐡̂̅[𝑡]

max 𝐡̂̅[𝑡]
 (9) 

Let 𝑇𝑜 represent the observation time window. The 

sequence of sampled channel vectors from previous time 

instances within the observation window, 𝑡 −  𝑇_𝑜 +
 1 … , 𝑡, is combined into 𝑆𝑢𝑜,ℎ, defined as:  

 Suo,h = {𝐡̂̅𝑛𝑜𝑟𝑚[𝑡 + 𝑛]}𝑛=1
−𝑇𝑜   (10) 

Given these inputs, the goal of this study is to predict the 

future blockage link status at time 𝑇𝑝. 𝐵𝑇𝑝
 represents the 

future link status within the 𝑇𝑝−𝑡ℎ instance, and it is 

defined as follows: 

𝐵𝑇𝑝
= {

0,  𝑖𝑓  𝑓[𝑡 + 𝑛𝑝] = 0 , ∀𝑛𝑝  ∈ {1, … , 𝑇𝑝} 

1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (11) 

Where 0 indicates no obstacles and 1 indicates a blockage 

in front of the IRS. Once the predicted link status 𝐵̂𝑇𝑝
 is 

obtained, the objective is to optimize the prediction 

accuracy and minimize the RMSE by developing 

appropriate ML models and training them using a sequence 

of sampled channel vectors. 

3.2 Baseline of Pre-blockage Receive Signal Power for 

Blockage Prediction 

For comparison, the baseline is adopted from [14]. The 

received signal, without noise, at the Fully-active IRS from 

the user's pilot signal with a single antenna at time instance 

𝑡 is defined as follows, where mmm represents each IRS 

element: 

 𝑟𝑘,𝑚[𝑡] = 𝐡𝑈,𝑘
𝑇 [𝑡]ψ𝑘𝑠𝑘[𝑡] + 𝑛𝑘 (12) 

The total power over 𝐾 subcarriers is then given by: 

 |𝑟𝑚[𝑡]|2 = ∑ |𝑟𝑘,𝑚[𝑡]|
2𝐾

𝑘=1  (13) 

At the 𝑡 − 𝑡ℎ instance, the receive power vector for 𝑴 

beams is defined as: 

 𝒓[𝑡] = 𝒗𝒆𝒄[|𝑟1[𝑡]|2 … |𝑟𝑀[𝑡]|2]𝑇 (14) 

Since the user’s antenna has 𝑬 number of antennas, the 

total receive power from multiple antennas for 𝑴 beams is 

the sum of the receive powers: 

 𝒓[𝑡] = ∑ 𝒓𝑒[𝑡]𝐸
𝑒=1  (15) 

Similar to Equation (10), the sequence of the receive power 

vector for these beams is defined as: 

 𝑆𝑢𝑜,𝑟 = {𝒓[𝑡 + 𝑛]}𝑛=1−𝑇𝑜
0  (16) 

Finally, Equation (11) is used to predict the future 

blockage link status within the 𝑇𝑝 − 𝑡ℎ instance, 𝐵𝑇𝑝
. 

3.3 Machine Learning Models 

Building on the work in [14], this study employs an IRS 

with a limited number of active elements and utilizes both 

types of Recurrent Neural Networks (RNNs) with Gated 

Recurrent Units (GRU) and Long Short Term Memory 

(LSTM) for predicting future link blockages. These 

models are capable of accurately predicting blockages with 

low RMSE before a Non-Line-of-Sight (NLoS) condition 

occurs. As mentioned in [14], a pre-blockage wireless 

signature can often be observed in the received power, 

which can be leveraged to forecast future blockages. 

Therefore, machine learning can use the sequence of 

receive signal power to predict potential NLoS conditions 

between the IRS and the user. This wireless signature is 
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proposed as a tool for forecasting future link blockages in 

mmWave systems. Given the complexity of these 

signatures, machine learning is employed to learn and 

make use of these patterns. To further investigate this area 

of blockage prediction, we also incorporate the sequence 

of channel vectors along with Instantaneous Channel State 

Information (ICSI) for a performance comparison. 

