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Abstract: Hyperparameter tuning plays a critical role in optimizing deep learning models for pedestrian detection, particularly
in challenging scenarios such as low-light and occluded environments. This study investigates the effect of fine-tuning key
hyperparameters in Faster R-CNN with a ResNet50 backbone, focusing on learning rate, optimizer choice, batch size, weight
decay, and scheduling. Two models were compared: a baseline Faster R-CNN and a fine-tuned version with optimized training
strategies. The fine-tuned model incorporated a reduced learning rate (0.0001), AdamW optimizer with weight decay (0.0005),
and a warm-up strategy to improve training stability. Trained for 50 epochs, the fine-tuned model demonstrated superior mean
Average Precision (mAP@0.5) of 0.8505 compared to 0.816 in the baseline, with reduced fluctuations and improved
convergence. These findings underscore the importance of hyperparameter optimization in enhancing detection accuracy and
generalization, particularly for pedestrian detection.
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1. INTRODUCTION explored pedestrian detection using infrared images and
proposed two modifications to Fast R-CNN to enhance
detection accuracy and speed. Their work showed that
using a single-channel input significantly improved speed,
while adding an extra convolutional layer increased
detection accuracy.

Pedestrian detection has been a major focus in computer
vision research because of its critical importance in diverse
applications such as surveillance systems, robotics, and
most notably, autonomous driving. Modern pedestrian
detection techniques increasingly rely on deep learning-

based object detection models like Faster R-CNN [1], Similarly, Gao et al. [6] assessed' the performance' of
Single Shot Detector (SSD) [2], and You Only Look Once Faster R-CNN on the Caltech Pedestrian datgset, r.eportmg
(YOLO) [3, 4] to identify and classify pedestrians. Among an average precision (AP) of 51.9%. While this result

these, Faster R-CNN is particularly effective in handling reflects a respectable level of detection accuracy and an

occlusions due to its region proposal network (RPN), impressive inference speed of 0.07 seconds per image, the
which enhances localization accuracy even in densely authors acknowledged that the performance could be
populated or obstructed scenes. Unlike SSD [2] and YOLO limited by the inherent challenges posed by the dataset.
[3, 4], which may struggle with small or partially visible The Caltech Pedestrian dataset comprises a highly diverse
objects due to their predefined anchor sizes, Faster R-CNN collection of pedestrian images exhibiting significant
dynamically refines its region proposals, allowing it to variations in pose, scale, and occlusion levels. Such
perform better in challenging conditions such as low diversity makes it difficult for standard detection models

contrast, varying object scales, and occlusion. Although its to achieve high accuracy consistently across all scenarios.
two-stage detection process prioritizes precision over The'se. ch'allenges 'h1gh11ght the need for more refined
speed, this trade-off makes it an ideal choice for optimization techniques to enhance model robustness and
applications where detection accuracy is critical, such as accuracy. The authors meptloned that to addres.s this, a
autonomous vehicle perception systems. more rigorous fine-tuning process focusing on

Several studies have demonstrated the potential of hyperparameter ~ optimization, potentially — involving
Faster R-CNN for object detection across various strategies such as exhaustive grid search or even more

challenging scenarios. For instance, Asad Ullah et al. [5] sophisticated methods like Bayesian optimization, could
be implemented. Adjusting parameters such as learning
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rate, batch size, anchor scales, and optimization algorithms
could considerably improve the model’s ability to
generalize across varying pedestrian appearances.
Moreover, incorporating additional techniques like data
augmentation and multi-scale feature extraction may
further contribute to improving detection performance in
complex scenarios.

Additionally, Akshatha et al. [7] conducted a study on
human detection in aerial thermal images using Faster R-
CNN and SSD algorithms, where they aimed to enhance
detection performance by fine-tuning hyperparameters
such as learning rate and batch size. By carefully adjusting
these parameters during the training process and
monitoring the loss function, they ensured the model
learned effectively without overfitting despite the
limitations of available resources. Their approach resulted
in the Faster R-CNN model with a ResNet50 backbone
achieving an impressive mAP of 100% on the OSU
thermal dataset and 55.7% on the AAU PD T dataset.
Moreover, optimizing the anchor parameters contributed
to a notable 10% improvement in mAP, demonstrating the
effectiveness of their tuning process.

