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Abstract Ensuring ultra-reliable network connectivity in dynamic environments requires accurate and timely blockage
prediction. This study analyzes the timing considerations in blockage prediction with Intelligent Reflecting Surface (IRS)
beamforming, comparing adaptive filtering techniques—Least Mean Squares (LMS), Normalized Least Mean Squares
(NLMS), and Recursive Least Squares (RLS)—against Long Short-Term Memory (LSTM) networks. Results show that LSTM
achieves superior accuracy, ranging from 96.40% to 93.21%, while adaptive filters decline over time. Despite its superior
accuracy, LSTM incurs a computational delay of 50 ps over the baseline model, which itself is 80 us slower than adaptive
filters. To enhance network reliability, we integrate Intelligent Reflecting Surface (IRS) beamforming, optimizing signal
reflections under Non-Line-of-Sight (NLoS) conditions. For a base station (BS) communicating with a 64x64 uniform planar
array (UPA) Intelligent Reflecting Surface (IRS), blockage proactive prediction must anticipate at least 31 ms into the future
to accommodate transmission delays, handover, and beam training. These findings highlight LSTM’s potential in enhancing
real-time blockage prediction and real-time network adaptability.
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1.INTRODUCTION (IRS), time for BS to perform beamforming is longer. To
enable proactive action to be taken, the prediction could be

1.1 How early should we predict the blockage different depending on the size of the IRS. Conventional

[1] states that a duration of up to 90 ms is insufficient for methods of channel predictions are adaptive filters that are
preemptive measures to mitigate blockages or Non-Line- crucial to maintain the capacity of the communication
of-Sight (NLoS) conditions, such as handover or beam networks, e.g., Least Mean Squares (LMS), Least Squares
training. In contrast, this study demonstrates the ability to (LS), Recursive Least Squares (RLS), Kalman Filter (KF)
predict blockages up to 210 ms in advance when a moving and etc [4].
obstacle, such as a person walking across the path between According to [5], KF is commonly used for non-
the Base Station (BS) and the receiver, is present. The stationary channel tracking. KF could perform better and
proposed approach achieves prediction accuracy of 91%. respond quickly to parameter changes compared to LS and
Figure 1 illustrates the beam coherence time, comparing RLS [6]. Recently [7], is using CNN for channel prediction
Baseline and Deep Learning (DL)-based solutions. The to maintain capacity at 97% compared to KF Auto
total beam training time for all antennas is denoted as Ty,.. Regression (AR), 92.5% with previous channel
The Baseline approach occupies a significant portion of the information to predict the next one in an Orthogonal
beam coherence time (Tp), whereas the proposed DL Frequency-Division Multiplexing (OFDM) Multiple Input
solution demonstrates a more efficient utilization of this Single Output (MISO) system in 3.5Ghz carrier frequency.
time frame. When T, > Tp, network continuity cannot be These latencies present significant bottlenecks for
guaranteed due to delays in the beamforming process [2]. achieving Ultra-Reliable Low-Latency Communication
This work addresses the challenges associated with large (URLLC), as discussed in [8].
surfaces, as discussed in [3], where T can serve as a In contrast, ML-based solutions can be trained offline
critical bottleneck in beamforming technologies for large and deployed in real time without depending on feedback,
antenna arrays. which substantially reduces latency [9]. Recent studies
Works from [1-3] have been summarized that the larger have demonstrated the use of Convolutional Neural
the number of elements of Intelligent Reflecting Surface Networks (CNNs) for predicting channel conditions in
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OFDM-MISO systems, achieving a 97% capacity
retention rate compared to 92.5% for KF-based auto-
regression models [7].
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Figure 1. Beam coherence time, T, (a) Baseline solution
for beamforming by searching for the optimal beam vector.
(b) Deep Learning solution for beamforming [2]

Moreover, ML architectures such as Recurrent Neural
Networks (RNNs) and Transformers have shown potential
in multi-step prediction, further enhancing proactive
beamforming capabilities [10, 11].

