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Abstract: Accurate indoor positioning remains a significant challenge due to the unpredictable nature of indoor radio signal
propagation. This study presents a novel Wi-Fi fingerprinting-based positioning system using a hybrid deep learning
architecture that combines Convolutional Neural Networks (CNN) with Transformer encoders. Unlike traditional algorithms
such as KNN, WKNN, SVR, and DeepFi, the proposed CNN-Transformer model leverages the spatial feature extraction
capabilities of CNN and the global sequence learning strength of Transformers to enhance indoor positioning accuracy. A
unique regression head is integrated to predict precise coordinates directly from raw RSSI input vectors. The proposed CNN-
Transformer model outperformed all other algorithms with a Mean position error (MPE) of 1.76 m and a 95th percentile error
of 3.2 m. Furthermore, the Cumulative Distribution Function (CDF) analysis revealed that 90% of predictions were within 2.8
m, demonstrating high accuracy and consistency. Although the model incurs higher inference and training times, the significant
improvement in accuracy makes it suitable for real-time applications in complex indoor environments. These results
underscore the effectiveness of combining CNN and Transformer architectures for robust and scalable indoor localization
systems.
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1. INTRODUCTION Traditional fingerprinting approaches—such as k-
Indoor Positioning Systems (IPS) have become essential Nearest Neighbors (KNN), Weighted KNN (WKNN), and
enablers of location-based services in various domains probabilistic models—have demonstrated reasonable
such as smart buildings, healthcare navigation, logistics accuracy in static se‘Etings [5]-‘ However‘, thesg methods
optimization, retail analytics, and emergency response often fa.ﬂ to general}ze well.ln d}/narplc environments
management [1], [2]. While Global Positioning System where signal fluctuations, device diversity, and non-line-
(GPS) technology remains the standard for outdoor of-sight conditions introduce significant variability [6],
localization, its accuracy significantly deteriorates in [7]. Furthermore, they typically rely on Euclidean distance

indoor environments due to the absence of line-of-sight calcglatior.ls, which do not fully capture the corpplex
satellite access, signal attenuation caused by walls and relationships between RSSI vectors and spatial coordinates

floors, and multipath propagation effects. [4]- . .
Among the variants of indoor localization TO. address these. chall§nges, machine learr}lng
technologies—such as Bluetooth Low Energy (BLE), techniques have been increasingly explored. Supervised
Ultra-Wideband (UWB), and RFID—Wi-Fi-based learning algorithms like Decision Trees, Random Forests,
systems remain the most widely deployed. This popularity and Support Vector. Machines (SVMS) offer improved
stems from the pervasive presence of Wi-Fi infrastructure robustness by modeling the nonlinear mappings between
in modern buildings and its relatively low cost of RSSI features and spatial locations [8]. Nevertheless, these

deployment and maintenance [3]. One of the most models still depend on feature engineering and may
prominent techniques for Wi-Fi-based indoor positioning struggle with high-dimensional RSSI data [9].

is Received Signal Strength Indicator (RSSI) The advent of deep learning has marked a significant
fingerprinting. This method relies on constructing a shift in WIPS research. Convolutional Neural Networks
database of signal strength measurements from multiple (CNNs) have been successfully applied to exploit spatial
Access Points (APs) at known locations during an offline features by interpreting RSSI vectors as 2D spatial patterns
phase. During online localization, real-time RSSI readings [10]. Likewise, Recurrent Neural Networks (RNNs),
are compared with the stored fingerprints using pattern including Long Short-Term Memory (LSTM) units, have
matching algorithms to estimate the user's location [4]. been used to model temporal dependencies in RSSI
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sequences, particularly useful for tracking mobile users
[11]. While these approaches have improved performance,
they often suffer from issues such as vanishing gradients,
complex training procedures, and limited scalability.

To overcome these limitations, recent studies have
begun investigating hybrid deep learning models. In
particular, the Transformer architecture—originally
developed for natural language processing—has shown
remarkable capabilities in capturing long-range
dependencies through self-attention mechanisms [12],
[13]. Though underexplored in the context of WIPS,
Transformers offer a promising avenue for addressing the
temporal instability and context variability of RSSI
signals.

This study introduces a novel hybrid architecture that
combines the local feature extraction capabilities of CNNs
with the global sequence modeling strength of
Transformers. The proposed CNN-Transformer model is
designed to harness both the spatial distribution and
sequential dynamics of RSSI fingerprints, enabling robust
and accurate indoor localization in fluctuating signal
environments. Through experimental analysis, the
proposed method demonstrates superior performance over
classical and state-of-the-art deep learning baselines in
terms of localization accuracy, inference speed, model
efficiency, and robustness to signal variability.