Furthermore, Gonzales-Martinez et al. [8] also
investigated the impact of hyperparameter tuning on Faster
R-CNN for persistent object detection in radar images,
highlighting the importance of initializing weights and
selecting the appropriate optimizer to improve recall from
0.7576 to 0.9394. These findings underscore the
effectiveness of enhancing Faster R-CNN through network
adjustments, hyperparameter tuning, and customized
modifications, resulting in improved accuracy and
robustness in various detection tasks.

While Faster R-CNN has demonstrated impressive
capabilities in pedestrian detection, the performance is
highly dependent on hyperparameter settings. This study
evaluates the effect of parameter tuning on Faster R-CNN
with ResNet50 backbone by modifying key training
parameters and comparing results against a baseline
model.

We adopted infrared (IR) imagery in this study because
we compared the pedestrian detection performance of IR
and RGB image modalities within autonomous vehicle
scenarios. The findings revealed that the IR model
consistently surpassed the RGB model, achieving
approximately 3% higher mAP. This improved
performance of the IR model is largely due to its
effectiveness in detecting pedestrians under challenging
conditions such as low-light environments and partial
occlusions. By capturing thermal signatures, the IR model
can identify human silhouettes that might not be visible in
RGB images. Unlike identification systems that rely on
details like color, facial features, or clothing, pedestrian
detection for autonomous driving focuses solely on
detecting the presence of pedestrians to ensure safe
navigation.

In addition to manual tuning approaches, recent
advancements in hyperparameter optimization have
introduced more efficient and automated strategies.
Techniques such as Bayesian Optimization [9], Tree-
structured Parzen Estimator (TPE) [10], and Hyperband
[11] are increasingly being employed in deep learning
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pipelines to optimize learning rates, weight decay, and
other critical training parameters. These methods reduce
the need for exhaustive manual experimentation by
intelligently exploring the hyperparameter space. While
this study relies on empirical tuning to assess specific
parameter effects, these automated approaches offer
promising directions for future work aimed at further
improving training efficiency and model generalization.

1.1 Dataset

For this research, we made use of the FLIR ADAS dataset
[12], which provides both visible light (RGB) and infrared
(IR) thermal images. This dataset is particularly valuable
for detecting objects under various lighting conditions,
including both daytime and nighttime environments. It
comprises a total of 10,228 images, with approximately
60% (6,136 images) captured during the day and 40%
(4,092 images) taken at night. The images are annotated
with bounding boxes for object detection, covering four
categories: cars, pedestrians, bicycles, and dogs. The
dataset is divided into two parts: a training set containing
8,862 images and a validation set with 1,366 images. All
images are standardized to a resolution of 640x512 pixels
and were captured using the FLIR Tau2 Camera. This
study specifically focuses on pedestrian detection, which
is critical for real-world applications like autonomous
driving, where accurate detection under varying lighting
conditions is essential.

2. METHODOLOGY

The methodology adopted in this study involves training
and evaluating two versions of the Faster R-CNN model
with ResNet50 as the backbone. The first version is the
Baseline Faster R-CNN, which employs the default
hyperparameter settings, while the second version is the
Fine-Tuned Faster R-CNN, where various
hyperparameters were carefully adjusted to enhance
performance. The primary goal is to identify how these
modifications impact the model’s accuracy and robustness
when applied to pedestrian detection tasks. Both models
were trained using the same dataset under identical
conditions to ensure a fair comparison. Key differences
between the two models are highlighted and discussed in
detail. Figure 1 shows the architecture of the proposed
system.

2.1 Dataset and Preprocessing

The FLIR dataset, which offers annotated infrared (IR)
images, forms the basis for this research focused on
detecting pedestrians in occluded scenarios. Its unique
composition makes it ideal for pedestrian detection in
difficult environments such as low-light conditions,
nighttime settings, and situations involving occlusions,
making it highly relevant for autonomous vehicle systems.
However, earlier studies [13-16] have highlighted several
shortcomings of the FLIR dataset, including inconsistent
annotations, limited diversity in environmental conditions,
and varying object appearances. These issues present
challenges when attempting to build robust and
generalizable models based exclusively on this dataset. To
address these limitations and enhance the dataset’s
suitability for detecting occluded pedestrians, several
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Figure 1. Presents the framework of the proposed detection system, comprising three key stages: Data Input and Pre-
processing, Detection using Faster R-CNN, and Output Generation.

refinement steps were implemented:

i. Selecting Relevant Samples: Images were
meticulously chosen to include only those featuring
at least one annotated "person" instance. This
approach maintains the dataset’s focus on
pedestrian detection by eliminating irrelevant or
confusing samples.

ii. Managing Occlusions: Both visible and partially
obscured pedestrian instances were preserved,
allowing the model to effectively learn pedestrian
detection even when individuals are not fully
visible.