This paper builds upon these insights and proposes a
robust DL-based framework capable of multi-step
blockage prediction and efficient beamforming in IRS-
assisted mmWave systems. By addressing the limitations
of traditional methods and integrating recent advances in
ML for wireless communications, we contribute toward
enabling more resilient and low-latency wireless networks.

2.SYSTEM MODEL
2.1 Received Signal Model

Consider a communication system represented by our
previous work [12], where a BS communicates with a
vehicular user with the assistance of an IRS. However, the
IRS-user link can be blocked by obstacles, e.g., buses or
trucks. For simplicity, we assume that the BS and vehicle
user have equipped with a single antenna while the IRS is
equipped with M antennas. OFDM based system is
adopted with number of subcarriers, K. hpyy € C is
defined as a direct channel between the BS and the user. In
this study, the direct BS—user link is neglected under the
assumption that mmWave communication operates in a
severe NLoS environment, where large vehicles,
buildings, or other obstacles block the LoS path. Given the
high path loss and blockage sensitivity of mmWave
signals, the direct link contribution is negligible compared
to the IRS-assisted path, and thus its omission simplifies
the analysis without affecting the model’s applicability to
realistic deployment scenarios. Then, adopting from [12],
hgy and hy, e CM *1 are defined as uplink channels
between BS and user to IRS at the k™ subcarrier. By
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reciprocity, the transpose of the uplink channels, h,T,_k and
hglk, are downlink channels. The interaction matrix of the
k™ subcarrier, W, € CY*M  is the interaction
characteristic of the incident signal from the transmitter at
IRS. The transmitted signal, sy, is sent over k™ subcarrier
from the BS to user which satisfies the total power
constraint E|sy|? = Py/K, with Py as the total transmit
power. Then received signal at the user’s end with received
noise, 1y, ~ N¢(0,2) is expressed as:
Yk = hy x Wi hg s +hgy s +n (1)
Since it is assumed that the direct channel is
insignificant in this case, it can be disregarded. The receive
signal can then be expressed as:
i = h{ x Wi hp i Sic + 1y (2)
The diagonal structure of the interaction matrix, ¥y, may
be layered in a reflection beamforming vector, 1, € CM*1,
due to the assumption that only phase shifters implemented
in IRS elements are used. The same applied to all
subcarriers, Y, =, Vk. Therefore, it may be expressed in
Hadamard product form as follows:

T
Y = (hU,k ° hB,k) WSy + 1y (3)

2.2 Channel Model

In this work, we adopt the same geometric-based wideband
channel model as in our previous study, where the channel
vector of the ut" user at the k" subcarrier is given by:

j2Ttk

Bl = S52A Tk ape” & Op(dT, —t)a(8n dr)  (4)
where L is the total number of channel paths and a,, Ty, 6,,
¢, are the £ channel path gains, which include path
losses, the delay, the azimuth and elevation arrival angles,
respectively. T stands for sampling time and D for the
length of the cyclic prefix, with the assumption that DTy is
less than the maximum delay. The downlink IRS-user
channel hy; ;, can be defined similarly. To accomodate for
the variations of both channels, {hg,}k_; and {hU_k}ﬁzl,
over time, we employ a block fading channel model in
which the channel is considered to be constant throughout
the coherence time, T¢.

3. METHODOLOGY

3.1 Problem Formulation

As discussed in our previous work [11], the IRS plays a
crucial role in sensing the environment and predicting
blockages in the system. The problem involves
anticipating potential blockages in the IRS-user link in the
near future. Due to its proximity to the user, the IRS can
significantly contribute to sensing the environment and
predicting blockages. In this scenario, a single-antenna
user transmits a pilot signal to the IRS, utilizing
compressed sensing with a machine learning (ML)
technique, as proposed in [13]. The receive signal power is
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sampled from a few randomly distributed active elements
on the IRS. The number of active elements, denoted as M,
is the product of the number of horizontal (M) and vertical
(M,) elements. These active elements capture the channel
vector of each x-axis coordinate, while the moving vehicle
transmits an omni-directional pilot signal using a single
antenna to the IRS. The matrix G,zg, an M X M selection
matrix, selects entries from the original channel vector
corresponding to the IRS active elements. Specifically,
G;rs = [I]A4, where A represents the set of indices of the
active elements and I is the identity matrix corresponding
to the IRS active elements. The IRS sampled channel

vector, hy , € CM*1, at the k;y, subcarrier is expressed as:

