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Abstract: Accurate indoor positioning remains a significant challenge due to the unpredictable nature of indoor radio signal 

propagation. This study presents a novel Wi-Fi fingerprinting-based positioning system using a hybrid deep learning 

architecture that combines Convolutional Neural Networks (CNN) with Transformer encoders. Unlike traditional algorithms 

such as KNN, WKNN, SVR, and DeepFi, the proposed CNN-Transformer model leverages the spatial feature extraction 

capabilities of CNN and the global sequence learning strength of Transformers to enhance indoor positioning accuracy. A 

unique regression head is integrated to predict precise coordinates directly from raw RSSI input vectors. The proposed CNN-

Transformer model outperformed all other algorithms with a Mean position error (MPE) of 1.76 m and a 95th percentile error 

of 3.2 m. Furthermore, the Cumulative Distribution Function (CDF) analysis revealed that 90% of predictions were within 2.8 

m, demonstrating high accuracy and consistency. Although the model incurs higher inference and training times, the significant 

improvement in accuracy makes it suitable for real-time applications in complex indoor environments. These results 

underscore the effectiveness of combining CNN and Transformer architectures for robust and scalable indoor localization 

systems. 
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1. INTRODUCTION 

Indoor Positioning Systems (IPS) have become essential 

enablers of location-based services in various domains 

such as smart buildings, healthcare navigation, logistics 

optimization, retail analytics, and emergency response 

management [1], [2]. While Global Positioning System 

(GPS) technology remains the standard for outdoor 

localization, its accuracy significantly deteriorates in 

indoor environments due to the absence of line-of-sight 

satellite access, signal attenuation caused by walls and 

floors, and multipath propagation effects. 

Among the variants of indoor localization 

technologies—such as Bluetooth Low Energy (BLE), 

Ultra-Wideband (UWB), and RFID—Wi-Fi-based 

systems remain the most widely deployed. This popularity 

stems from the pervasive presence of Wi-Fi infrastructure 

in modern buildings and its relatively low cost of 

deployment and maintenance [3]. One of the most 

prominent techniques for Wi-Fi-based indoor positioning 

is Received Signal Strength Indicator (RSSI) 

fingerprinting. This method relies on constructing a 

database of signal strength measurements from multiple 

Access Points (APs) at known locations during an offline 

phase. During online localization, real-time RSSI readings 

are compared with the stored fingerprints using pattern 

matching algorithms to estimate the user's location [4]. 

Traditional fingerprinting approaches—such as k-

Nearest Neighbors (KNN), Weighted KNN (WKNN), and 

probabilistic models—have demonstrated reasonable 

accuracy in static settings [5]. However, these methods 

often fail to generalize well in dynamic environments 

where signal fluctuations, device diversity, and non-line-

of-sight conditions introduce significant variability [6], 

[7]. Furthermore, they typically rely on Euclidean distance 

calculations, which do not fully capture the complex 

relationships between RSSI vectors and spatial coordinates 

[4].  

To address these challenges, machine learning 

techniques have been increasingly explored. Supervised 

learning algorithms like Decision Trees, Random Forests, 

and Support Vector Machines (SVMs) offer improved 

robustness by modeling the nonlinear mappings between 

RSSI features and spatial locations [8]. Nevertheless, these 

models still depend on feature engineering and may 

struggle with high-dimensional RSSI data [9]. 

The advent of deep learning has marked a significant 

shift in WIPS research. Convolutional Neural Networks 

(CNNs) have been successfully applied to exploit spatial 

features by interpreting RSSI vectors as 2D spatial patterns 

[10]. Likewise, Recurrent Neural Networks (RNNs), 

including Long Short-Term Memory (LSTM) units, have 

been used to model temporal dependencies in RSSI 
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sequences, particularly useful for tracking mobile users 

[11]. While these approaches have improved performance, 

they often suffer from issues such as vanishing gradients, 

complex training procedures, and limited scalability. 

