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Abstract: Hyperparameter tuning plays a critical role in optimizing deep learning models for pedestrian detection, particularly 

in challenging scenarios such as low-light and occluded environments. This study investigates the effect of fine-tuning key 

hyperparameters in Faster R-CNN with a ResNet50 backbone, focusing on learning rate, optimizer choice, batch size, weight 

decay, and scheduling. Two models were compared: a baseline Faster R-CNN and a fine-tuned version with optimized training 

strategies. The fine-tuned model incorporated a reduced learning rate (0.0001), AdamW optimizer with weight decay (0.0005), 

and a warm-up strategy to improve training stability. Trained for 50 epochs, the fine-tuned model demonstrated superior mean 

Average Precision (mAP@0.5) of 0.8505 compared to 0.816 in the baseline, with reduced fluctuations and improved 

convergence. These findings underscore the importance of hyperparameter optimization in enhancing detection accuracy and 

generalization, particularly for pedestrian detection.  
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1. INTRODUCTION 

Pedestrian detection has been a major focus in computer 

vision research because of its critical importance in diverse 

applications such as surveillance systems, robotics, and 

most notably, autonomous driving. Modern pedestrian 

detection techniques increasingly rely on deep learning-

based object detection models like Faster R-CNN [1], 

Single Shot Detector (SSD) [2], and You Only Look Once 

(YOLO) [3, 4] to identify and classify pedestrians. Among 

these, Faster R-CNN is particularly effective in handling 

occlusions due to its region proposal network (RPN), 

which enhances localization accuracy even in densely 

populated or obstructed scenes. Unlike SSD [2] and YOLO 

[3, 4], which may struggle with small or partially visible 

objects due to their predefined anchor sizes, Faster R-CNN 

dynamically refines its region proposals, allowing it to 

perform better in challenging conditions such as low 

contrast, varying object scales, and occlusion. Although its 

two-stage detection process prioritizes precision over 

speed, this trade-off makes it an ideal choice for 

applications where detection accuracy is critical, such as 

autonomous vehicle perception systems. 

Several studies have demonstrated the potential of 

Faster R-CNN for object detection across various 

challenging scenarios. For instance, Asad Ullah et al. [5] 

explored pedestrian detection using infrared images and 

proposed two modifications to Fast R-CNN to enhance 

detection accuracy and speed. Their work showed that 

using a single-channel input significantly improved speed, 

while adding an extra convolutional layer increased 

detection accuracy. 

Similarly, Gao et al. [6] assessed the performance of 

Faster R-CNN on the Caltech Pedestrian dataset, reporting 

an average precision (AP) of 51.9%. While this result 

reflects a respectable level of detection accuracy and an 

impressive inference speed of 0.07 seconds per image, the 

authors acknowledged that the performance could be 

limited by the inherent challenges posed by the dataset. 

The Caltech Pedestrian dataset comprises a highly diverse 

collection of pedestrian images exhibiting significant 

variations in pose, scale, and occlusion levels. Such 

diversity makes it difficult for standard detection models 

to achieve high accuracy consistently across all scenarios. 

These challenges highlight the need for more refined 

optimization techniques to enhance model robustness and 

accuracy. The authors mentioned that to address this, a 

more rigorous fine-tuning process focusing on 

hyperparameter optimization, potentially involving 

strategies such as exhaustive grid search or even more 

sophisticated methods like Bayesian optimization, could 

be implemented. Adjusting parameters such as learning 
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rate, batch size, anchor scales, and optimization algorithms 

could considerably improve the model’s ability to 

generalize across varying pedestrian appearances. 

Moreover, incorporating additional techniques like data 

augmentation and multi-scale feature extraction may 

further contribute to improving detection performance in 

complex scenarios. 

Additionally, Akshatha et al. [7] conducted a study on 

human detection in aerial thermal images using Faster R-

CNN and SSD algorithms, where they aimed to enhance 

detection performance by fine-tuning hyperparameters 

such as learning rate and batch size. By carefully adjusting 

these parameters during the training process and 

monitoring the loss function, they ensured the model 

learned effectively without overfitting despite the 

limitations of available resources. Their approach resulted 

in the Faster R-CNN model with a ResNet50 backbone 

achieving an impressive mAP of 100% on the OSU 

thermal dataset and 55.7% on the AAU PD T dataset. 