)

hU,k = GIRShU,k

Let h represent the noisy sampled channel vector
obtained from the user's pilot signal. It can be expressed as
follows, where wy, ~ N ¢(0, aI) denotes the noise vector
received at the IRS's active elements:

hy . = Girshy + wy (6)

We define t € Z as the index for discrete time instances,
and f[t] = 0, 1 represents the link status at the t — th time
instance. When, f[t] = 1, the link is blocked, meaning the
Line of Sight (LoS) route between the transmitter and
receiver is obstructed, while f[t] =0 indicates an
unobstructed link. At each time instance t, if a single-
antenna user transmits a pilot signal to the IRS, the
sampled channel vector is captured from a few randomly
chosen active IRS elements. These active IRS elements
will then receive the pilot signals and estimate the noisy
sampled channel vector. The concatenated noisy sampled

channel vector at the t— th time interval, il[t], is
expressed as follows:

hitlvec = (hy,[t] hyale] .. hyklel) — (9)

To facilitate machine learning (ML) training and avoid
data loss, the noisy sampled channel vector is normalized
to the range [0, 1] by dividing it by the maximum
amplitude of all the channels in the dataset, H. Thus, the

a

normalized noisy sampled channel vector, h, g, [t], is
given by:

h(t]
max il[t]

Byormlt] )

Let T, represent the observation time window. The
sequence of sampled channel vectors from previous time

instances within the observation window, t — T_o +
1...,t, is combined into S, p,, defined as:

(10)

2~ -T,
Suo,h = {hyorm [t + Tl]}n=1

Given these inputs, the goal of this study is to predict the
future blockage link status at time T,,. BTp represents the
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future link status within the Tp—th instance, and it is
defined as follows:

_{0, if flt+n,]=0,vn, €{1,..,T,} (11
T — 1, otherwise

Where 0 indicates no obstacles and 1 indicates a blockage
in front of the IRS. Once the predicted link status BTp is

obtained, the objective is to optimize the prediction
accuracy and minimize the RMSE by developing
appropriate ML models and training them using a sequence
of sampled channel vectors.

3.2 Baseline of Pre-blockage Receive Signal Power for
Blockage Prediction

For comparison, the baseline is adopted from [14]. The
received signal, without noise, at the Fully-active IRS from
the user's pilot signal with a single antenna at time instance
t is defined as follows, where mmm represents each IRS
element:

Tiemlt] = thJ,k [t]Wpesk[t] + ny (12)
The total power over K subcarriers is then given by:
2
|rm[t]|2 = Z£=1|Tk,m[t]| (13)

At the t — th instance, the receive power vector for M
beams is defined as:
r[t] = vec[lry[t]]* ... [n[t]I?]" (14)
Since the user’s antenna has E number of antennas, the
total receive power from multiple antennas for M beams is
the sum of the receive powers:
rlt] = Zooir.lt] (15)
Similar to Equation (10), the sequence of the receive power
vector for these beams is defined as:
Suor = {rit+ n]}?z:l—Ta (16)
Finally, Equation (11) is used to predict the future
blockage link status within the T,, — th instance, BTp'

3.3 Machine Learning Models

Building on the work in [14], this study employs an IRS
with a limited number of active elements and utilizes both
types of Recurrent Neural Networks (RNNs) with Gated
Recurrent Units (GRU) and Long Short Term Memory
(LSTM) for predicting future link blockages. These
models are capable of accurately predicting blockages with
low RMSE before a Non-Line-of-Sight (NLoS) condition
occurs. As mentioned in [14], a pre-blockage wireless
signature can often be observed in the received power,
which can be leveraged to forecast future blockages.
Therefore, machine learning can use the sequence of
receive signal power to predict potential NLoS conditions
between the IRS and the user. This wireless signature is
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proposed as a tool for forecasting future link blockages in
mmWave systems. Given the complexity of these
signatures, machine learning is employed to learn and
make use of these patterns. To further investigate this area
of blockage prediction, we also incorporate the sequence
of channel vectors along with Instantaneous Channel State
Information (ICSI) for a performance comparison.