To overcome these limitations, recent studies have 

begun investigating hybrid deep learning models. In 

particular, the Transformer architecture—originally 

developed for natural language processing—has shown 

remarkable capabilities in capturing long-range 

dependencies through self-attention mechanisms [12], 

[13]. Though underexplored in the context of WIPS, 

Transformers offer a promising avenue for addressing the 

temporal instability and context variability of RSSI 

signals. 

This study introduces a novel hybrid architecture that 

combines the local feature extraction capabilities of CNNs 

with the global sequence modeling strength of 

Transformers. The proposed CNN-Transformer model is 

designed to harness both the spatial distribution and 

sequential dynamics of RSSI fingerprints, enabling robust 

and accurate indoor localization in fluctuating signal 

environments. Through experimental analysis, the 

proposed method demonstrates superior performance over 

classical and state-of-the-art deep learning baselines in 

terms of localization accuracy, inference speed, model 

efficiency, and robustness to signal variability. 

2. REVIEW OF RELATED WORKS 

This section presents hierarchical developmental stride in 

Wi-Fi, from traditional statistical models to modern deep 

learning frameworks. Below is a comprehensive review of 

related works in terms classical and statistical approaches, 

machine learning-based methods, deep learning 

approaches and hybrid and attenuation-based models. 

Early Wi-Fi indoor positioning systems (WIPS) relied 

heavily on deterministic and probabilistic methods. 

Among the most prominent were algorithms like K-

Nearest Neighbors (KNN), which estimate a user's 

position by matching a real-time Received Signal Strength 

Indicator (RSSI) vector against a stored fingerprint 

database [14]. Probabilistic models, such as Bayesian 

inference, attempted to model the uncertainty in signal 

measurements by calculating the posterior probability of a 

location given observed signal strengths. While these 

models were simple and interpretable, they often struggled 

with the high variability and multipath effects present in 

indoor environments [15]. The Weighted KNN (WKNN) 

method improved on basic KNN by assigning weights to 

neighbors inversely proportional to their distances, thus 

enhancing robustness [16]. 

Despite incremental gains, deterministic and 

probabilistic models remained sensitive to environmental 

dynamics such as furniture movement, human presence, 

and device heterogeneity. These challenges prompted a 

shift toward data-driven machine learning techniques. 

Supervised learning models including Decision Trees, 

Random Forests, and Support Vector Machines (SVMs) 

began to gain traction in modeling nonlinear relationships 

between RSSI values and location labels. The authors in 

[17] and [18] showed that Random Forest classifiers 

consistently outperformed both KNN and SVM in 

complex indoor settings due to their ensemble nature and 

robustness to noise. Furthermore, dimensionality reduction 

techniques like Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) were employed to 

compress fingerprint spaces and mitigate overfitting, 

though they often required manual feature selection [19]. 

The advent of deep learning brought a significant shift 

in WIPS, primarily due to its ability to learn hierarchical 

features automatically from raw input [20]. Convolutional 

Neural Networks (CNNs), in particular, have proven 

effective by treating RSSI values as spatially correlated 

features, allowing for localized pattern recognition [21]. 

For instance, DeepFi leveraged CNNs to capture spatial 

dependencies among access points, yielding significant 

improvements in prediction accuracy [22]. Similarly, 

Autoencoder-based architectures were used for 

unsupervised feature learning and denoising, especially in 

signal-sparse regions [23]. 

Recurrent Neural Networks (RNNs), including Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) models, further extended the potential of WIPS by 

capturing temporal dependencies across RSSI sequences, 

which is especially beneficial in tracking moving targets 

[24], [25], [26]. However, these models are not without 

limitations—they are prone to vanishing gradient problems 

and are computationally expensive to train on long 

sequences. To counter these limitations, hybrid models 

have emerged that combine CNNs and LSTMs, harnessing 

both spatial and temporal features; to this regard the 

authors in [27] demonstrated that such hybrid networks 

provided improved generalization and accuracy, but at the 

cost of increased computational complexity. 

More recently, attention-based mechanisms, 

particularly the Transformer architecture (Vaswani et al., 

2017), have begun to influence the design of WIPS. 