To enable the neural network to learn the time-

dependent patterns of observed receive signal power, the 

GRU network design shown in Figure 2 of [14] is applied 

with some modifications. The model initially consists of a 

GRU with q-layers, followed by fully connected 

feedforward layers, including the output layer. However, 

in this case, the activation function of the prediction 

component is changed to linear, rather than the typical 

rectified linear unit (ReLU). This design can also be 

applied to the LSTM model by replacing the GRU layers 

with LSTM layers in the q-layers. For the blockage 

prediction task, we use the Mean Squared Error (MSE) loss 

function as the training objective: 

 

𝑙𝑀𝑆𝐸 = ∑ (𝑝𝑡 − 𝑝̂𝑡)2𝑇
𝑡=1   (17) 

 

where 𝑝𝑡  and 𝑝̂𝑡  are the blockage probability of the link 

status. There are two link statuses, 0 and 1. Then, RMSE 

is defined as below: 

 

𝑅𝑀𝑆𝐸 = √𝑙𝑀𝑆𝐸     (18) 

 

Figure 2. The adopted GRU architect model to predict the 

link status [14] 

Let 𝑆 denote the total of the sample size. Hence, accuracy 

can be calculated as below: 

 

Accuracy =
1

𝑆
∑ 𝟙 (𝐵𝑇𝑝

(𝑠)
= 𝐵̂𝑇𝑝

(𝑠)
)𝑆

𝑠=1    (19) 

 

where 𝟙 is the indicator function, and 𝐵𝑇𝑝

(𝑠)
 and 𝐵̂𝑇𝑝

(𝑠)
 $ are 

the target link status and predicted link status for future 

time instances of 𝑇𝑝 in the problem respectively. 

3.4 ViWi Datasets and scenarios 

We follow the experimental setup described in [15] to train 

a deep learning model for blockage detection and 

prediction in an urban environment. In this scenario, two 

buses become immobile during rush hour, acting as 

obstacles between the moving vehicles and the IRS. The 

BS is located at a traffic light, while the IRS is placed in 

the middle of the road. The moving vehicle is assumed to 

travel at 32.04 km/h, transmitting omnidirectional pilot 

signals with a single antenna. The dataset, named 

"colo_cam_blk" is generated using the ViWi framework as 

shown in Figure 3 and consists of high-fidelity synthetic 

wireless data created with ray-tracing software, Remcom 

Wireless Insite. 

To evaluate the model, 10% of the total 5000 samples 

are reserved for testing, while the remaining 90% is split 

into training (70%) and validation (20%) sets. The IRS is 

configured with a Uniform Planar Array (UPA) structure, 

consisting of a 𝟖 × 𝟖 array with 64 antennas, operating at 

mmWave 60 GHz. The spacing between antenna elements 

is half the wavelength of the operating frequency. The 

experiment is carried out with fully active surface with on 

the array, hence, 64 active elements for simplification on 

the setup. A summary of the parameters used in the ViWi 

dataset is provided in Table 1. This setup is used to predict 

and detect potential future blockages between the IRS and 

the moving vehicle's user. 

3.5 Adaptive Filters and Beam Training for Blockage 

Prediction 

Adaptive filters are dynamic systems that adjust their 

parameters in real-time to optimize performance based on 

changing input signals. They are commonly used in signal 

processing tasks such as noise reduction, echo 

cancellation, and system identification. Unlike fixed 

filters, adaptive filters continuously adapt to the input data 

by minimizing a cost function, often using algorithms like 

Least Mean Squares (LMS), Recursive Least Squares 

(RLS) and Normalized Least Mean Squares (NLMS). This 

ability to self-tune makes them highly effective in 

environments with variable conditions, such as wireless 

communication and speech processing. 

According to [3], and as shown in Figure 4, the beam 

coherence time 𝑇𝐵 is defined as: 

 

𝑇𝐵 =
𝐷

 𝑣 𝑠𝑖𝑛 𝛼

Θ

2
    (20) 

 

 

Figure 3. The selected scenario, "colo_cam_blk", in ViWi 

Dataset Generation Framework [15] 
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Table 1. The ViWi Dataset Parameters 

Dataset Parameter  Value 

Frequency band 60 GHz 

Active IRS 1 

Number of IRS Antennas, (𝑀𝑥, 

𝑀𝑦, 𝑀𝑧) 

(8, 1, 8) 

Active users From 1 to 5000 

System bandwidth 125MHz 

Number of OFDM subcarriersr 64 

Number of OFDM sampling factor 1 

Number of OFDM limit 64 

Number of channel paths {1, 20} 

Antenna spacing 0.5𝜆 

 

 

Figure 4. An illustration of the beam coherence time 

concept [3]. 