To enable the neural network to learn the time-
dependent patterns of observed receive signal power, the
GRU network design shown in Figure 2 of [14] is applied
with some modifications. The model initially consists of a
GRU with g-layers, followed by fully connected
feedforward layers, including the output layer. However,
in this case, the activation function of the prediction
component is changed to linear, rather than the typical
rectified linear unit (ReLU). This design can also be
applied to the LSTM model by replacing the GRU layers
with LSTM layers in the g-layers. For the blockage
prediction task, we use the Mean Squared Error (MSE) loss
function as the training objective:

lusg = Xt=1(pe — P)? (17)
where p; and P, are the blockage probability of the link
status. There are two link statuses, 0 and 1. Then, RMSE
is defined as below:
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Figure 2. The adopted GRU architect model to predict the
link status [14]

Let S denote the total of the sample size. Hence, accuracy
can be calculated as below:

Accuracy = %Zﬁzl 1 (B;;) = B;:)) (19)

where 1 is the indicator function, and B;:) and E;:) $ are

the target link status and predicted link status for future
time instances of T;, in the problem respectively.

3.4 ViWi Datasets and scenarios

We follow the experimental setup described in [15] to train
a deep learning model for blockage detection and
prediction in an urban environment. In this scenario, two
buses become immobile during rush hour, acting as
obstacles between the moving vehicles and the IRS. The
BS is located at a traffic light, while the IRS is placed in
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the middle of the road. The moving vehicle is assumed to
travel at 32.04 km/h, transmitting omnidirectional pilot
signals with a single antenna. The dataset, named
"colo_cam_blk" is generated using the ViWi framework as
shown in Figure 3 and consists of high-fidelity synthetic
wireless data created with ray-tracing software, Remcom
Wireless Insite.

To evaluate the model, 10% of the total 5000 samples
are reserved for testing, while the remaining 90% is split
into training (70%) and validation (20%) sets. The IRS is
configured with a Uniform Planar Array (UPA) structure,
consisting of a 8 X 8 array with 64 antennas, operating at
mmWave 60 GHz. The spacing between antenna elements
is half the wavelength of the operating frequency. The
experiment is carried out with fully active surface with on
the array, hence, 64 active elements for simplification on
the setup. A summary of the parameters used in the ViWi
dataset is provided in Table 1. This setup is used to predict
and detect potential future blockages between the IRS and
the moving vehicle's user.

3.5 Adaptive Filters and Beam Training for Blockage
Prediction

Adaptive filters are dynamic systems that adjust their
parameters in real-time to optimize performance based on
changing input signals. They are commonly used in signal
processing tasks such as noise reduction, echo
cancellation, and system identification. Unlike fixed
filters, adaptive filters continuously adapt to the input data
by minimizing a cost function, often using algorithms like
Least Mean Squares (LMS), Recursive Least Squares
(RLS) and Normalized Least Mean Squares (NLMS). This
ability to self-tune makes them highly effective in
environments with variable conditions, such as wireless
communication and speech processing.

According to [3], and as shown in Figure 4, the beam
coherence time Ty is defined as:

-2 (20)

vsina 2

TB =

Camera

Field of View

Figure 3. The selected scenario, "colo cam blk", in ViWi
Dataset Generation Framework [15]
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Table 1. The ViWi Dataset Parameters

Dataset Parameter Value
Frequency band 60 GHz
Active IRS 1
Number of IRS Antennas, (Mx, 8, 1,8)
My, Mz)
Active users From 1 to 5000
System bandwidth 125MHz
Number of OFDM subcarriersr 64
Number of OFDM sampling factor 1
Number of OFDM limit 64
Number of channel paths {1, 20}
Antenna spacing 0.54

béam projection

incoming ray

Direction of travel

Figure 4. An illustration of the beam coherence time
concept [3].