Moreover, optimizing the anchor parameters contributed 

to a notable 10% improvement in mAP, demonstrating the 

effectiveness of their tuning process. 

Furthermore, Gonzales-Martínez et al. [8] also 

investigated the impact of hyperparameter tuning on Faster 

R-CNN for persistent object detection in radar images, 

highlighting the importance of initializing weights and 

selecting the appropriate optimizer to improve recall from 

0.7576 to 0.9394. These findings underscore the 

effectiveness of enhancing Faster R-CNN through network 

adjustments, hyperparameter tuning, and customized 

modifications, resulting in improved accuracy and 

robustness in various detection tasks. 

While Faster R-CNN has demonstrated impressive 

capabilities in pedestrian detection, the performance is 

highly dependent on hyperparameter settings. This study 

evaluates the effect of parameter tuning on Faster R-CNN 

with ResNet50 backbone by modifying key training 

parameters and comparing results against a baseline 

model. 

We adopted infrared (IR) imagery in this study because 

we compared the pedestrian detection performance of IR 

and RGB image modalities within autonomous vehicle 

scenarios. The findings revealed that the IR model 

consistently surpassed the RGB model, achieving 

approximately 3% higher mAP. This improved 

performance of the IR model is largely due to its 

effectiveness in detecting pedestrians under challenging 

conditions such as low-light environments and partial 

occlusions. By capturing thermal signatures, the IR model 

can identify human silhouettes that might not be visible in 

RGB images. Unlike identification systems that rely on 

details like color, facial features, or clothing, pedestrian 

detection for autonomous driving focuses solely on 

detecting the presence of pedestrians to ensure safe 

navigation. 

In addition to manual tuning approaches, recent 

advancements in hyperparameter optimization have 

introduced more efficient and automated strategies. 

Techniques such as Bayesian Optimization [9], Tree-

structured Parzen Estimator (TPE) [10], and Hyperband 

[11] are increasingly being employed in deep learning 

pipelines to optimize learning rates, weight decay, and 

other critical training parameters. These methods reduce 

the need for exhaustive manual experimentation by 

intelligently exploring the hyperparameter space. While 

this study relies on empirical tuning to assess specific 

parameter effects, these automated approaches offer 

promising directions for future work aimed at further 

improving training efficiency and model generalization. 

1.1 Dataset  

For this research, we made use of the FLIR ADAS dataset 

[12], which provides both visible light (RGB) and infrared 

(IR) thermal images. This dataset is particularly valuable 

for detecting objects under various lighting conditions, 

including both daytime and nighttime environments. It 

comprises a total of 10,228 images, with approximately 

60% (6,136 images) captured during the day and 40% 

(4,092 images) taken at night. The images are annotated 

with bounding boxes for object detection, covering four 

categories: cars, pedestrians, bicycles, and dogs. The 

dataset is divided into two parts: a training set containing 

8,862 images and a validation set with 1,366 images. All 

images are standardized to a resolution of 640×512 pixels 

and were captured using the FLIR Tau2 Camera. This 

study specifically focuses on pedestrian detection, which 

is critical for real-world applications like autonomous 

driving, where accurate detection under varying lighting 

conditions is essential. 

2. METHODOLOGY   

The methodology adopted in this study involves training 

and evaluating two versions of the Faster R-CNN model 

with ResNet50 as the backbone. The first version is the 

Baseline Faster R-CNN, which employs the default 

hyperparameter settings, while the second version is the 

Fine-Tuned Faster R-CNN, where various 

hyperparameters were carefully adjusted to enhance 

performance. The primary goal is to identify how these 

modifications impact the model’s accuracy and robustness 

when applied to pedestrian detection tasks. Both models 

were trained using the same dataset under identical 

conditions to ensure a fair comparison. Key differences 

between the two models are highlighted and discussed in 

detail. Figure 1 shows the architecture of the proposed 

system. 

2.1 Dataset and Preprocessing 

The FLIR dataset, which offers annotated infrared (IR) 

images, forms the basis for this research focused on 

detecting pedestrians in occluded scenarios. Its unique 

composition makes it ideal for pedestrian detection in 

difficult environments such as low-light conditions, 

nighttime settings, and situations involving occlusions, 

making it highly relevant for autonomous vehicle systems. 