2. REVIEW OF RELATED WORKS

This section presents hierarchical developmental stride in
Wi-Fi, from traditional statistical models to modern deep
learning frameworks. Below is a comprehensive review of
related works in terms classical and statistical approaches,
machine learning-based methods, deep learning
approaches and hybrid and attenuation-based models.

Early Wi-Fi indoor positioning systems (WIPS) relied
heavily on deterministic and probabilistic methods.
Among the most prominent were algorithms like K-
Nearest Neighbors (KNN), which estimate a user's
position by matching a real-time Received Signal Strength
Indicator (RSSI) vector against a stored fingerprint
database [14]. Probabilistic models, such as Bayesian
inference, attempted to model the uncertainty in signal
measurements by calculating the posterior probability of a
location given observed signal strengths. While these
models were simple and interpretable, they often struggled
with the high variability and multipath effects present in
indoor environments [15]. The Weighted KNN (WKNN)
method improved on basic KNN by assigning weights to
neighbors inversely proportional to their distances, thus
enhancing robustness [16].

Despite  incremental gains, deterministic and
probabilistic models remained sensitive to environmental
dynamics such as furniture movement, human presence,
and device heterogeneity. These challenges prompted a
shift toward data-driven machine learning techniques.
Supervised learning models including Decision Trees,
Random Forests, and Support Vector Machines (SVMs)
began to gain traction in modeling nonlinear relationships
between RSSI values and location labels. The authors in
[17] and [18] showed that Random Forest classifiers
consistently outperformed both KNN and SVM in
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complex indoor settings due to their ensemble nature and
robustness to noise. Furthermore, dimensionality reduction
techniques like Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) were employed to
compress fingerprint spaces and mitigate overfitting,
though they often required manual feature selection [19].

The advent of deep learning brought a significant shift
in WIPS, primarily due to its ability to learn hierarchical
features automatically from raw input [20]. Convolutional
Neural Networks (CNNs), in particular, have proven
effective by treating RSSI values as spatially correlated
features, allowing for localized pattern recognition [21].
For instance, DeepFi leveraged CNNs to capture spatial
dependencies among access points, yielding significant
improvements in prediction accuracy [22]. Similarly,
Autoencoder-based  architectures were used for
unsupervised feature learning and denoising, especially in
signal-sparse regions [23].

Recurrent Neural Networks (RNNs), including Long
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) models, further extended the potential of WIPS by
capturing temporal dependencies across RSSI sequences,
which is especially beneficial in tracking moving targets
[24], [25], [26]. However, these models are not without
limitations—they are prone to vanishing gradient problems
and are computationally expensive to train on long
sequences. To counter these limitations, hybrid models
have emerged that combine CNNs and LSTMs, harnessing
both spatial and temporal features; to this regard the
authors in [27] demonstrated that such hybrid networks
provided improved generalization and accuracy, but at the
cost of increased computational complexity.

More  recently,  attention-based  mechanisms,
particularly the Transformer architecture (Vaswani et al.,
2017), have begun to influence the design of WIPS.
Originally developed for natural language processing,
Transformers are capable of modeling global dependencies
without the sequential bottlenecks of RNNs. This makes
them well-suited for RSSI data, where signal patterns may
have both local and global relationships. However, their
adoption in indoor positioning remains limited.

In parallel, researchers have explored practical
enhancements to dataset quality and model robustness.
Crowdsourcing approaches utilize data collected passively
from users’ devices to populate fingerprint databases,
reducing deployment costs. Data augmentation
techniques—such as adding Gaussian noise, rotating
signal vectors, or simulating path loss—have also been
proposed to increase model generalization [28], [29]. Yet,
their integration with deep learning-based WIPS remains
in its infancy, representing an untapped opportunity.

This evolving landscape highlights the limitations of
existing methods and underlines the need for a more
adaptive and scalable approach. The current study
proposes a CNN-Transformer hybrid architecture that
fuses CNN's localized spatial feature extraction with the
Transformer’s global attention mechanism. This model is
designed to cope with signal variability and capture
complex signal-location relationships more effectively,
making it a promising solution for real-world indoor
positioning applications.
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3. METHODOLOGY

The proposed method integrates a 1D Convolutional
Neural Network (CNN) and Transformer Encoder for
accurate indoor localization using Wi-Fi RSSI
fingerprints. The involves four stages: preprocessing, CNN
feature extraction, Transformer encoding, and regression
output. Figure 1 shows OCNN-Transformer hybrid
framework.
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Figure 1. CNN-Transformer Hybrid Framework

Wi-Fi fingerprinting-based indoor positioning systems
estimate user location by matching real-time signal
features to a pre-collected database of signal fingerprints.
Each fingerprint is a vector of received signal strength
indicator (RSSI) values from N Wi-Fi access points (APs):

R = [r, 1y, ..7y] (3.1

where r; = RSSI from the i access point.