[2] assumes each beam training takes 10 µs. For a single-

antenna base station (BS) communicating with a 64×64 

uniform planar array (UPA) IRS, the process takes 

approximately 41 ms. However, when the vehicle is 

traveling at 80 km/h, the computed 𝑇𝐵 is just 10.8 ms. 

Considering additional factors such as transmission delays, 

handover time [3], and beamforming training time, the 

blockage prediction algorithm must anticipate at least 31 

ms ahead, equivalent to 𝑇𝑃 = 7.5, to maintain network 

reliability and ensure seamless connectivity. 

The selection of 31 ms as the minimum prediction 

horizon is dictated by the timing constraints inherent to 

beamforming operations in high-frequency mmWave 

systems. In the proposed system model, the total beam 

training and reconfiguration time TtrT_{\mathrm{tr}}Ttr  

is 41 ms, while the beam coherence time 

TBT_{\mathrm{B}}TB —the duration for which a beam 

direction remains valid under typical mobility and 

environmental dynamics—is 10.8 ms. Consequently, the 

minimum prediction horizon is determined as: 

𝑇𝑝𝑟𝑒𝑑 ≥ 𝑇𝑡𝑟 − 𝑇𝐵 = 41𝑚𝑠 − 10.8𝑚𝑠 ≈ 30.2𝑚𝑠  (21) 

A value of 31 ms is adopted to incorporate a safety 

margin that accounts for processing latency in prediction 

modules, residual misalignment in beam tracking, and 

uncertainties due to mobility and environmental variations. 

This threshold ensures that the system can detect 

impending blockages or NLoS conditions, identify suitable 

alternative beams or handover targets, and complete 

reconfiguration before the current beam path deteriorates. 

Selecting a horizon shorter than 31 ms would risk initiating 

beam adaptation after the coherence window has expired, 

leading to potential link outages or QoS degradation. Thus, 

the 31 ms value is not arbitrary but emerges from the 

fundamental timing gap between beam adaptation latency 

and beam coherence duration. 

With a total number of elements of 𝑁𝑎, and assuming an 

incident angle α = 60∘ and a distance 𝐷 = 15m, the 

azimuth beamwidth Θ can be approximated using the 

beamwidth formula for a uniform linear array of size √𝑁𝑎, 

given by: 

 

Θ ≈ 0.886 ×
2

√𝑁𝑎
   (22) 

 

where the antenna spacing is set to half the wavelength. 

This relationship highlights the impact of antenna array 

size on beamforming precision, reinforcing the necessity 

for accurate blockage prediction to ensure continuous and 

stable network performance [3]. 

4. RESULT AND DISCUSSION   

In this comparison, an 8x8 Fully Active IRS is used to 

receive pilot signals from the user, with an observed time 

sequence 𝑇𝑜 = 16 as per [14]. The comparison of accuracy 

between adaptive filtering methods and machine learning 

models as shown in Figure 5, particularly LSTM networks, 

highlights the superior performance of LSTM-based 

approaches in predictive accuracy. The results from the 

study show that the proposed LSTM model consistently 

outperforms adaptive filtering techniques such as Least 

Mean Squares LMS, NLMS and RLS, as well as a baseline 

model. 

The proposed LSTM model exhibits the highest 

accuracy across all test cases, with values ranging from 

96.40% to 93.21%. The baseline model also performs well 

but remains consistently lower than the LSTM, with 

accuracy values ranging from 95.30% to 92.51%. The 

difference in accuracy between the LSTM and the baseline 

model suggests that incorporating deeper learning 

methodologies significantly enhances prediction 

capabilities over traditional approaches. 

Among the adaptive filtering techniques, the LMS 

algorithm shows the weakest performance, with accuracy 

decreasing from 79.17% to 65.35%. The NLMS algorithm 

exhibits slightly better performance compared to LMS, 

with values fluctuating between 83.84% and 78.76%, 

indicating improved adaptability. The RLS algorithm, 

which is typically more computationally intensive, does 

not surpass NLMS in accuracy. Its values range from 

82.42% to 64.84%, demonstrating a downward trend 

similar to LMS. 