However, earlier studies [13-16] have highlighted several 

shortcomings of the FLIR dataset, including inconsistent 

annotations, limited diversity in environmental conditions, 

and varying object appearances. These issues present 

challenges when attempting to build robust and 

generalizable models based exclusively on this dataset. To 

address these limitations and enhance the dataset’s 

suitability for detecting occluded pedestrians, several 
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Figure 1. Presents the framework of the proposed detection system, comprising three key stages: Data Input and Pre-

processing, Detection using Faster R-CNN, and Output Generation. 

refinement steps were implemented: 

i. Selecting Relevant Samples: Images were 

meticulously chosen to include only those featuring 

at least one annotated "person" instance. This 

approach maintains the dataset’s focus on 

pedestrian detection by eliminating irrelevant or 

confusing samples. 

ii. Managing Occlusions: Both visible and partially 

obscured pedestrian instances were preserved, 

allowing the model to effectively learn pedestrian 

detection even when individuals are not fully 

visible. 

During the refinement process, a comprehensive dataset 

of 5,838 infrared (IR) images was prepared specifically for 

this study. The dataset was then split into three groups: 

4,088 images were used for training, 1,167 for validation, 

and 583 for testing. This distribution was designed to 

support effective model training while ensuring unbiased 

performance evaluation. To enhance image quality and 

accurately extract important features, several 

preprocessing steps were applied: 

a. Image Resizing: The infrared images in the dataset 

were initially in a resolution of 640×512. To ensure 

consistency across the dataset and simplify batch 

processing during training, all images were resized 

to a uniform resolution of 640×512 pixels. This 

standardization aimed to maintain coherence in 

image dimensions throughout the training process.  

b. Pixel Normalization: To enhance training stability 

and promote faster convergence, the pixel values 

were scaled to a range between 0 and 1. 

 

𝐼𝑛𝑜𝑟𝑚 =  
𝐼 −  𝜇

𝜎
 (1) 

 

Where: 

𝐼 represents the original image,  

𝜇 denotes the average pixel value, and  

𝜎 indicates the standard deviation of the pixel 

values.  

c. Noise Reduction: To mitigate sensor noise, several 

data augmentation techniques were applied, such as 

MedianBlur, MotionBlur, and general Blur 

operations. These methods help in smoothing out 

image details, effectively reducing high-frequency 

noise while preserving essential features required 

for accurate pedestrian detection.  

d. Enhancing Contrast: Given that pedestrian 

features in infrared images can be dim due to 

varying thermal intensities, adaptive histogram 

equalization (AHE) was utilized to enhance local 

contrast, thereby improving the visibility of objects. 

2.2 Model Architecture  

The Faster R-CNN [1] architecture with ResNet50 was 

selected for this study because of its superior accuracy in 

detecting objects. This approach follows a two-stage 

process, where the initial stage involves generating region 

proposals through a Region Proposal Network (RPN). In 

the second stage, these proposals are classified and refined 

to enhance detection precision [1]. Both models utilized 

Faster R-CNN with a ResNet50 feature extractor. The 

detection pipeline remained consistent across both 

configurations to ensure a fair comparison. 

2.3 Experimental Setup  

The training configurations for both models are as follows: 

• Baseline Faster R-CNN: Default hyperparameters.  

• Fine-Tuned Faster R-CNN: Adjusted 

hyperparameters including learning rate, optimizer, 

batch size, and scheduling. 

2.4 Parameter Adjustments 

The primary modifications in the fine-tuned model were: 

i. Learning Rate (LR) Adjustment: The learning 

rate was reduced from 0.001 to 0.0001. The choice 

of learning rate significantly influences model 

convergence. A high learning rate can cause the 

model to diverge, whereas a very low learning rate 

can result in slow learning. By lowering the 

learning rate, the model updates weights in smaller 

steps, leading to smoother convergence and better 

generalization. Additionally, a Cosine Annealing 

Learning Rate Scheduler was applied, which 

gradually decreases the learning rate over epochs. 

This helps prevent premature convergence to a 

suboptimal solution and improves long-term 

learning stability. 

ii. Batch Size: The batch size was maintained at 8 to 

balance computational efficiency and stability. A 

larger batch size can stabilize training and improve 

parallelism but requires higher memory. 