Originally developed for natural language processing, 

Transformers are capable of modeling global dependencies 

without the sequential bottlenecks of RNNs. This makes 

them well-suited for RSSI data, where signal patterns may 

have both local and global relationships. However, their 

adoption in indoor positioning remains limited. 

In parallel, researchers have explored practical 

enhancements to dataset quality and model robustness. 

Crowdsourcing approaches utilize data collected passively 

from users’ devices to populate fingerprint databases, 

reducing deployment costs. Data augmentation 

techniques—such as adding Gaussian noise, rotating 

signal vectors, or simulating path loss—have also been 

proposed to increase model generalization [28], [29]. Yet, 

their integration with deep learning-based WIPS remains 

in its infancy, representing an untapped opportunity. 

This evolving landscape highlights the limitations of 

existing methods and underlines the need for a more 

adaptive and scalable approach. The current study 

proposes a CNN-Transformer hybrid architecture that 

fuses CNN's localized spatial feature extraction with the 

Transformer’s global attention mechanism. This model is 

designed to cope with signal variability and capture 

complex signal-location relationships more effectively, 

making it a promising solution for real-world indoor 

positioning applications. 
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3. METHODOLOGY 

The proposed method integrates a 1D Convolutional 

Neural Network (CNN) and Transformer Encoder for 

accurate indoor localization using Wi-Fi RSSI 

fingerprints. The involves four stages: preprocessing, CNN 

feature extraction, Transformer encoding, and regression 

output. Figure 1 shows CNN-Transformer hybrid 

framework. 

 

 

Figure 1. CNN-Transformer Hybrid Framework 

Wi-Fi fingerprinting-based indoor positioning systems 

estimate user location by matching real-time signal 

features to a pre-collected database of signal fingerprints. 

Each fingerprint is a vector of received signal strength 

indicator (RSSI) values from N Wi-Fi access points (APs): 

 

𝑅 = [𝑟1, 𝑟2, … 𝑟𝑁]                              (3.1) 

 

where 𝑟𝑖 = RSSI from the 𝑖𝑡ℎ access point. 

Each RSSI vector consists of signal strength 

measurements from five fixed-location access points 

(APs), the number of possible AP has been determined in 

[5]. The APs are consistently ordered using their MAC 

addresses to maintain spatial alignment across all samples. 

The raw RSSI values are normalized to a [0, 1] scale. 

undetected APs are replaced with -100 dBm before 

normalization. 

Thereafter, 

 

𝐷 = {(𝑅(𝑖), 𝐿(𝑖))}𝑖=1
𝑀                            (3.2)  

 

where 𝐷 = training dataset, 𝐿(𝑖) = (𝑥(𝑖), 𝑦(𝑖)) the known 2D 

location corresponding to fingerprint 𝑅(𝑖). The goal is to 

learn a function 𝑓(∙) that maps RSSI to location estimates: 

 

𝐿̂ = 𝑓(𝑅𝑡𝑒𝑠𝑡)                                    (3.3) 

 

In the proposed framework, this function 𝑓 is modeled 

using a hybrid architecture that combines Convolutional 

Neural Networks (CNNs) for spatial feature extraction and 

Transformer encoders for capturing long-range 

dependencies in signal variations. 

The CNN module processes the input RSSI vector using 

a 1D convolutional layer (64 Filters, 2 Kernel Size, 1 Stride 

and same Padding). This produces a feature map of shape 

(batch_size, 5, 64), where 5 corresponds to the number of 

AP tokens and 64 is the feature dimension. This stage 

captures localized signal variations between adjacent APs. 

The 1D convolutional layers to extract local signal 

features is expressed in Equation 3.4. 

 

𝐹(1) = RELU(conv1D(R))                       (3.4) 

 

The Transformer encoder includes multi-head self-

attention mechanisms. It takes the output of the CNN layer 

and applies multi-head self-attention to model global 

dependencies between access point signals. A sinusoidal 

positional encoding is added to the CNN output to retain 

the ordering of APs. The encoder includes: 2 Transformer 

blocks each with 4 attention heads, feed-forward layer with 

128 units and layer normalization and residual 

connections. The encoder outputs a refined context-aware 

feature sequence of shape (batch_size, 5, 64). The attention 

is expressed in Equation 3.5. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉         (3.5) 

 

where 𝑄, 𝐾, 𝑉 are the query, key and value matrices 

obtained by linear projection of CNN features.  The 

attention mechanism allows the model to weigh APs based 

on relevance dynamically. 