All adaptive filtering methods show a decline in 

accuracy as the dataset progresses, which suggests a 

potential issue with their ability to generalize over time. In 

contrast, LSTM and the baseline model show a more 

gradual decrease in accuracy, implying that they maintain 

stability over an extended range of inputs. The gap 

between LSTM and adaptive filters increases over time, 
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further highlighting the robustness of machine learning-

based approaches in handling complex data patterns. 

Additionally, as the 𝑇𝑝 moves further into the future for 

prediction, accuracy consistently decreases across all 

models. This trend indicates the increasing difficulty of 

making long-term predictions due to accumulating 

uncertainties and complex variations in the data. 

Another critical factor in evaluating prediction models 

is the time required for computation. Figure 6 shows 

proposed LSTM model takes an average of 50 µs longer 

than the baseline model to generate a prediction. 

Meanwhile, the baseline model itself is approximately 80 

µs slower than adaptive filtering methods. This indicates 

that while LSTM provides superior accuracy, it comes at 

the cost of increased computational time. In real-time 

applications where rapid predictions are necessary, 

adaptive filtering methods remain advantageous in terms 

of speed, despite their lower accuracy. However, in 

scenarios where accuracy is prioritized over computation 

time, the LSTM model remains a compelling choice. 

Future research should consider optimizing LSTM 

architectures to reduce computational latency while 

maintaining high predictive performance. 

Compared to GRU and adaptive filtering methods, the 

proposed LSTM model demonstrates superior accuracy, 

particularly for datasets with long-term dependencies and 

non-linear temporal patterns. Adaptive filters, being linear 

and memory-limited, struggle to capture the evolving, non-

stationary relationships present in the data, resulting in a 

sharper decline in accuracy over time. GRU, while more 

computationally efficient, has a reduced gating complexity 

that can limit its ability to retain information over extended 

sequences, leading to slightly lower accuracy than LSTM 

in datasets where long-range context is crucial. The 

LSTM’s architecture, with separate memory and gating 

mechanisms, allows it to effectively preserve relevant 

historical information and adapt to gradual shifts in data 

distribution, thus maintaining predictive stability as the 

dataset progresses. 

5. CONCLUSION 

To enhance the reliability of network-based predictions 

and improve overall system performance, IRS 

beamforming can be integrated into blockage prediction 

frameworks. IRS technology enhances wireless 

communication by dynamically adjusting the phase shifts 

of reflective elements to optimize signal propagation, 

mitigating blockages and signal degradation. The use of 

IRS-assisted beamforming can improve network 

robustness by rerouting signals through reflective surfaces, 

reducing the impact of obstructions on real-time data 

transmission. 

The findings suggest that machine learning techniques, 

particularly LSTMs, provide superior accuracy 

 

Figure 5. Blockage prediction accuracy comparison of 

adaptive filters, the Baseline (GRU) and our proposed 

LSTM against time instance, 𝑇𝑝 

 

Figure 6. Blockage prediction time consumption 

comparison of adaptive filters, the Baseline (GRU) and our 

proposed LSTM against time instance, 𝑇𝑝 

and stability compared to traditional adaptive filters. While 

adaptive filtering methods such as LMS, NLMS, and RLS 

are commonly used in signal processing applications, their 

declining accuracy highlights their limitations in handling 

dynamically changing data environments. The consistently 

high accuracy of LSTM models supports their suitability 

for predictive tasks where precision is critical. Given the 

performance trends observed, future research should 

consider hybrid models that integrate machine learning 

with adaptive filters to leverage the strengths of both 

methodologies. Additionally, exploring computational 

efficiency, real-time processing capabilities, and network 

reliability through IRS-based enhancements can further 

improve the practical application of these models. 

By incorporating IRS with machine learning models like 

LSTM, network reliability can be significantly improved, 

as the system can dynamically adapt to environmental 

changes and optimize predictive accuracy in response to 

network fluctuations. This synergy between IRS and deep 

learning-based prediction models offers a promising 

solution for enhancing signal stability in high-mobility and 

complex communication environments. Future research 

should explore hybrid approaches that combine IRS 

beamforming with adaptive filtering techniques to improve 

both accuracy and efficiency in blockage prediction. 

 (    
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