Conversely, a smaller batch size introduces more 

noise into gradient updates but allows for more 

frequent weight updates, leading to better 
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generalization. The chosen batch size provided an 

optimal trade-off, preventing overfitting while 

ensuring smooth convergence. 

iii. Optimizer Selection: The optimizer was changed 

from Stochastic Gradient Descent (SGD) to 

AdamW with a weight decay of 0.0005. While SGD 

is effective for large-scale learning, it requires fine-

tuned momentum and decay parameters. AdamW is 

an adaptive optimizer that dynamically adjusts 

learning rates for each parameter, improving 

convergence speed. The incorporation of weight 

decay helps in regularization, reducing overfitting 

by penalizing large weights. Similar to Adam, 

AdamW employs adaptive learning rates and 

incorporates bias correction. However, what sets it 

apart is its ability to apply L2 regularization 

separately, which enhances its capacity for 

generalization. Recent research has shown that 

AdamW often outperforms Adam, especially in 

deep learning applications where effective weight 

regularization is critical for achieving reliable 

performance [17, 18]. This characteristic makes 

AdamW particularly suitable for pedestrian 

detection tasks, where fine-tuning weights is 

essential for attaining high detection accuracy. 

Update Rule in Adam: 

𝜃𝑡 =  𝜃𝑡−1 −  𝜂(
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 +   𝜆𝜃𝑡−1) (2) 

Where: 

𝜃 = represents the model’s parameters, such as 

weights or biases that are being adjusted. 

𝑡 = indicates the current iteration or time step during 

the training process. 

𝜂 = denotes the learning rate, which determines the 

step size at each iteration while moving toward the 

minimum of the loss function. 

𝑚̂𝑡 = refers to the corrected estimate of the first 

moment (mean of gradients) to reduce bias. 

𝑣̂𝑡 = indicates the corrected estimate of the second 

moment (uncentered variance of gradients) for better 

stability. 

𝜖 = is a tiny value added to prevent division by zero 

during the calculation. 

𝜆 = signifies the rate of weight decay, which acts as a 

regularization term to prevent overfitting. 

In the Adam optimizer, weight decay is applied directly 

within the gradient update step, which can sometimes 

reduce its effectiveness as a regularization technique. 

Update Rule in AdamW: 

𝜃𝑡 =  𝜃𝑡−1 −  𝜂(
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 ) (3) 

𝜃𝑡  ⃪  𝜃𝑡 −  𝜂𝜆𝜃𝑡−1 (4) 

 

The AdamW optimizer improves regularization by 

applying weight decay separately from the gradient update, 

which frequently leads to enhanced model performance. 

iv. Warm-up Strategy: A learning rate warm-up was 

introduced to stabilize initial training. Warm-up 

prevents abrupt weight updates at the start of 

training when gradients are unstable. This was 

implemented by initially setting the learning rate to 

a small value and gradually increasing it over a few 

iterations before transitioning to the scheduled 

learning rate. This approach prevents the optimizer 

from making erratic updates at the beginning of 

training and ensures a more stable learning 

trajectory. 

2.4.1 Why These Adjustments Were Necessary: 

These modifications were crucial for enhancing the 

training stability, convergence speed, and generalization 

capability of the model. The learning rate adjustment and 

Cosine Annealing Scheduler helped the model refine its 

feature representations without abrupt changes. The choice 

of AdamW provided better adaptation during weight 

updates, reducing the risk of overfitting. The batch size 

ensured a smooth gradient update process without 

overwhelming GPU memory. Finally, the warm-up 

strategy prevented instability during early training, leading 

to a more robust and effective model. Together, these 

adjustments significantly improved Faster R-CNN’s 

detection accuracy while ensuring a balanced trade-off 

between precision and computational efficiency. 

2.5 Evaluation Metrics 

The mAP used in this study, including mAP and 

mAP@0.5, serves as a key evaluation metric for assessing 

model performance, particularly its accuracy and precision 

in object detection. mAP measures the average precision 

across various recall levels, while mAP@0.5 evaluates 

precision at a specific Intersection over Union (IoU) 

threshold of 0.5, where a detection is considered accurate 

if the predicted bounding box covers at least 50% of the 

actual object. In addition to mAP-based accuracy 

measures, we also considered inference speed, reported in 

frames per second (FPS), as an important metric for 

assessing real-time suitability. Details on FPS are 

presented under Results and Discussion section in 

Quantitative Analysis. During training, various loss 

functions are applied to enhance model prediction 

capabilities, including training loss, bounding box 

regression loss, objectness loss, and RPN loss. These 

losses are combined to form the total loss function, 

calculated as: 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑟𝑒𝑔 + 𝐿𝑜𝑏𝑗 +  𝐿𝑟𝑝𝑛 (5) 

Classification loss 𝐿𝑐𝑙𝑠 is computed using cross-entropy 

loss to accurately predict class labels. Bounding box 

regression loss 𝐿𝑟𝑒𝑔 is evaluated using Smooth L1 loss to 

balance accuracy and stability. Objectness loss 𝐿𝑜𝑏𝑗 

ensures effective differentiation between objects and 

background, while RPN loss 𝐿𝑟𝑝𝑛 focuses on refining 

bounding box proposals. 