During the refinement process, a comprehensive dataset
of 5,838 infrared (IR) images was prepared specifically for
this study. The dataset was then split into three groups:
4,088 images were used for training, 1,167 for validation,
and 583 for testing. This distribution was designed to
support effective model training while ensuring unbiased
performance evaluation. To enhance image quality and
accurately  extract  important  features, several
preprocessing steps were applied:

a. Image Resizing: The infrared images in the dataset
were initially in a resolution of 640x512. To ensure
consistency across the dataset and simplify batch
processing during training, all images were resized
to a uniform resolution of 640x512 pixels. This
standardization aimed to maintain coherence in
image dimensions throughout the training process.

b. Pixel Normalization: To enhance training stability
and promote faster convergence, the pixel values
were scaled to a range between 0 and 1.

)

Where:
I represents the original image,
u denotes the average pixel value, and
o indicates the standard deviation of the pixel
values.
c. Noise Reduction: To mitigate sensor noise, several

data augmentation techniques were applied, such as
MedianBlur, MotionBlur, and general Blur
operations. These methods help in smoothing out
image details, effectively reducing high-frequency
noise while preserving essential features required
for accurate pedestrian detection.

d. Enhancing Contrast: Given that pedestrian
features in infrared images can be dim due to
varying thermal intensities, adaptive histogram
equalization (AHE) was utilized to enhance local
contrast, thereby improving the visibility of objects.

2.2 Model Architecture

The Faster R-CNN [1] architecture with ResNet50 was
selected for this study because of its superior accuracy in
detecting objects. This approach follows a two-stage
process, where the initial stage involves generating region
proposals through a Region Proposal Network (RPN). In
the second stage, these proposals are classified and refined
to enhance detection precision [1]. Both models utilized
Faster R-CNN with a ResNet50 feature extractor. The
detection pipeline remained consistent across both
configurations to ensure a fair comparison.

2.3 Experimental Setup

The training configurations for both models are as follows:
¢ Baseline Faster R-CNN: Default hyperparameters.
¢ Fine-Tuned Faster R-CNN: Adjusted

hyperparameters including learning rate, optimizer,
batch size, and scheduling.

2.4 Parameter Adjustments

The primary modifications in the fine-tuned model were:

i. Learning Rate (LR) Adjustment: The learning
rate was reduced from 0.001 to 0.0001. The choice
of learning rate significantly influences model
convergence. A high learning rate can cause the
model to diverge, whereas a very low learning rate
can result in slow learning. By lowering the
learning rate, the model updates weights in smaller
steps, leading to smoother convergence and better
generalization. Additionally, a Cosine Annealing
Learning Rate Scheduler was applied, which
gradually decreases the learning rate over epochs.
This helps prevent premature convergence to a
suboptimal solution and improves long-term
learning stability.

ii.  Batch Size: The batch size was maintained at 8 to
balance computational efficiency and stability. A
larger batch size can stabilize training and improve
parallelism  but requires higher —memory.
Conversely, a smaller batch size introduces more
noise into gradient updates but allows for more
frequent weight updates, leading to better
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generalization. The chosen batch size provided an
optimal trade-off, preventing overfitting while
ensuring smooth convergence.

iii.  Optimizer Selection: The optimizer was changed
from Stochastic Gradient Descent (SGD) to
AdamW with a weight decay of 0.0005. While SGD
is effective for large-scale learning, it requires fine-
tuned momentum and decay parameters. AdamW is
an adaptive optimizer that dynamically adjusts
learning rates for each parameter, improving
convergence speed. The incorporation of weight
decay helps in regularization, reducing overfitting
by penalizing large weights. Similar to Adam,
AdamW employs adaptive learning rates and
incorporates bias correction. However, what sets it
apart is its ability to apply L2 regularization
separately, which enhances its capacity for
generalization. Recent research has shown that
AdamW often outperforms Adam, especially in
deep learning applications where effective weight
regularization is critical for achieving reliable
performance [17, 18]. This characteristic makes
AdamW particularly suitable for pedestrian
detection tasks, where fine-tuning weights is
essential for attaining high detection accuracy.