Each RSSI vector consists of signal strength
measurements from five fixed-location access points
(APs), the number of possible AP has been determined in
[5]. The APs are consistently ordered using their MAC
addresses to maintain spatial alignment across all samples.
The raw RSSI values are normalized to a [0, 1] scale.
undetected APs are replaced with -100 dBm before
normalization.

Thereafter,

D = {(R®, LV, (3.2)

where D = training dataset, L® = (x®, y¥) the known 2D
location corresponding to fingerprint R®. The goal is to
learn a function f () that maps RSSI to location estimates:

L= f (Reest) (3.3)

In the proposed framework, this function f is modeled
using a hybrid architecture that combines Convolutional
Neural Networks (CNNs) for spatial feature extraction and
Transformer encoders for capturing long-range
dependencies in signal variations.

The CNN module processes the input RSSI vector using
a 1D convolutional layer (64 Filters, 2 Kernel Size, 1 Stride
and same Padding). This produces a feature map of shape
(batch_size, 5, 64), where 5 corresponds to the number of

AP tokens and 64 is the feature dimension. This stage
captures localized signal variations between adjacent APs.

The 1D convolutional layers to extract local signal
features is expressed in Equation 3.4.

F® = RELU(conv1D(R)) (3.4)

The Transformer encoder includes multi-head self-
attention mechanisms. It takes the output of the CNN layer
and applies multi-head self-attention to model global
dependencies between access point signals. A sinusoidal
positional encoding is added to the CNN output to retain
the ordering of APs. The encoder includes: 2 Transformer
blocks each with 4 attention heads, feed-forward layer with
128 units and layer normalization and residual
connections. The encoder outputs a refined context-aware
feature sequence of shape (batch_size, 5, 64). The attention
is expressed in Equation 3.5.

T

i >V (3.5)
i) v

k

Attention (Q,K,V) = softmax(

where Q,K,V are the query, key and value matrices
obtained by linear projection of CNN features. The
attention mechanism allows the model to weigh APs based
on relevance dynamically.

The Transformer output is flattened and passed through
a fully connected regression head of dense layer (128 units,
ReLU), dropout (rate = 0.2) and output layer (2 units for x
and y coordinates).

9 = w,. RELU(w;. Ff"et + b)) + b, (3.6)

where ¥ is the predicted 2D location coordinates, w; and
w, weight matrix of the regression layer, F/"% feature
vector from the proceeding CNN-transformer layer, b; and
b, are bias vector of the regression layer.

The loss function used to train the model is the
Euclidean distance between the predicted and true
locations as stated in Equation 3.7 and other parameters
presented in Table 1.

M
1 . 112
L= E |FR® — LD (3.7)
i=1

Table 1. Model parameters

Epoch 100
Batch size 64
Optimizer Adam

Learning rate  0.001
Loss function MSE
Hardware NVIDIA RTX 3060 GPU

The experiments were conducted on the second floor of
the NLNG Building, within the Faculty of Engineering and
Technology at the University of Ilorin. Figure 2 show the
experimental floor plan area covering area of



Abdurrhaman Ademola Isa et al. / ELEKTRIKA, 24(3), 2025, 344-350

approximately 1176 m?, comprising various structural

elements such as laboratories, a central lobby, two stairway
sections, and a seminar room. A photographic overview of
the physical environment is provided in Figure 3a — b. 5
Wi-Fi access points were used for the experiment.
covering 625 reference points with 50 fingerprints each, at
a sampling rate of 2 sec [3] totaling 31,250 samples. The
dataset was divided into 70% training and 30% testing.
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Figure 2. The Experimental Floor Plan Area

Figure 3a. A Photographic Overview of the Experimental
Area

Figure 3b. A Photographic Overview of the Experimental
Area

4. RESULTS AND DISCUSSION

This section presents the experimental results of the
proposed CNN-transformer based hybrid indoor
positioning system and discusses its performance in
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comparison with the following methods K-Nearest
Neighbors (KNN), Weighted KNN (WKNN), Support
Vector Regression (SVR), DeepFi (CNN) and CNN +
LSTM.