3. RESULTS AND DISCUSSION 

The experimental results were analyzed to assess the 

impact of hyperparameter tuning on the performance of 

Faster R-CNN with ResNet50 backbone. The evaluation 

was performed using metrics such as mean Average 

Precision (mAP) and various training loss components, 
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including classification loss, bounding box regression loss, 

objectness loss, and region proposal network (RPN) loss. 

A comparison between the Vanilla and Fine-Tuned models 

highlights the improvements gained through careful 

parameter tuning. 

3.1 Quantitative Analysis 

The evaluation primarily focused on comparing the highest 

mAP@0.5, final training loss, and testing mAP@0.5 

between the Base Model and the Fine-Tuned Model, as 

shown in Table 1. The fine-tuned model achieved a 

superior highest mAP@0.5 of 0.8505 compared to 0.8161 

in the base model. Additionally, the final training loss of 

the fine-tuned model was reduced to 0.1255, showing an 

improvement in training efficiency compared to the base 

model's loss of 0.1461. During testing, the fine-tuned 

model achieved a higher mAP@0.5 of 0.8237 compared to 

0.7833 of the base model. These results highlight the 

effectiveness of hyperparameter tuning in enhancing 

model performance and robustness. In addition to 

accuracy-based metrics, inference speed was evaluated on 

the fine-tuned model in terms of frames per second (FPS), 

which reflects how many images the model can process per 

second during inference. The fine-tuned model achieved 

an inference speed of 10.42 FPS, measured using the best-

performing checkpoint on test samples. FPS is a critical 

metric for real-time applications such as autonomous 

driving, where systems must detect and respond to objects 

promptly. The required FPS can vary depending on the 

vehicle’s speed and operational context. For instance, in 

urban environments, where vehicles typically move at 10-

30 km/h, a detection rate of around 10-15 FPS is generally 

sufficient to ensure timely response [19], [12]. In contrast, 

highway speeds (e.g., 50-100 km/h) require faster 

detection rates typically in the range of 20-30 FPS to 

maintain safety margins and avoid collisions [16]. Thus, 

the achieved speed satisfies the real-time constraints of 

urban autonomous driving. It is important to note that FPS 

performance is influenced by the characteristics of the 

deployment platform, including GPU capability, memory 

bandwidth, and hardware configuration. The reported FPS 

in this study was obtained on a system equipped with an 

NVIDIA GeForce RTX 3050 GPU (8 GB VRAM), 

Intel(R) Core(TM) i9-10900F CPU @ 2.80 GHz, and 16 

GB RAM. This finding, together with the improved 

detection accuracy, confirms the model’s potential for 

deployment in real-world autonomous driving systems. 

3.2 Performance Comparison and Loss Analysis 

The performance comparison and loss analysis reveal the 

significant benefits of hyperparameter tuning in enhancing 

the Faster R-CNN model’s performance. The fine-tuned 

model achieved a higher overall mAP@0.5 of 0.8505 

compared to the base model’s 0.8161, indicating improved 

localization and classification performance. This 

improvement is largely attributed to the optimized learning 

rate, AdamW optimizer, and effective scheduling strategy 

employed during training. Additionally, the smoother 

training graph of the fine-tuned model, as shown in Figure 

2(b), reflects better convergence stability compared to the 

fluctuating pattern seen in the base model Figure 2(a). 

The use of the AdamW optimizer with weight decay, 

combined with a well-designed warm-up strategy, 

contributed to more efficient training and better 

generalization. The consistent reduction in training loss 

further highlights the model’s learning efficiency. Despite 

slightly higher initial losses, the fine-tuned model achieved 

a higher testing mAP@0.5 of 0.8237, outperforming the 

base model’s 0.7833. These findings confirm the 

importance of properly tuned hyperparameters for 

achieving robust performance and generalization in object 

detection tasks. 