The Transformer output is flattened and passed through 

a fully connected regression head of dense layer (128 units, 

ReLU), dropout (rate = 0.2) and output layer (2 units for x 

and y coordinates). 

 

𝑦̂ = 𝑤2. RELU(𝑤1. 𝐹𝑓𝑖𝑛𝑎𝑙 + 𝑏1) + 𝑏2          (3.6) 

 

where 𝑦̂ is the predicted 2D location coordinates, 𝑤1 and 

𝑤2 weight matrix of the regression layer, 𝐹𝑓𝑖𝑛𝑎𝑙 feature 

vector from the proceeding CNN-transformer layer, 𝑏1 and 

𝑏2 are bias vector of the regression layer.  

The loss function used to train the model is the 

Euclidean distance between the predicted and true 

locations as stated in Equation 3.7 and other parameters 

presented in Table 1. 

 

ℒ =
1

𝑀
∑‖𝑓𝑅(𝑖) − 𝐿(𝑖)‖

2

2
𝑀

𝑖=1

                    (3.7) 

Table 1. Model parameters 

Epoch 100 

Batch size 64 

Optimizer Adam 

Learning rate 0.001 

Loss function MSE 

Hardware NVIDIA RTX 3060 GPU 

 

The experiments were conducted on the second floor of 

the NLNG Building, within the Faculty of Engineering and 

Technology at the University of Ilorin. Figure 2 show the 

experimental floor plan area covering area of 
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approximately 1176 m2, comprising various structural 

elements such as laboratories, a central lobby, two stairway 

sections, and a seminar room. A photographic overview of 

the physical environment is provided in Figure 3a – b. 5 

Wi-Fi access points were used for the experiment. 

covering 625 reference points with 50 fingerprints each, at 

a sampling rate of 2 sec [3] totaling 31,250 samples. The 

dataset was divided into 70% training and 30% testing.  

 

 

Figure 2. The Experimental Floor Plan Area 

 

Figure 3a. A Photographic Overview of the Experimental 

Area 

 

Figure 3b. A Photographic Overview of the Experimental 

Area 

4. RESULTS AND DISCUSSION 

This section presents the experimental results of the 

proposed CNN-transformer based hybrid indoor 

positioning system and discusses its performance in 

comparison with the following methods K-Nearest 

Neighbors (KNN), Weighted KNN (WKNN), Support 

Vector Regression (SVR), DeepFi (CNN) and CNN + 

LSTM.  

The proposed CNN-Transformer model achieved the 

lowest mean positioning error (MPE) of 1.9 m, 

outperforming all baseline methods. Traditional methods 

such as KNN and WKNN reported errors of 4.2m and 

3.8m, respectively, while the deep learning-based DeepFi 

and CNN+LSTM recorded 2.6m and 2.4m. The significant 

reduction in MPE by the proposed model highlights its 

capability to effectively capture complex spatial patterns 

in the RSSI space. Figure 4 shows the mean positioning 

error. 

 

 

Figure 4. The Mean Positioning Error 

The 95th percentile error indicates the error threshold 

under which 95% of the test samples fall. Figure 5 shows 

the 95th percentile error, the CNN-Transformer model 

maintained the lowest value of 3.2 m, suggesting strong 

robustness in varied and noisy indoor environments. This 

contrasts sharply with the KNN method which reached 6.9 

m, indicating greater susceptibility to large error spikes. 

The relatively small gap between the average and 95th 

percentile error in CNN-Transformer reflects high error 

consistency across the data space. 