Update Rule in Adam:
me
0= 01— Nl——"+ 16,1) )
Jo+e€
Where
6 = represents the model’s parameters, such as

weights or biases that are being adjusted.

t = indicates the current iteration or time step during
the training process.

1 = denotes the learning rate, which determines the
step size at each iteration while moving toward the
minimum of the loss function.

m,; = refers to the corrected estimate of the first
moment (mean of gradients) to reduce bias.

¥, = indicates the corrected estimate of the second
moment (uncentered variance of gradients) for better
stability.

€ = is a tiny value added to prevent division by zero
during the calculation.

A = signifies the rate of weight decay, which acts as a
regularization term to prevent overfitting.

In the Adam optimizer, weight decay is applied directly
within the gradient update step, which can sometimes
reduce its effectiveness as a regularization technique.
Update Rule in AdamW:

m
0= 01— N(— ) 3)
U, +€
0y < 0, — NAB;_4 4)

The AdamW optimizer improves regularization by
applying weight decay separately from the gradient update,
which frequently leads to enhanced model performance.

iv.  Warm-up Strategy: A learning rate warm-up was
introduced to stabilize initial training. Warm-up
prevents abrupt weight updates at the start of
training when gradients are unstable. This was
implemented by initially setting the learning rate to

279

a small value and gradually increasing it over a few
iterations before transitioning to the scheduled
learning rate. This approach prevents the optimizer
from making erratic updates at the beginning of
training and ensures a more stable learning
trajectory.

2.4.1 Why These Adjustments Were Necessary:

These modifications were crucial for enhancing the
training stability, convergence speed, and generalization
capability of the model. The learning rate adjustment and
Cosine Annealing Scheduler helped the model refine its
feature representations without abrupt changes. The choice
of AdamW provided better adaptation during weight
updates, reducing the risk of overfitting. The batch size
ensured a smooth gradient update process without
overwhelming GPU memory. Finally, the warm-up
strategy prevented instability during early training, leading
to a more robust and effective model. Together, these
adjustments significantly improved Faster R-CNN’s
detection accuracy while ensuring a balanced trade-off
between precision and computational efficiency.

2.5 Evaluation Metrics

The mAP used in this study, including mAP and
mAP@0.5, serves as a key evaluation metric for assessing
model performance, particularly its accuracy and precision
in object detection. mAP measures the average precision
across various recall levels, while mAP@0.5 evaluates
precision at a specific Intersection over Union (IoU)
threshold of 0.5, where a detection is considered accurate
if the predicted bounding box covers at least 50% of the
actual object. In addition to mAP-based accuracy
measures, we also considered inference speed, reported in
frames per second (FPS), as an important metric for
assessing real-time suitability. Details on FPS are
presented under Results and Discussion section in
Quantitative Analysis. During training, various loss
functions are applied to enhance model prediction
capabilities, including training loss, bounding box
regression loss, objectness loss, and RPN loss. These
losses are combined to form the total loss function,
calculated as:
L=Las+ Lyeg + Lopj + Lipn (5)
Classification loss L is computed using cross-entropy
loss to accurately predict class labels. Bounding box
regression loss Ly.4 is evaluated using Smooth L1 loss to
balance accuracy and stability. Objectness loss Lgy;
ensures effective differentiation between objects and
background, while RPN loss L, focuses on refining
bounding box proposals.

3. RESULTS AND DISCUSSION

The experimental results were analyzed to assess the
impact of hyperparameter tuning on the performance of
Faster R-CNN with ResNet50 backbone. The evaluation
was performed using metrics such as mean Average
Precision (mAP) and various training loss components,
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including classification loss, bounding box regression loss,
objectness loss, and region proposal network (RPN) loss.
A comparison between the Vanilla and Fine-Tuned models
highlights the improvements gained through careful
parameter tuning.