Figure 3(a) illustrates a scenario where the Baseline 

Model struggled to detect a pedestrian (indicated by a red 

circle) within a crowded scene featuring several partially 

occluded individuals. The overlapping pedestrians likely 

caused this misdetection. In contrast, Figure 3(b) shows 

that the Fine-Tuned Model successfully addressed the 

occlusion challenge, accurately detecting all pedestrians 

present. And Figure 3(c) highlights a case where the 

Baseline Model incorrectly identified pedestrians (marked 

with a red circle) in a scene while the scene has only one 

pedestrian which was accurately detected by the Fine-

Tuned Model in Figure 3(d). Zoomed-in views of missed 

detections are shown in Figure 3 (e and f), with missed and 

false positives highlighted in red circles for clarity. These 

examples highlight the Baseline Model’s limitations in 

dealing with complex conditions like occlusions, while 

demonstrating the Fine-Tuned Model’s enhanced 

capability to overcome these challenges. 

Table 1. Summary Of Training and Testing Performance 

Modality 
Base 

Model 
Fine-Tuned Model 

Epochs 50 50 

Batch Size 8 8 

Highest mAP@0.5 0.8161 0.8505 

Final Training Loss 0.1461 0.1255 

Testing mAP@0.5 0.7833 0.8237 
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Figure 2. mAP for 50 epochs (a) Baseline Model and (b) Fine-Tuned Model. 

Figure 3. Shows a comparison between the Baseline Model 

(a and c) and the Fine-Tuned Model (b and d) in detecting 

pedestrians. While (e and f), shows the zoomed-in views 

of missed detections and false positives highlighted in red 

circles. 

3.3 Ablation Study on Hyperparameter Settings 

To systematically assess the impact of individual 

hyperparameter modifications, an ablation study was 

conducted. Table 2 summarizes the experimental settings 

and corresponding mAP@0.5 scores. Individually, 

switching the optimizer from SGD to AdamW improved 

the mAP@0.5 by 2.57%, while reducing the learning rate 

yielded a 1.24% gain compared to the baseline. 

Introducing a warm-up strategy also provided smoother 

early training dynamics, leading to a moderate 

improvement of 0.87%. The final fine-tuned model, 

incorporating all three modifications (AdamW, reduced 

learning rate, and warm-up), achieved the highest 

mAP@0.5 of 0.8505, gaining 3.44% against the baseline, 

confirming the cumulative benefits of these tuning choices. 

4. DISCUSSION AND CONCLUSION 

The results of this study demonstrate the importance of 

effective hyperparameter tuning in enhancing the 

performance of Faster R-CNN with ResNet50 backbone 

for object detection. The comparison between the base 

model and the fine-tuned model revealed several key 

improvements resulting from optimized parameter 

configurations. Notably, the fine-tuned model achieved 

higher mAP@0.5 values and exhibited smoother 

convergence patterns during training, which highlights its 

enhanced stability and generalization capabilities. 

The improved performance of the fine-tuned model can 

be attributed to several factors, including the use of the 

AdamW optimizer with weight decay, a well-designed 

warm-up strategy, and the use of a reduced learning rate to 

stabilize training. These adjustments contributed to more 

effective feature extraction and better convergence during 

the training process. The consistent reduction in training 

loss and increased mAP values further validate the 

significance of these tuning choices. Beyond accuracy, the 

fine-tuned model maintained a real-time inference speed of 

10.42 FPS, which meets the operational demands of urban 

autonomous driving systems. 

Comparing the performance of the base model and the 

fine-tuned model underscores the necessity of careful 

parameter selection when training deep learning models 

for object detection. While the base model provided 

reasonable results, the fine-tuned model clearly 

demonstrated the potential of tuning strategies to enhance 

model performance.  

While this study adopts manual tuning techniques to 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 
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Table 2. Ablation Study and Testing Performance 

 

demonstrate the impact of specific configurations, it is 

worth noting that automated hyperparameter optimization 

strategies such as Bayesian Optimization, TPE, and 

Hyperband have been shown to significantly improve the 

training efficiency and generalization of deep learning 

models. These techniques intelligently navigate the 

hyperparameter search space, reducing the reliance on 

exhaustive grid searches. Future work can explore the 

integration of these automated search methods, alongside 

additional augmentation techniques, to further enhance the 

robustness and accuracy of Faster R-CNN models.  
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