 

 

Figure 5. The 95th Percentile Error 

Inference time, representing the latency to generate 

predictions for new samples, is crucial for real-time 

applications. Figure 6 illustrate the inference time. The 

traditional algorithms (KNN and WKNN) recorded the 
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lowest time (1.2ms and 1.5ms, respectively) due to their 

simplistic nature. However, despite a slightly higher 

latency (11.1 ms) for CNN-Transformer, it remains within 

acceptable limits for most real-time indoor localization 

tasks. The trade-off between speed and accuracy should be 

considered based on application-specific constraints. 

The training time significantly varies among models. 

Non-parametric methods such as KNN and WKNN 

required no explicit training, whereas SVR took 12 

minutes. DeepFi, CNN+LSTM, and CNN-Transformer 

required 25, 28 and 31 minutes, respectively. The 

increased training time in CNN-based models is expected 

due to their computational depth. However, since training 

is typically conducted offline, the longer duration is 

justifiable given the superior accuracy. Figure 7 shows the 

training time. 

 

 

Figure 6. The Inference Time 

 

Figure 7. The Training Time 

Additionally, the storage requirements for each model 

demonstrate that KNN and WKNN have minimal size (≈ 

0.1 MB), while the proposed CNN-Transformer model 

occupies approximately 9.8 MB. This growth in model size 

correlates with the increased complexity and number of 

learnable parameters. Despite this, the size remains 

manageable for deployment in most edge-computing or 

mobile-based systems.  Figure 8 shows the storage size of 

each model. 

 

 

Figure 8. The Storage Size of each Model 

Overall, the CNN-Transformer model provides the best 

trade-off between accuracy and robustness, with only a 

modest cost in terms of training time, inference latency, 

and storage requirements. While traditional methods are 

lightweight and faster, they suffer from significant 

accuracy limitations and higher variability in localization 

precision. 

Furthermore, the Cumulative Distribution Function 

(CDF) of localization error further illustrates the predictive 

power and reliability of each model. Figure 9 shows the 

CDF plots comparison of each model. KNN curve rises 

gradually and reaches 90% at approximately 7 m. This 

indicates high variability and less reliability, but WKNN 

has a slight improved performance over KNN with a 

modestly steeper curve, achieving 90% at around 6.2 m. 

SVR shows a steeper curve and better consistency, with 

80–90% of predictions under 5 m while DeepFi exhibits 

strong performance with a sharp rise in the CDF curve. 

90% of predictions fall within 4 m, showing improved 

accuracy. 

 

 

Figure 9. The CDF Plots Comparison of each Model 

The CNN+LSTM offers a steep curve with most 

predictions under 3.5 m, indicating excellent prediction 
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stability and precision; but the proposed CNN-transformer 

model demonstrates the steepest and highest CDF curve. 

90% of predictions are within 2.8 m and 95% within 3.2 

m. This signifies the highest consistency and lowest error 

spread among all models. This shows that the CNN-

Transformer model not only provides the lowest average 

error but also ensures that a large majority of the 

predictions remain within a tight error margin, thus making 

it highly suitable for real-time and safety-critical indoor 

positioning applications. 

5. CONCLUSION 

This paper presented a novel hybrid indoor positioning 

framework that integrates Convolutional Neural Networks 

(CNNs) with Transformer architectures to enhance the 

accuracy, robustness, and generalization of Wi-Fi 

fingerprinting-based localization. The proposed method 

captures the spatial relationships among APs to effectively 

addresses challenges such as signal instability, multipath 

interference, and user movement in dynamic indoor 

environments. 

Experimental results demonstrated that the proposed 

CNN-Transformer model outperforms traditional methods 

such as WKNN, Random Forest, and CNN-LSTM in terms 

of mean localization error and 95th percentile error. The 

model achieved a mean localization error of 1.76 m and 

maintained competitive inference times suitable for real-

time applications.  In addition to high positioning 

accuracy, the proposed framework was designed with 

deployment feasibility in mind. Model pruning and 

quantization ensured a compact architecture capable of 

operating on resource-constrained edge devices without 

sacrificing performance. 

Future work will explore multimodal sensor fusion by 

integrating inertial, visual, or BLE data to further boost 

system performance. Moreover, online learning and 

federated learning approaches will be investigated to 

enable adaptive localization models that improve over time 

while preserving user privacy. 
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