3.1 Quantitative Analysis

The evaluation primarily focused on comparing the highest
mAP@Q0.5, final training loss, and testing mAP@0.5
between the Base Model and the Fine-Tuned Model, as
shown in Table 1. The fine-tuned model achieved a
superior highest mAP@0.5 of 0.8505 compared to 0.8161
in the base model. Additionally, the final training loss of
the fine-tuned model was reduced to 0.1255, showing an
improvement in training efficiency compared to the base
model's loss of 0.1461. During testing, the fine-tuned
model achieved a higher mAP@0.5 of 0.8237 compared to
0.7833 of the base model. These results highlight the
effectiveness of hyperparameter tuning in enhancing
model performance and robustness. In addition to
accuracy-based metrics, inference speed was evaluated on
the fine-tuned model in terms of frames per second (FPS),
which reflects how many images the model can process per
second during inference. The fine-tuned model achieved
an inference speed of 10.42 FPS, measured using the best-
performing checkpoint on test samples. FPS is a critical
metric for real-time applications such as autonomous
driving, where systems must detect and respond to objects
promptly. The required FPS can vary depending on the
vehicle’s speed and operational context. For instance, in
urban environments, where vehicles typically move at 10-
30 km/h, a detection rate of around 10-15 FPS is generally
sufficient to ensure timely response [19], [12]. In contrast,
highway speeds (e.g., 50-100 km/h) require faster
detection rates typically in the range of 20-30 FPS to
maintain safety margins and avoid collisions [16]. Thus,
the achieved speed satisfies the real-time constraints of
urban autonomous driving. It is important to note that FPS
performance is influenced by the characteristics of the
deployment platform, including GPU capability, memory
bandwidth, and hardware configuration. The reported FPS
in this study was obtained on a system equipped with an
NVIDIA GeForce RTX 3050 GPU (8 GB VRAM),
Intel(R) Core(TM) i9-10900F CPU @ 2.80 GHz, and 16
GB RAM. This finding, together with the improved
detection accuracy, confirms the model’s potential for
deployment in real-world autonomous driving systems.

3.2 Performance Comparison and Loss Analysis

The performance comparison and loss analysis reveal the
significant benefits of hyperparameter tuning in enhancing
the Faster R-CNN model’s performance. The fine-tuned
model achieved a higher overall mAP@0.5 of 0.8505
compared to the base model’s 0.8161, indicating improved
localization and classification performance. This
improvement is largely attributed to the optimized learning
rate, AdamW optimizer, and effective scheduling strategy
employed during training. Additionally, the smoother
training graph of the fine-tuned model, as shown in Figure
2(b), reflects better convergence stability compared to the
fluctuating pattern seen in the base model Figure 2(a).
The use of the AdamW optimizer with weight decay,
combined with a well-designed warm-up strategy,
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contributed to more efficient training and better
generalization. The consistent reduction in training loss
further highlights the model’s learning efficiency. Despite
slightly higher initial losses, the fine-tuned model achieved
a higher testing mAP@0.5 of 0.8237, outperforming the
base model’s 0.7833. These findings confirm the
importance of properly tuned hyperparameters for
achieving robust performance and generalization in object
detection tasks.

Figure 3(a) illustrates a scenario where the Baseline
Model struggled to detect a pedestrian (indicated by a red
circle) within a crowded scene featuring several partially
occluded individuals. The overlapping pedestrians likely
caused this misdetection. In contrast, Figure 3(b) shows
that the Fine-Tuned Model successfully addressed the
occlusion challenge, accurately detecting all pedestrians
present. And Figure 3(c) highlights a case where the
Baseline Model incorrectly identified pedestrians (marked
with a red circle) in a scene while the scene has only one
pedestrian which was accurately detected by the Fine-
Tuned Model in Figure 3(d). Zoomed-in views of missed
detections are shown in Figure 3 (e and f), with missed and
false positives highlighted in red circles for clarity. These
examples highlight the Baseline Model’s limitations in
dealing with complex conditions like occlusions, while
demonstrating the Fine-Tuned Model’s enhanced
capability to overcome these challenges.