[2] assumes each beam training takes 10 ps. For a single-
antenna base station (BS) communicating with a 64x64
uniform planar array (UPA) IRS, the process takes
approximately 41 ms. However, when the vehicle is
traveling at 80 km/h, the computed Ty is just 10.8 ms.
Considering additional factors such as transmission delays,
handover time [3], and beamforming training time, the
blockage prediction algorithm must anticipate at least 31
ms ahead, equivalent to Tp = 7.5, to maintain network
reliability and ensure seamless connectivity.

The selection of 31 ms as the minimum prediction
horizon is dictated by the timing constraints inherent to
beamforming operations in high-frequency mmWave
systems. In the proposed system model, the total beam
training and reconfiguration time 7¢r7T {|mathrm{tr}Ttr
is 41 ms, while the beam coherence time
TBT {\mathrm{B}JTB —the duration for which a beam
direction remains valid under typical mobility and
environmental dynamics—is 10.8 ms. Consequently, the
minimum prediction horizon is determined as:

Tyrea = Ter — Tp = 41ms — 10.8ms =~ 30.2ms  (21)

A value of 31 ms is adopted to incorporate a safety
margin that accounts for processing latency in prediction
modules, residual misalignment in beam tracking, and
uncertainties due to mobility and environmental variations.
This threshold ensures that the system can detect
impending blockages or NLoS conditions, identify suitable
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alternative beams or handover targets, and complete
reconfiguration before the current beam path deteriorates.
Selecting a horizon shorter than 31 ms would risk initiating
beam adaptation after the coherence window has expired,
leading to potential link outages or QoS degradation. Thus,
the 31 ms value is not arbitrary but emerges from the
fundamental timing gap between beam adaptation latency
and beam coherence duration.

With a total number of elements of N,;, and assuming an
incident angle a = 60° and a distance D = 15m, the
azimuth beamwidth ® can be approximated using the

beamwidth formula for a uniform linear array of size /N,
given by:

2

0~ 0.886x\/N_a

(22)

where the antenna spacing is set to half the wavelength.
This relationship highlights the impact of antenna array
size on beamforming precision, reinforcing the necessity
for accurate blockage prediction to ensure continuous and
stable network performance [3].

4. RESULT AND DISCUSSION

In this comparison, an 8x8 Fully Active IRS is used to
receive pilot signals from the user, with an observed time
sequence T, = 16 as per [14]. The comparison of accuracy
between adaptive filtering methods and machine learning
models as shown in Figure 5, particularly LSTM networks,
highlights the superior performance of LSTM-based
approaches in predictive accuracy. The results from the
study show that the proposed LSTM model consistently
outperforms adaptive filtering techniques such as Least
Mean Squares LMS, NLMS and RLS, as well as a baseline
model.

The proposed LSTM model exhibits the highest
accuracy across all test cases, with values ranging from
96.40% to 93.21%. The baseline model also performs well
but remains consistently lower than the LSTM, with
accuracy values ranging from 95.30% to 92.51%. The
difference in accuracy between the LSTM and the baseline
model suggests that incorporating deeper learning
methodologies  significantly ~ enhances  prediction
capabilities over traditional approaches.

Among the adaptive filtering techniques, the LMS
algorithm shows the weakest performance, with accuracy
decreasing from 79.17% to 65.35%. The NLMS algorithm
exhibits slightly better performance compared to LMS,
with values fluctuating between 83.84% and 78.76%,
indicating improved adaptability. The RLS algorithm,
which is typically more computationally intensive, does
not surpass NLMS in accuracy. Its values range from
82.42% to 64.84%, demonstrating a downward trend
similar to LMS.