The proposed CNN-Transformer model achieved the
lowest mean positioning error (MPE) of 1.9 m,
outperforming all baseline methods. Traditional methods
such as KNN and WKNN reported errors of 4.2m and
3.8m, respectively, while the deep learning-based DeepFi
and CNN+LSTM recorded 2.6m and 2.4m. The significant
reduction in MPE by the proposed model highlights its
capability to effectively capture complex spatial patterns
in the RSSI space. Figure 4 shows the mean positioning
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Figure 4. The Mean Positioning Error

The 95th percentile error indicates the error threshold
under which 95% of the test samples fall. Figure 5 shows
the 95th percentile error, the CNN-Transformer model
maintained the lowest value of 3.2 m, suggesting strong
robustness in varied and noisy indoor environments. This
contrasts sharply with the KNN method which reached 6.9
m, indicating greater susceptibility to large error spikes.
The relatively small gap between the average and 95th
percentile error in CNN-Transformer reflects high error
consistency across the data space.
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Figure 5. The 95th Percentile Error

Inference time, representing the latency to generate
predictions for new samples, is crucial for real-time
applications. Figure 6 illustrate the inference time. The
traditional algorithms (KNN and WKNN) recorded the
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lowest time (1.2ms and 1.5ms, respectively) due to their
simplistic nature. However, despite a slightly higher
latency (11.1 ms) for CNN-Transformer, it remains within
acceptable limits for most real-time indoor localization
tasks. The trade-off between speed and accuracy should be
considered based on application-specific constraints.

The training time significantly varies among models.
Non-parametric methods such as KNN and WKNN
required no explicit training, whereas SVR took 12
minutes. DeepFi, CNN+LSTM, and CNN-Transformer
required 25, 28 and 31 minutes, respectively. The
increased training time in CNN-based models is expected
due to their computational depth. However, since training
is typically conducted offline, the longer duration is
justifiable given the superior accuracy. Figure 7 shows the
training time.
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Figure 6. The Inference Time
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Figure 7. The Training Time

Additionally, the storage requirements for each model
demonstrate that KNN and WKNN have minimal size (=
0.1 MB), while the proposed CNN-Transformer model
occupies approximately 9.8 MB. This growth in model size
correlates with the increased complexity and number of
learnable parameters. Despite this, the size remains
manageable for deployment in most edge-computing or
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mobile-based systems. Figure 8 shows the storage size of
each model.
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Figure 8. The Storage Size of each Model

Overall, the CNN-Transformer model provides the best
trade-off between accuracy and robustness, with only a
modest cost in terms of training time, inference latency,
and storage requirements. While traditional methods are
lightweight and faster, they suffer from significant
accuracy limitations and higher variability in localization
precision.

Furthermore, the Cumulative Distribution Function
(CDF) of localization error further illustrates the predictive
power and reliability of each model. Figure 9 shows the
CDF plots comparison of each model. KNN curve rises
gradually and reaches 90% at approximately 7 m. This
indicates high variability and less reliability, but WKNN
has a slight improved performance over KNN with a
modestly steeper curve, achieving 90% at around 6.2 m.
SVR shows a steeper curve and better consistency, with
80-90% of predictions under 5 m while DeepFi exhibits
strong performance with a sharp rise in the CDF curve.
90% of predictions fall within 4 m, showing improved
accuracy.

1.0F — KNN
— WKNN
SVR
—— DeepFi (CNN)
0.8} — CNN +LSTM
= CNN + Transformer

Cumulative Probability

0.2

0.0

1 2 3 4 5 6 7 8
Localization Error (m)

Figure 9. The CDF Plots Comparison of each Model

The CNN+LSTM offers a steep curve with most
predictions under 3.5 m, indicating excellent prediction
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stability and precision; but the proposed CNN-transformer
model demonstrates the steepest and highest CDF curve.
90% of predictions are within 2.8 m and 95% within 3.2
m. This signifies the highest consistency and lowest error
spread among all models. This shows that the CNN-
Transformer model not only provides the lowest average
error but also ensures that a large majority of the
predictions remain within a tight error margin, thus making
it highly suitable for real-time and safety-critical indoor
positioning applications.

5. CONCLUSION

This paper presented a novel hybrid indoor positioning
framework that integrates Convolutional Neural Networks
(CNNs) with Transformer architectures to enhance the
accuracy, robustness, and generalization of Wi-Fi
fingerprinting-based localization. The proposed method
captures the spatial relationships among APs to effectively
addresses challenges such as signal instability, multipath
interference, and user movement in dynamic indoor
environments.

Experimental results demonstrated that the proposed
CNN-Transformer model outperforms traditional methods
such as WKNN, Random Forest, and CNN-LSTM in terms
of mean localization error and 95th percentile error. The
model achieved a mean localization error of 1.76 m and
maintained competitive inference times suitable for real-
time applications. In addition to high positioning
accuracy, the proposed framework was designed with
deployment feasibility in mind. Model pruning and
quantization ensured a compact architecture capable of
operating on resource-constrained edge devices without
sacrificing performance.

Future work will explore multimodal sensor fusion by
integrating inertial, visual, or BLE data to further boost
system performance. Moreover, online learning and
federated learning approaches will be investigated to
enable adaptive localization models that improve over time
while preserving user privacy.
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