Table 1. Summary Of Training and Testing Performance

Modality I\]/?(E)IZZI Fine-Tuned Model
Epochs 50 50
Batch Size 8 8
Highest mAP@0.5 0.8161 0.8505
Final Training Loss 0.1461 0.1255
Testing mAP@0.5 0.7833 0.8237




Muhammad Habibullah Abdulfattah et al. / ELEKTRIKA, 24(3), 2025, 276-283

0.8 -

0.7 -

mAP

0.5 -

0.4 -

—— mAP@0.5
— mMAP@0.5:0.

[ 10 20 30 40
Epochs

mAP

—— mMAP@0.5
—— MAP@0.5:0.¢

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3~

Epochs

Figure 2. mAP for 50 epochs (a) Baseline Model and (b) Fine-Tuned Model.
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Figure 3. Shows a comparison between the Baseline Model
(a and c) and the Fine-Tuned Model (b and d) in detecting
pedestrians. While (e and f), shows the zoomed-in views
of missed detections and false positives highlighted in red
circles.

3.3 Ablation Study on Hyperparameter Settings

To systematically assess the impact of individual
hyperparameter modifications, an ablation study was
conducted. Table 2 summarizes the experimental settings
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and corresponding mAP@0.5 scores. Individually,
switching the optimizer from SGD to AdamW improved
the mAP@0.5 by 2.57%, while reducing the learning rate
yielded a 1.24% gain compared to the baseline.
Introducing a warm-up strategy also provided smoother
early training dynamics, leading to a moderate
improvement of 0.87%. The final fine-tuned model,
incorporating all three modifications (AdamW, reduced
learning rate, and warm-up), achieved the highest
mAP@0.5 of 0.8505, gaining 3.44% against the baseline,
confirming the cumulative benefits of these tuning choices.

4. DISCUSSION AND CONCLUSION

The results of this study demonstrate the importance of
effective hyperparameter tuning in enhancing the
performance of Faster R-CNN with ResNet50 backbone
for object detection. The comparison between the base
model and the fine-tuned model revealed several key
improvements resulting from optimized parameter
configurations. Notably, the fine-tuned model achieved
higher mAP@O0.5 values and exhibited smoother
convergence patterns during training, which highlights its
enhanced stability and generalization capabilities.

The improved performance of the fine-tuned model can
be attributed to several factors, including the use of the
AdamW optimizer with weight decay, a well-designed
warm-up strategy, and the use of a reduced learning rate to
stabilize training. These adjustments contributed to more
effective feature extraction and better convergence during
the training process. The consistent reduction in training
loss and increased mAP wvalues further validate the
significance of these tuning choices. Beyond accuracy, the
fine-tuned model maintained a real-time inference speed of
10.42 FPS, which meets the operational demands of urban
autonomous driving systems.

Comparing the performance of the base model and the
fine-tuned model underscores the necessity of careful
parameter selection when training deep learning models
for object detection. While the base model provided
reasonable results, the fine-tuned model clearly
demonstrated the potential of tuning strategies to enhance
model performance.

While this study adopts manual tuning techniques to
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Table 2. Ablation Study and Testing Performance

Experiment Description Main Hyperparameter Changes | mAP@0.5 (%) Remarks
Exp | Original model (no fine-tuning) Default SGD qptlmlzer, default 825 Initial reference
learning rate performance
. Changed optimizer from SGD Improved weight decay
Exp 1 Optimizer only (AdamW) t0 AdamW 84.3 conirol
Exp 3 Learning rate only Reduced LR by a factor of 10 85.7 Enhanced convergence
stability
Added gradual warm-up at start L ..
Exp 4 Warm-up strategy only of training 84.9 Smoother initial training
i + LR+
Exp 5 Combined (A.d amW + LR AdamW, reduced LR, warm-up Combined effect, best
. Warm-up) (Final fine-tuned 87.4
(Final) model) strategy performance

demonstrate the impact of specific configurations, it is
worth noting that automated hyperparameter optimization
strategies such as Bayesian Optimization, TPE, and
Hyperband have been shown to significantly improve the
training efficiency and generalization of deep learning
models. These techniques intelligently navigate the
hyperparameter search space, reducing the reliance on
exhaustive grid searches. Future work can explore the
integration of these automated search methods, alongside
additional augmentation techniques, to further enhance the
robustness and accuracy of Faster R-CNN models.
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