All adaptive filtering methods show a decline in
accuracy as the dataset progresses, which suggests a
potential issue with their ability to generalize over time. In
contrast, LSTM and the baseline model show a more
gradual decrease in accuracy, implying that they maintain
stability over an extended range of inputs. The gap
between LSTM and adaptive filters increases over time,
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further highlighting the robustness of machine learning-
based approaches in handling complex data patterns.
Additionally, as the T,, moves further into the future for
prediction, accuracy consistently decreases across all
models. This trend indicates the increasing difficulty of
making long-term predictions due to accumulating
uncertainties and complex variations in the data.

Another critical factor in evaluating prediction models
is the time required for computation. Figure 6 shows
proposed LSTM model takes an average of 50 us longer
than the baseline model to generate a prediction.
Meanwhile, the baseline model itself is approximately 80
us slower than adaptive filtering methods. This indicates
that while LSTM provides superior accuracy, it comes at
the cost of increased computational time. In real-time
applications where rapid predictions are necessary,
adaptive filtering methods remain advantageous in terms
of speed, despite their lower accuracy. However, in
scenarios where accuracy is prioritized over computation
time, the LSTM model remains a compelling choice.
Future research should consider optimizing LSTM
architectures to reduce computational latency while
maintaining high predictive performance.

Compared to GRU and adaptive filtering methods, the
proposed LSTM model demonstrates superior accuracy,
particularly for datasets with long-term dependencies and
non-linear temporal patterns. Adaptive filters, being linear
and memory-limited, struggle to capture the evolving, non-
stationary relationships present in the data, resulting in a
sharper decline in accuracy over time. GRU, while more
computationally efficient, has a reduced gating complexity
that can limit its ability to retain information over extended
sequences, leading to slightly lower accuracy than LSTM
in datasets where long-range context is crucial. The
LSTM’s architecture, with separate memory and gating
mechanisms, allows it to effectively preserve relevant
historical information and adapt to gradual shifts in data
distribution, thus maintaining predictive stability as the
dataset progresses.

5. CONCLUSION

To enhance the reliability of network-based predictions
and improve overall system performance, IRS
beamforming can be integrated into blockage prediction
frameworks. IRS technology enhances wireless
communication by dynamically adjusting the phase shifts
of reflective elements to optimize signal propagation,
mitigating blockages and signal degradation. The use of
IRS-assisted beamforming can improve network
robustness by rerouting signals through reflective surfaces,
reducing the impact of obstructions on real-time data
transmission.

The findings suggest that machine learning techniques,
particularly LSTMs, provide superior accuracy
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Figure 5. Blockage prediction accuracy comparison of
adaptive filters, the Baseline (GRU) and our proposed
LSTM against time instance, T,,
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Figure 6. Blockage prediction time consumption
comparison of adaptive filters, the Baseline (GRU) and our
proposed LSTM against time instance, T,

and stability compared to traditional adaptive filters. While
adaptive filtering methods such as LMS, NLMS, and RLS
are commonly used in signal processing applications, their
declining accuracy highlights their limitations in handling
dynamically changing data environments. The consistently
high accuracy of LSTM models supports their suitability
for predictive tasks where precision is critical. Given the
performance trends observed, future research should
consider hybrid models that integrate machine learning
with adaptive filters to leverage the strengths of both
methodologies. Additionally, exploring computational
efficiency, real-time processing capabilities, and network
reliability through IRS-based enhancements can further
improve the practical application of these models.

By incorporating IRS with machine learning models like
LSTM, network reliability can be significantly improved,
as the system can dynamically adapt to environmental
changes and optimize predictive accuracy in response to
network fluctuations. This synergy between IRS and deep
learning-based prediction models offers a promising
solution for enhancing signal stability in high-mobility and
complex communication environments. Future research
should explore hybrid approaches that combine IRS
beamforming with adaptive filtering techniques to improve
both accuracy and efficiency in blockage prediction.
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